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Introduction
Limitations in current power infrastructure together with world-wide concerns, like cli-
mate change and economic stability are the driving factors to ongoing research efforts 
for developing a new generation of smart energy systems (Fainti et al. 2014). Realization 
of smart energy systems is greatly accommodated by coupling information technolo-
gies with power systems. In particular, the advent of internet and advancements in com-
munication technologies inspired the notion of an Energy Internet (Alamaniotis et  al. 
2011a, b), in which information networks interact with power generation, transmission, 
and distribution systems aiming at optimizing power system operation.

Smart energy systems utilize information to overcome the significant constraints of 
the current power grid infrastructure (Tsoukalas and Gao 2008). The limited delivery 
capacity and the lack of large scale energy storage may lead to grid destabilization caus-
ing distribution failures with high financial impact to grid participants. For instance, (i) 
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load demand beyond delivery capacity results in financially expensive system failures 
and blackouts (Alamaniotis et al. 2014b), and (ii) the amount of excess generated energy 
that cannot be stored is wasted since the generation does not closely follow the demand 
(Gao et al. 2003).

Electricity load forecasting has been recognized as a key issue in implementing smart 
energy systems (Alamaniotis et al. 2014a, b). Load forecasting may be used by all smart 
grid participants aiming at reaching their goals. For example, consumers utilize load 
forecasting for consumption planning and scheduling while grid operators for safe and 
secure electricity delivery. Depending on the forecasting time horizon, load forecasting 
may be identified as very short term (VSTLF) ranging from some minutes to an hour 
(Alamaniotis et al. 2012), short term (STLF) (Alamaniotis et al. 2011a, b) ranging from 
an hour to a week, medium term (MTLF) ranging from a week to a year (Ghiassi et al. 
2006), and long term load forecasting (LTLF) for longer than a year ahead of time pre-
dictions (Kandil et al. 2002).

The current manuscript focuses on medium term load forecasting. MTLF is an effi-
cient tool for implementing smart energy systems since it promotes optimal expansion 
planning by considering climate changes, maintenance scheduling, fuel purchase nego-
tiating (for instance for nuclear power plants), component replacing or repairing, and 
maximizing utilization of renewable resources such as wind power. Furthermore, it is 
expected to play a crucial role in developing price directed energy markets in which enti-
ties will participate via intelligent meters (Gatsis and Giannakis 2012) and require fore-
casting tools to develop their electricity purchase strategies.

Though the number of proposed approaches for performing MTLF is limited, there 
are ongoing efforts for developing more sophisticated and advanced tools that satisfy the 
demands imposed by the advent of the “big data” era. The proposed approaches make 
use of tools coming from statistics and artificial intelligence fields. A dynamic artificial 
neural network is proposed in (Ghiassi et  al. 2006), and a radial basis function neural 
network in (Xia et al. 2010), while combination of neural networks with expert systems 
in (Kim et al. 1995). Other methods employed adaptive neural networks (Tsekouras et al. 
2006), particle swarm optimization (Rengcun et al. 2008), and singular value decompo-
sition (Abu-Shikhah and Elkarmi 2011). Nonlinear multivariable regression for MTLF 
is presented in (Tsekouras et  al. 2007), while a combination of linear and non-linear 
regression for MTLF is introduced in (Abu-Shikhah et al. 2011), and Gaussian processes 
for a year ahead monthly load forecasting in (Alamaniotis et al. 2014a). Furthermore, a 
support vector machine based approach for MTLF is discussed in (Bozic and Stojanovic 
2011), while a hybrid methodology comprised of autoregressive integrated moving aver-
age (ARIMA) and artificial neural network is introduced and tested in (El Desouky and 
Elkateb 2000). The above methodologies, though effective, come at a cost of high predic-
tion uncertainty. In addition they lack the necessary flexibility to update their predic-
tions since they are unable to capture nonlinear load dynamics.

