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Background
Noise is usually inevitable during data acquisition, transmission and record with CCD 
sensors etc. Image denoising as the most fundamental problem in image processing field 
is used to enhance images by reducing any degradations. Generally speaking, noise can 
be classified into additive noise and multiplicative noise based on the relationship of the 
noise and the signal. Unlike additive noise, multiplicative noise (e.g. speckle random 
noise) intensity is in proportion to the absolute image intensity and it mainly appears in 
synthetic aperture radar (SAR), laser imaging, ultrasound imaging, and positron emis-
sion tomography (PET) etc. (Goodman 2007; Oliver and Quegan 1998; Wagner et  al. 
1983) and has been paid great attention in recent years (e.g. Shi and Osher 2008; Aubert 
and Aujol 2008; Durand et al. 2010; Huang et al. 2012; Yu and Acton 2002; Steidl and 
Teuber 2010; Bioucas-Dias and Figueiredo 2010; Teuber and Lang 2012; Krissian et al. 
2007). Mathematically, the degraded image f corrupted by multiplicative noise δ usually 
can be formulated as

Techniques and algorithms have been developed for solving this inverse problem to 
obtain an approximate image u∗ to the original image u in recent years. Thereinto spar-
sity regularization methods are effective methods of them and have been widely used in 
every branch of image processing based on the hypothesis that images are approximately 
sparse under some transform domain W. Various linear operators that used to sparsely 
represent images are designed. For example, W can be chosen as the first-order discrete 

(1)f = u · δ.

Abstract 

Sparse approximation has shown to be a significant tool in improving image restora-
tion quality, assuming that the targeted images can be approximately sparse under 
some transform operators. However, it is impossible for a fixed system to be always 
optimal for all the images. In this paper, we present an adaptive wavelet tight frame 
technology for sparse representation of an image with multiplicative noise. The adap-
tive wavelet tight frame is first learned from the logarithmic transformed given images, 
and then it is used to recover these images. Compared with the existing non-adaptive 
wavelet sparse transform methods, the numerical results demonstrate that the pro-
posed adaptive tight frame scheme improves image restoration quality.
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gradient operator (Rudin et al. 1992). However, these given linear operators are not opti-
mal for all the images. Then some dictionary leaning methods that were adapted to the 
reference images were proposed to improve the image restoration quality, e.g., the so-
called K-SVD method (Donoho and Elad 2003; Elad and Ahron 2006; Mairal et al. 2007) 
and the data-driven tight frame method (Cai et  al. 2014). The data-driven tight frame 
method outperforms the K-SVD method in terms of computational efficiency. These 
adaptive methods could usually provide better sparse approximations by deriving adap-
tive discrete dictionaries or framelets from the input reference images.

The multiplicative problem can be converted into an additive one by taking the log of 
both sides of (1) (Shi and Osher 2008), i.e., the following so-called Log-TV model

Then the multiplicative noise removal scheme can be modeled by penalizing the sparse 
transform of logu instead of u based on the noisy observation logf . Motivated by the 
data-driven tight frame scheme for additive noise removal (Cai et al. 2014), we propose 
the adaptive tight frame approach for multiplicative noise removal in this paper. We first 
construct the adaptive wavelet tight frame based on the logarithmic transformed given 
image and then recover the image of interest by solving a wavelet balanced approach 
using the constructed adaptive tight frame system. We perform this adaptive regulari-
zation method for images contaminated by speckle noise and the simulation results 
suggest that the proposed adaptive tight frame method improves the image restoration 
quality especially reducing the artifacts compared with the traditional non-adaptive one.

The reminder of this work is arranged as follows: the definitions and constructions of 
the wavelet tight frame are provided in section “Construction of the wavelet tight frame”. 
Then the scheme of learning the adaptive tight frame is given in the following section 
“Adaptive framelet”. We present the adaptive framelet algorithm for multiplicative noise 
removal in section “Multiplicative noise removal method based on adaptive tight frame-
let”. In Section “Numerical results”, the representative simulation results are reported. 
Finally, this work briefly concludes in section “Conclusion”.

Construction of the wavelet tight frame
 1D discrete wavelet tight frame

In this section, we first introduce the construction of the one-dimensional wavelet 
tight frame, i.e., its decompose and reconstruction. The corresponding 2D framelet is 
obtained by the tensor product of 1D framelets. More details can be seen in (Dong and 
Shen 2010; Chan and Shen 2003; Chan et al. 2004; Shen 2010).

A redundant tight frame in RN is a sequence {xi}Mi=1 that satisfies

Actually, redundant tight frame (M ≥ N) defined above is a generalization of orthogonal 
basis in RN , where M = N  and {xi}Ni=1 are linearly independent. There are two operators 
associated to the wavelet tight frame, i.e., analysis operator and synthesis operator. The 
analysis operator W is written as

(2)logf = logu+ logδ.

(3)
M∑

i=1

|�xi, g�|
2 = �g�22, ∀g ∈ R

N .
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For a signal g, Wg = {�g , xi�}
M
i=1 denote the wavelet coefficients which are the inner prod-

ucts of xi and g. The synthesis operator denoted by WT is used to synthetize the the 
wavelet coefficients s by WTs =

∑M
i=1 s(i)xi. Then the identity (3) is equivalent to

where IN : RN → R
N denotes the identity operator.

Multi-resolution analysis (MRA) can be used to construct wavelet tight frame that 
associated with a so-called refinement mask h0 and a class of MRA-based wavelet tight 
framelets are constructed (Dong and Shen 2010; Chan and Shen 2003; Chan et al. 2004; 
Shen 2010). For a signal g ∈ R

N , the discrete wavelet operator W associated with filters 
h = {h0, h1, . . . , hr−1} is defined as follows

where ∗ denotes the filtering procedure. h0 denotes the low-pass filter which satisfies ∑
j h0(j) = 1, and hi, i = 1, . . . , r − 1 satisfying 

∑
j hi(j) = 0 is called high-pass filters 

usually. The multi-level wavelet operator can be obtained by using this one-level wave-
let W (h) recursively to the low-pass coefficients. More details can be seen in (Chan 
and Shen 2003; Chan et  al. 2004). The so-called perfect reconstruction property, i.e., 
W (h)TW (h) = IN is equivalent to the following Unitary Extension Principle condition 
(Han et al. 2011):

Here δm = 1 if m = 0 and δm = 0 otherwise.

Adaptive framelet
Choosing a fixed redundant system that performs well for all the images is rather dif-
ficulty, the dictionary learning approaches that are adapted to the images have been 
explored recently (Donoho and Elad 2003; Elad and Ahron 2006; Mairal et al. 2007; Cai 
et al. 2014). The well-known K-SVD method (Elad and Ahron 2006; Mairal et al. 2007) 
is such a representative work with the advantage of better approximating images with 
abundant textures compared with the non-learning schemes. Although K-SVD method 
outperforms the traditional non-learning ones, the poor computational efficiency results 
in the difficulty in practical application. Recently, Cai et  al. (2014) proposed the data-
driven tight frame construction scheme. On one hand, this designed adaptive tight frame 
scheme reduces the artifacts which usually exists in the images processed by the fixed 
wavelet tight frames, on the other hand, the minimization problem of learning the adap-
tive wavelet tight frame is high-efficiency compared with the K-SVD learning scheme. 
This adaptive framelet method has been used in CT image reconstruction (Zhou et al. 

W = [x1, x2, . . . , xM]T .

WTW = IN ,

(4)W (h) : g ∈ R
N →




h0 ∗ g
...

hr−1 ∗ g


 ∈ R

rN ,

(5)
r−1∑

i=0

∑

l∈Z

hi(m+ l)hi(l) = δm, ∀m ∈ Z.
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2013) and seismic data processing (Liang et al. 2014) etc. Next, we will first present the 
method of constructing the adaptive wavelet tight frame.