In this paper intelligent regression models for MTLF are examined. The proposed 
models make use of machine learning tools and more specifically of kernel machines 
(Scholkopf and Smola 2001). In particular, relevance vector regression (Tipping 2001) 
and Gaussian process regression (Rasmussen 2006) are utilized for making predictions 
for longer than a week ahead of time horizon. Generally speaking, kernel machines are 
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nonlinear methods that inherently make use of semi-positive definite matrices in order 
to make predictions (Hoffman et al. 2008). They are able of detecting the kind of depend-
encies that dominate the load properties by formulating the feature space in terms of 
kernels. Formulation of feature space by kernels is the advantage of kernel machines as 
opposed to the rest load forecasting methods mentioned earlier; it allows the modeler to 
control the forecasting process by selecting the kernel form, and promotes model flex-
ibility by offering a high variety of kernels (Alamaniotis et al. 2015). For instance, ker-
nel regression facilitates selection of a kernel that models particular data properties, for 
example stationarity, in contrast to artificial neural networks that require not only selec-
tion of neuron activation functions but also network architecture (Tsoukalas and Uhrig 
1997). Assessment of the forecasting performance is done using the mean average per-
centage error (MAPE) and squared correlation coefficient (R2), while the testing datasets 
are comprised of the daily demand for a 30-day-ahead horizon.

The roadmap of the paper is as follows: in the next two sections a brief presentation 
on kernel machines is provided and the proposed methodology is presented. Medium 
term load forecasting results are given in the “Results” section, while the last section 
concludes and summarizes the main points of the paper.

Background
Kernel machines

Analytical models that can be expressed as a function of a kernel are known as kernel 
machines (Bishop 2006). A kernel is any valid mathematical function that can be written 
with respect to the dual representation. The general form of the dual representation is 
given by:

with ϕ(x) being any analytical function known as basis function, and k(x, x) representing 
a kernel function. In general, formulating a function using Eq. (1) is known as the kernel 
trick. A few examples of common kernel functions are the linear and the polynomial 
kernels whose analytical formulas are given respectively by (Bishop 2006):

Beyond the widely known kernels, new valid kernels may be created by composition 
of two, or more, valid kernels by applying the operations of addition and/or multiplica-
tion (Rasmussen 2006). The selection of an appropriate kernel function is a main design 
choice that must generally be made by the designer according to the specifications of the 
problem at hand.

Gaussian process regression

The set of random variables that has a joint Gaussian distribution is defined as a Gauss-
ian process. A Gaussian process is fully determined by its mean m(x) and covariance 
function C(x, x′), and therefore, the Gaussian process takes the form:

(1)k(x1, x2) = ϕ(x1)
Tϕ(x2)

(2)k(x1, x2) = xT1 x2

(3)k(x1, x2) =
(

xT1 x2

)2
.
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where it is common to assume for convenience that m(x) = 0.
Gaussian processes are applied in regression problems where they deal with problems 

of predicting continuous parameters. Derivation of Gaussian process regression (GPR) 
has as a point of start the simple linear regression:

where wi are the regression weights and φi are the basis functions. Equation (5) may be 
written in vector form as given below:

Next, a prior normal distribution over the model weights is adopted:

where 0 represents the mean vector, σ 2
w is the variance equal for all individual weights, 

and I is the identity matrix. Therefore, the distribution over the vector output y is also 
normal:

Regression problems require taking into account noisy observed target values. If εn 
denotes the additive noise with zero mean and variance σ 2

n , then the target values 
become:

Hence, the distribution over the target variables is also normal

In Gaussian process regression the Bayesian formalism is applied in order to infer a pre-
dictive distribution, i.e. a mean value and the associated variance. The prediction over 
the target tN+1 for an unknown input x(N+1) is based on the previous observed targets tN 
and the respective inputs xN and thus the predictive distribution becomes

where it is apparent that the predictive distribution depends on the inverse of the covari-
ance matrix CN+1. In order to ease computation of the predictive distribution param-
eters, the covariance matrix CN+1 is subdivided into four submatrices (Williams 2002)

with CN being the covariance matrix of the N observations, k being a vector of length N 
encompassing the covariances between the N + 1 and each of the rest N points, and k 

(4)GP(m(x),C(x, x′))

(5)y(x,w) =

N
∑

i=1

wiφi

(6)yn = �w.

(7)P(w) = N (0, σ 2
wI)

(8)P(y) = N (0,Cy).

(9)tn = y(x(n))+ εn.

(10)P(t) = N (0,C) = N (0,Cy + σ 2
n I).

(11)P(tN+1|tN ) ∝ exp

{

−
1

2

[

tN tN+1

]

C−1
N+1

[

tTN
tN+1

]}

(12)CN+1 =

[

[CN ] [k]
[

kT
]

[k]

]
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being the scalar value of the variance of the point N + 1. Thus, it can be shown (Mackay 
1998) that the parameters of the normal predictive distribution, i.e. the mean and the 
covariance over N + 1, are given by the following formulas respectively:

where it is noted that both equations depend on covariance matrix CN instead of CN+1.

Relevance vector regression

In the current manuscript we consider the regression form of relevance vector machines, 
which is known as relevance vector regression (RVR). In deriving RVR, initially, we 
assume that the target variable t given an input x follows a normal distribution:

where σ2 is the variance of the data noise while the mean value y(x) is given by:

where φ() is a valid function called the basis function, M is the population of basis func-
tions and w is the weight vector. By using Eq. (16) and kernel functions, RVR is modeled 
as below:

with b is the bias term and N is the population number of known observations (i.e., size 
of training dataset). Next, we consolidate the N input observations into a single matrix 
X, and the respective N outputs into a vector t. Thus, we get a likelihood function:

and a prior distribution over the weight vector w:

with αn being the variance of weight wn and M equal to N + 1. At this point we plug into 
the Bayes formula both Eq.  (18) and (19) and hence we get the posterior distribution 
over w:

(13)m(x(N+1)) = kTC−1
N tN

(14)σ 2(x(N+1)) = k − kTC−1
N k

(15)p

(

t|x,w,
1

σ 2

)

= N (t|y(x), σ 2)

(16)y(x) =

M
∑

n=1

wnφn(x) = wTφ(x)

(17)y(x) =

N
∑

n=1

wnk(x, xn)+ b

(18)p

(

t|X,w,
1

σ 2

)

=

N
∏

n=1

p
(

tn|xn,w, σ 2
)

(19)p(w|α) =

M
∏

n=1

N (wn|0,αn)

(20)p(w|t,X,α, σ 2) = N (w|m,�)
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where mean is taken by:

and respective variance by

with A = diag(αi) and Φ = Κ; K is a (N + 1)x(N + 1) dimensional matrix with elements 
given by the kernel function k(xn, xm).

At this point it should be said that the unknown parameters αi and σ2 are evaluated by 
maximizing the logarithmic marginal likelihood:

where t = (t1,…,tN)T and C is a N × N dimension matrix given by:

where I is respectively the identity matrix.
Maximization of the marginal likelihood in Eq.  (23) with an appropriate iterative 

method allows evaluation of its parameters. Therefore, the computed optimal values for 
α and σ2 are equal to α* and (σ2)* respectively. Some of the elements of the vector α* are 
driven to infinity and thus the posterior distribution of their weights is normal with both 
mean and variance being equal to zero. As a result, the corresponding kernel functions 
have no contribution in prediction making driving the output to depend exclusively on 
the non-zero weighted kernels. The inputs associated with non-zero weighted kernels are 
called relevance vectors.

Therefore, RVR provides a predictive distribution over the target value t of a new input 
x:

with mean to be obtained by

and variance by:

where φ() is vector of basis functions with non-zero elements for relevance vectors and 
zeros for the rest.

(21)m =
1

σ 2
��T t

(22)� =

(

A +
1

σ 2
�

T
�

)−1

(23)ln p

(

t|X,α,
1

σ 2

)

= lnN (t|0,C) = −
1

2

{

N ln 2π + ln |C| + tTC−1t
}

(24)C =
1

σ 2
I+�A−1

�

(25)p

(

t|x,X, t, a∗,
1

(σ 2)∗

)

= N
(

t|mTφ(x), σ 2(x)
)

(26)mTφ(x) = (
1

(σ 2)∗
��T t)φ(x)

(27)σ 2(x) =

(

1

(σ 2)∗

)−1

+ φ(x)T�φ(x)
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Medium‑term‑load‑forecasting using kernel machine regression
Electricity load demand is a highly volatile signal and depends upon various factors such 
as: climate, day of the week, season. Capturing the dynamics of all those factors requires 
the use of appropriate datasets for training the kernel machines. In the present work the 
training datasets are consisted of historical electric load data of 1 month, 1 year, 2 years 
and 3 years earlier than the “target 30-day interval”. For convenience, Fig. 1 depicts the 
way training datasets are composed.

In the current manuscript we focus on applying kernel machine regression for medium 
term load forecasting. In particular, we adopt two kernel based methods for MTLF:

(i)		 Gaussian process regression model equipped with a Gaussian kernel, and
(ii)		Relevance vector regression model equipped with a Gaussian kernel.