Let H = {Hi}
R−1
i=0  denote a family of two-dimensional filters. Then the 2D wavelet 

transform operator can be defined as

Here, we use ∗ to denote the filtering of two 2D arrays.
In Cai et al. (2014), the data-driven tight frame construction scheme was introduced in 

order to obtain better sparse representation of the given signal g by solving

where Wa denotes the adaptive wavelet tight frame that satisfies WT
a Wa = I. The first 

term in (6) is to ensure that the coefficients s are close to Wag, and the second term is to 
make the coefficients s be sparse. Then adaptive 2D filters H = {Hi}

R−1
i=0  and the approxi-

mated sparse coefficients s can be obtained by solving (6). Based on the alternating mini-
mization principle, (6) can be solved by solving two sub-problems, i.e.,

Observing that (7) is used to learn the adaptive tight frame based on the given image 
g. Obviously, the analytical solution of the s-subproblem (7) can be obtained via hard 
thresholding. More details about hard thresholding can be seen in Blumensath and 
Davies (2009, 2010). The second sub-problem (8) is a complex non-convex minimization 
problem with the quadratic constraints that can be simplified as

where δk = 1 if k = (0, 0) and δk = 0 otherwise Han et al. (2011). Then the wavelet tight 
frame can be obtained by solving the following minimization problem with orthogonal 
constraints:

Here R = r × r is also the support of Hi, i = 0, . . . ,R− 1. This problem (10) can be 
solved exactly via the singular value decomposition (SVD) (Cai et  al. 2014; Zou et  al. 
2006). Concretely, partitioning the coefficient vector s into r2 vectors, denoted by 

W (H) : g ∈ R
N 2

→




H0 ∗ g
...

HR−1 ∗ g


 ∈ R

RN 2
.

(6)min
s,H

�s −Wa(H)g�22 + µ2�s�0, s.t. Wa(H)TWa(H) = IN 2 ,

(7)min
s

�s −Wa(H)g�22 + µ2�s�0,

(8)min
H

�s −Wa(H)g�22, s.t. Wa(H)TWa(H) = IN 2 .

(9)

R−1∑

i=0

∑

n∈Z2

Hi(k + n)Hi(n) = δk , ∀k ∈ Z
2,

(10)min
H

�s −Wa(H)g�22, s.t. �Hi,Hj� =
1

r2
δi−j , 0 ≤ i, j ≤ R− 1.



Page 5 of 12Zhou et al. SpringerPlus  (2016) 5:122 

si ∈ R
N 2×1, i = 1, 2, . . . r2, corresponding to the coefficient obtained from the filter Hi. 

Define

where gi, i = 0, . . . ,N 2 − 1, denotes the partition of g corresponding to the filter size r. 
Then the minimization (10) can be solved by solving the following problem

Theorem 1  Zou et al. (2006) Let Cm×r denotes matrix with rank r and the SVD decom-
position of matrix Am×r is A = UDQT , Then C∗ = UQT is the solution of the following 
constrained maximization problem:

Let A = S̃T G̃T = UDQT. Then by Theorem 1, the Wa-subproblem can be obtained by 
the following equation

Multiplicative noise removal method based on adaptive tight framelet
The wavelet based sparse representation methods for Gaussian noise removal can be 
usually summarized as

Then the recovered image u∗ approximates WTs∗. Here, the second term 
τ
2 � (I −WWT )s �22 is used to balance the distance between the coefficient s and the 
corresponding recovered signal WTs, so three categories are distinguished by different 
values of τ. When τ = 0, the minimization (15) is called the synthesis based approach 
(Cai et al. 2009; Starck et al. 2005). Many effective iterative algorithms have sprung up 
to overcome the computational difficulty caused by the non-differentiable regularization 
term, e.g., split Bregman method (Goldstein and Osher 2009; Cai et al. 2010), alternat-
ing direction method (Afonso et al. 2010), forward-backward algorithm (Combettes and 
Pesquet 2007), primal-dual algorithm (Chan et al. 1999), etc. When τ = ∞, the model 
(15) is just the analysis based approach (Daubechies et al. 2004). When 0 < τ < ∞, the 
above model is called a balanced approach (Cai et al. 2009; Chan et al. 2003). The three 
methods are equivalent if the transform operator W is orthogonal.

In this work, we will take the balanced approach for avoiding the multiple iterations 
produced in solving analysis based approach so as to reduce the computing consuming. 

(11)

S̃ =




s0(1) . . . sr2−1(1)

.

.

.
.
.
.

.

.