It should be noted that both forecasting models are kernel machines that are modeled 
using the Gaussian kernel whose analytical formula is given below (Bishop 2006):

with σ2 denoting a kernel parameter evaluated using the training data.
The block diagrams of applying GPR and RVR models in MTLF are presented in 

Figs. 2 and 3 respectively. We observe the process of forecasting being the same for both 
kernel machines; the difference lies in the model, i.e., GPR against RVR. Initially, the ker-
nel machine is trained using the training data aiming at evaluating its kernel parameters. 
Once training ends, the model is suitable for prediction making. To that end, the trained 
kernel machine provides the final forecasts on the electricity load demand with respect 

(28)k(x1, x2) = exp
(

−�x1 − x2�
2/2σ 2

)

Targeted 30-day 
Interval

One month earlier 
Load Data 

Training 
Dataset

One year earlier 
Load Data 

Two years earlier 
Load Data 

Three years earlier 
Load Data 

Historical Data

Fig. 1  Composition of training datasets used for MTLF
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Interval

Final 
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Fig. 2  Forecasting process using Gaussian process regression
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to a predetermined ahead-of-time horizon. The above process is repeated for both ker-
nel machines in every targeted time interval.

In our study, we aim at making daily predictions for a 30-day-ahead horizon. Thus, 
the goal is to predict the load demand for every day in the next 30 days (overall 30 pre-
dicted values). To that end, we have our forecasters making predictions on a monthly 
basis (January–December) and therefore our study falls within the purpose of MTLF.

MTLF results
Problem statement

We apply the presented forecasters to medium term load forecasting for electricity 
demand load data obtained from the New England ISO (last accessed in 2015) for the 
period January 2004–August 2011. In particular, we analyze historical load datasets that 
represent the daily load demand in one of the hubs of the New England ISO Area. Tak-
ing into consideration the historical data at our disposal, the forecasters are applied to 
forecasting demand from January 2007 to August 2011.

The kernel machine regression models have been applied to medium term load fore-
casting; the results are recorded and compared with respect to mean average percentage 
error (MAPE):

with Rt, Pt being the real and predicted value at step t, and N is the number of timepoints 
considered in the prediction interval. In the current work, we obtain N = 30 as also indi-
cated in Fig.  4, where the forecasting assessment procedure is depicted. Furthermore, 
the obtained results are compared to those taken with the statistical model of the autore-
gressive moving average(2,2), i.e., ARMA(2,2) (Huang and Shih 2003) with the ARMA 
coefficients to be determined by the Alkaline Information Criterion (AIC) (Alamaniotis 
et al. 2012).

Test results

In this section, GPR and RVR have been applied in medium-term load forecasting and 
the results obtained for the designated time interval are plotted and compared to each 
other as well to results obtained with ARMA(2,2). In particular Figs. 5, 6, 7, 8 and 9 pre-
sent the computed MAPE during the tested (almost) 5 year period  for GPR, RVR and 
ARMA(2,2) forecasters. Results are depicted in terms of monthly intervals,  giving 12 

(29)MAPE =
100

N

N
∑

t=1

∣

∣

∣

∣

Rt − Pt

Rt

∣

∣

∣

∣

Relevance 
Vector 

Regressor

Gaussian Kernel

Training Phase

Training Dataset

RVR Predic�on

Predic�on Time 
Interval

Final 
Forecast

Fig. 3  Forecasting process using relevance vector regression
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results for years 2007–2010 and 8 results for year 2011 (it was mentioned above that 
available tested data are from January 2007 to August 2011).    

Figure 5 exhibits that RVR forecaster provides more accurate daily predictions for a 
month-ahead-horizon (i.e., 30-day ahead horizon) with respect to MAPE. In particular 
RVR gives the best performance for all months but November, where ARMA is the best 
forecaster. GPR gives the worst performance for all months in 2007 except for August. 
In 2008 data, Fig. 6 exhibits RVR as the best performing forecaster in all tested months 
except for August, where it is slightly outperformed by GPR. ARMA(2,2) performance is 
better than GPR and worse than RVR in the majority of the cases, with the exception of 
June and August 2008; for the latter months the ARMA forecasts are the least accurate 
among all forecasters.

In Fig. 7, we observe that RVR once more provides the best performance in the major-
ity of the cases for year 2009—with the exception of February, July and September. For 
the same time interval  (i.e., 2009), GPR provides the worst performance among three 
forecasters with a few exceptions. Furthermore, results for year 2010 presented in Fig. 8 
drive to similar conclusions as earlier: RVR is the best forecaster in the majority of the 
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RVR Forecasts @

MAPE Performance

MAPE

t+1,t+2,…,t+29,t+30
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Fig. 4  Process of computing MAPE regarding kernel machine forecasters
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cases (in 10 out of 12), GPR the worst in most of them, while ARMA is the worst in two 
cases (January and October) and the best in other two (February and June). Additionally, 
in Fig. 9 provides the MAPE results for the first 8 months of year 2011: RVR clearly out-
performs the other two forecasters in all cases, GPR provides the least accurate predic-
tions in February, March, April, June, July and August, and ARMA is the least accurate 
for January and May.

In addition to monthly results, we present in Table 1 a yearly summary of the MAPE 
results obtained by each of the three forecasters. In particular, the average MAPE per 
tested year with respect to GPR, RVR and ARMA are given in the columns of Table 1. 

0

5

10

15

20

25

30

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

GPR

RVR

ARMA

Year 2008

M
AP

E 
(%

)

MONTH
Fig. 6  Average per month MAPE results obtained by kernel machine forecasters, i.e., GPR and RVR, as well by 
ARMA(2,2) for year 2008

0

5

10

15

20

25

30

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

GPR

RVR

ARMA

Year 2009

M
AP

E 
(%

)

MONTH

Fig. 7  Average per month MAPE results obtained by kernel machine forecasters, i.e., GPR and RVR, as well by 
ARMA(2,2) for year 2009



Page 11 of 15Alamaniotis et al. SpringerPlus  (2016) 5:58 

Yearly averages exhibit that RVR is by far the most accurate forecaster for all tested 
years. The second most accurate is the ARMA model, with the GPR kernel machine 
to be the least accurate. For demonstration purposes, the forecasted demand by GPR 
and RVR are plotted against the actual demand for years 2007 and 2008 in Figs. 10 and 
11 respectively. In both Figures we clearly observe that the RVR forecaster follows the 
actual demand closer than GPR.

In addition to MAPE criterion, we have also computed the squared correlation coef-
ficient (R2) between the predicted and the actual load values, despite the fact that R2 is 
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not very common criterion in load forecasting. This criterion does not express directly 
the performance of the forecaster but it shows how good a forecaster might be con-
structed  from the predicted values. The obtained average per year R2 for each of the 

Table 1  Average per year MAPE obtained by GPR, RVR and ARMA forecasters

The lowest values are italicized

Forecaster MAPE (%)

Year 2007 Year 2008 Year 2009 Year 2010 Year 2011

GPR 20.0549 18.2197 16.7651 19.1449 19.6651

RVR 8.2596 6.5793 8.4424 7.5811 6.2573

ARMA(2,2) 12.2093 12.3496 11.6999 15.2576 13.1817
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three forecasters is given in Table 2 where we observe that the ARMA provides the high-
est value for years 2007, 2008 and 2010, while RVR for 2009 and 2011. Overall combin-
ing observations from MAPE and R2 from Tables  1 and 2, we may conclude that the 
ARMA captures the general trend of the load signal adequately in more cases than RVR 
but it is less accurate than RVR. In addition, it is slower in execution than both the ker-
nel machines, with the GP to be the fastest. Figure 12 shows the average execution time 
of the models tested in this paper; models were run on an Intel i5 core laptop computer.

Therefore, we observe that depending on the selected model kernel machine may pro-
vide high accurate MLTF, as taken by RVR, or may provide low accuracy, as is the case 
with GPR.

Conclusion
The application of two types of kernel machines for medium-term load forecasting has 
been presented in this paper. The kernel machines studied are GPR and RVR whose per-
formance is tested on actual historic data collected at the New England Area on a daily 
basis up to a month, with the tested time period being from January 2007 to August 
2011. In addition, both forecasters are also compared to the ARMA(2,2) statistical tool 
that has been widely used in time series forecasting.

Obtained results show the superiority of RVR over the other two tested methods with 
respect to MAPE and R2. On a monthly comparison RVR provided the best accuracy 
in the majority of the cases while it is by far the best forecaster on a yearly based com-
parison. However, it should be emphasized that the kernel machines are equipped with 

Table 2  Average per  year squared correlation coefficient (R2) obtained by  GPR, RVR 
and ARMA forecasters

The best coefficients are italicized

Forecaster Squared correlation coefficient (R2)

Year 2007 Year 2008 Year 2009 Year 2010 Year 2011

GPR 0.282 0.227 0.201 0.255 0.381

RVR 0.192 0.374 0.286 0.295 0.438

ARMA(2,2) 0.444 0.533 0.185 0.320 0.120

1.186

1.705

2.618

0 0.5 1 1.5 2 2.5 3

GPR

RVR

ARMA

Time (sec)
Fig. 12  Average execution times obtained by kernel machine forecasters, i.e., GPR and RVR, as well by 
ARMA(2,2)
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a Gaussian kernel, which is the only kernel being tested in the current work; testing of 
other kernel functions is left for future work.

In addition, the promising method of core vector regression (Li and Liu 2010) will also 
be examined either as an independent forecaster or in combination with RVR and GP. 
Combination of kernel machines exhibits high potency for providing highly accurate 
medium term load predictions.
Authors’ contributions
MA designed the study, developed the codes for the machine learning algorithms in Matlab, analyzed and interpreted 
the results and drafted the manuscript. DB designed and created the training and testing datasets, developed the 
statistical ARMA code in Matlab, and was involved in revising the manuscript for technical and intellectual content. 
LHT conceived the study and participated in its coordination and helped to draft the manuscript. All authors read and 
approved the final manuscript.

Author details
1 Applied Intelligent Systems Laboratory, School of Nuclear Engineering, Purdue University, 400 Central Dr., West 
Lafayette, IN 47907, USA. 2 Department of Electrical Engineering, Technological Institute of Stereas Elladas, 34400 Dimos 
Dirfion‑Messapion, Psachna, Evia, Greece. 

Acknowledgements
This work has been supported in part by the US National Science Foundation under Grant No. 1462393 and through 
the project “Hephaestus” under the auspices of “ARISTEIA” sponsored by the Hellenic General Secretariat for Research 
and Technology under the Action of Operational Program Education and Lifelong Learning co-funded by the European 
Social Fund and National Resources.

Competing interests
The authors declare that they have no competing interests.

Received: 1 April 2015   Accepted: 4 January 2016

References
Abu-Shikhah N, Elkarmi F (2011) Medium-term electric load forecasting using singular value decomposition. Energy 

36(7):4259–4271
Abu-Shikhah N, Elkarmi F, Aloquili OM (2011) Medium-term load forecasting using multivariable linear and non-linear 

regression. Smart Grid Renew Energy 2:126–135
Alamaniotis M, Gao R, Tsoukalas LH (2011) Towards an energy internet: a game-theoretic approach to price-directed 

energy utilization. In: Energy-efficient computing and networking, pp 3–11
Alamaniotis M, Ikonomopoulos A, Tsoukalas LH (2011) A Pareto optimization approach of a Gaussian process ensemble 

for short-term load forecasting. In: Proceedings of the 16th IEEE international conference on intelligent system 
application to power systems (ISAP), pp 1–6

Alamaniotis M, Ikonomopoulos A, Tsoukalas LH (2012) Evolutionary multiobjective optimization of kernel-based very 
short-term load forecasting. IEEE Trans Power Syst 27(3):1477–1484

Alamaniotis M, Chatzidakis S, Tsoukalas LH (2014) Monthly load forecasting using gaussian process regression. In: 
Proceedings of the 9th Mediterranean conference on power generation, transmission, distribution, and energy 
conversion: MEDPOWER 2014, pp 1–7

Alamaniotis M, Tsoukalas LH, Bourbakis N (2014) Virtual cost approach: electricity consumption scheduling for smart 
grids/cities in price-directed electricity markets. In: Proceedings of the 5th international conference on information, 
intelligence, systems and applications, IISA 2014, pp 38–43

Alamaniotis M, Bargiotas D, Bourbakis N, Tsoukalas LH (2015) Genetic optimal regression of relevance vector machines for 
electricity price forecasting in smart grids. IEEE Trans Smart Grid 6(6):2997–3005

Bishop CM (2006) Pattern recognition and machine learning. Springer, New York
Bozic M, Stojanovic M (2011) Application of SVM methods for mid-term load forecasting. Serbian J Electr Eng 8(1):73–83
El Desouky AA, Elkateb MM (2000) Hybrid adaptive techniques for electric-load forecast using ANN and ARIMA. IET Proc 

Gener Transm Distrib 147(4):213–217
Fainti R, Nasiakou A, Tsoukalas E, Vavalis M (2014) Design and early simulations of next generation intelligent energy 

systems. Int J Monit Surveill Technol Res 2(2):58–82
Gao R, Wang X, Bougaev A, Schooley DC, Tsoukalas LH (2003) Short-term elasticities via intelligent tools for modern 

power systems. In: Proceedings of 2003 medpower conference, pp 1–6
Gatsis N, Giannakis GB (2012) Residential load control: distributed scheduling and convergence with lost AMI messages. 

IEEE Trans Smart Grid 3(2):770–786
Ghiassi MD, Zimbra DK, Saidane H (2006) Medium term system load forecasting with a dynamic artificial neural network 

model. Electr Power Syst Res 76(5):302–316
Hoffman T, Scholkopf B, Smola AJ (2008) Kernel methods in machine learning. Ann Stat 33(3):1171–1220
Huang SJ, Shih KR (2003) Short-term load forecasting via ARMA model identification including non-Gaussian process 

considerations. IEEE Trans Power Syst 18(2):673–679



Page 15 of 15Alamaniotis et al. SpringerPlus  (2016) 5:58 

ISO New England Historical Data web page. http://www.iso-ne.com. Accessed in March 2015
Kandil MS, El-Debeiky SM, Hasanien NE (2002) Long-term load forecasting for fast developing utility using a knowledge-

based expert system. IEEE Trans Power Syst 17(2):491–496
Kim KH, Park JK, Hwang KJ, Kim SH (1995) Implementation of hybrid short-term load forecasting system using artificial 

neural networks and fuzzy expert systems. IEEE Trans Power Syst 10(3):1534–1539
Li Y, Liu, K (2010) Core vector regression with particle swarm optimization algorithm in short term load forecasting. In: 

Proceedings of the IEEE second international conference on computer modeling and simulation (ICCMS’10), pp 
325–329

Mackay DJC (1998) Introduction to Gaussian processes. In: Bishop CM (ed) Neural networks and machine learning. 
Springer, Berlin

Rasmussen CE (2006) Gaussian processes for machine learning. MIT Press, Cambridge
Rengcun F, Jianzhong Z, Yongchuan Z, Qing-qing LI, Li LIU (2008) Application of particle swarm optimization based 

nonlinear grey Bernoulli model in medium-and long-term load forecasting. Power Syst Technol (Beijing) 32(12):60
Scholkopf B, Smola AJ (2001) Learning with kernels: support vector machines, regularization, optimization, and beyond. 

MIT Press, Cambridge
Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1:211–244
Tsekouras GJ, Hatziargyriou ND, Dialynas EN (2006) An optimized adaptive neural network for annual midterm energy 

forecasting. IEEE Trans Power Syst 21(1):385–391
Tsekouras GJ, Dialynas EN, Hatziargyriou ND, Kavatza S (2007) A non-linear multivariable regression model for midterm 

energy forecasting of power systems. Electr Power Syst Res 77(12):1560–1568
Tsoukalas LH, Gao R (2008) From smart grids to an energy internet: assumptions, architectures and requirements. In: 

Proceedings of the third international conference on electric utility deregulation and restructuring and power 
technologies, pp 94–98

Tsoukalas LH, Uhrig R (1997) Fuzzy and neural approaches in engineering. Wiley Interscience, New York
Williams CKI (2002) Gaussian processes. In: Arbib MA (ed) Handbook of brain theory and neural networks, 2nd edn. MIT 

Press, Cambridge, pp 466–470
Xia C, Wang J, McMenemy K (2010) Short, medium and long term load forecasting model and virtual load forecaster 

based on radial basis function neural networks. Int J Electr Power Energy Syst 32(7):743–750

http://www.iso-ne.com

	Towards smart energy systems: application of kernel machine regression for medium term electricity load forecasting
	Abstract 
	Introduction
	Background
	Kernel machines
	Gaussian process regression
	Relevance vector regression

	Medium-term-load-forecasting using kernel machine regression
	MTLF results
	Problem statement
	Test results

	Conclusion
	Authors’ contributions
	References