.

s0(N
2) . . . sr2−1(N

2)


 ∈ R

N 2×r2

G̃ = [g1, g2, · · · gN 2 ] ∈ R
r2×N 2

H̃ = [H0,H1, . . . ,Hr2−1] ∈ R
r2×r2

,

(12)max
H̃

Tr(H̃ S̃T G̃T ), s.t. H̃T H̃ =
1

r2
Ir2 .

(13)maxCTr(C
TA), s.t. CTC = Ir2 .

(14)[H0,H1, . . . ,Hr2−1] =
1

r
QUT .

(15)s∗ = arg min
s

1

2
� WTs − f �22 +

τ

2
� (I −WWT )s �22 + ��s�1.
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The balanced approach yields the restoration result that balanced the sparsity of the 
associated tight framelet coefficients and the regularity of the recovered result. The 
degenerated image can be recovered by the following formula based on the wavelet tight 
framelet W (H) = W (H0,H1, . . . ,Hr2−1) balanced approach

That is the following algorithm

The constructed adaptive framelets were used in Gaussian noise removal and demon-
strated their superiority in terms of image restoration quality compared with the cor-
responding non-adaptive ones (Cai et al. 2014) and improved computational efficiency 
compared with the K-SVD learning method. In this section, we will generalize the adap-
tive framelet method to multiplicative noise removal by considering the multiplicative 
denoising problem in log-domain. We convert multiplicative denoising problem into 
additive noise based one in log-domain. Then the logarithmic adaptive tight framelet 
constructed based on the noisy image in the log-domain, i.e., logf  instead of f, is used for 
sparse representation so as to improve the recovered images quality. We summarize the 
adaptive tight framlet balanced approach for denoising the degenerated images contami-
nated by multiplicative noise as the following Algorithm 2.

(16)z = WT (T�(W (logf ))),u = exp(z).
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Numerical results
This section will illustrate the restoration results by wavelet based multiplicative noise 
removal approaches. Furthermore, the superiority of the proposed adaptive wavelet 
based scheme (Algorithm 2) will be illustrated here through simulations on frequently-
used test images “lenna” and “barbara”. The following peak signal to noise ratio (PSNR) is 
used to evaluate the recovery quality

where x and x0 respectively denotes the recovered image and the original image with 
dimension M × N . Larger PSNR value usually means better image restoration quality. 
We perform all the simulations on the PC with 2.9HZ and 64-bit operator system in the 
circumstance of 2009 MATLAB.

Example 5.1  Figure  1 shows the recovered results by non-adaptive wavelet tight 
framelet and adaptive wavelet tight framelet approach based on the ground truth image 
“lenna” (Fig.  1a). “lenna” was polluted by multiplicative speckle noise with noise vari-
ance σ = 0.1 (see Fig. 1b). Note that we can directly use the noisy image, i.e., Fig. 1b, 
as the reference image to learn the adaptive wavelet tight framelet operator. Figure 1c, 
d respectively illustrate the reconstructed images by non-adaptive wavelet framelet and 
adaptive wavelet framelet with the 8× 8 Haar wavelet as the initial filter. The differ-
ence images are respectively illustrated in Fig. 1e,f. It can be seen that adaptive framelet 
approach (Fig. 1d) can suppress artifacts and capture more details than the correspond-
ing non-adaptive one (Fig. 1c), which also can be seen in difference images via comparing 
Fig. 1f by adaptive framelet approach with Fig. 1e by non-adaptive method. The PSNR 
values listed in Table 1 also reflect that adaptive framelet approach yields better recov-
ered results than the corresponding non-adaptive one. In Table 1, we also compare the 
results by adaptive tight framelet approaches in terms of different initial filter sizes and 
filter types with the results by corresponding non-adaptive ones. Data in Table 1 dem-
onstrates that adaptive tight framelet approaches defeat the corresponding non-adaptive 
ones with respect to image restoration quality evaluated by PSNR. Generally speaking, 
larger filter size means better restoration quality in terms of the tested filter size. The 
computation time for recovering a 256× 256 image by a 3× 3, 7× 7, and 15× 15 adap-
tive tight frame is respectively about 0.16, 1.48 and 14.75 s, which is more excellent than 
the K-SVD in terms of efficiency. Here and in the following test, the parameters used for 
learning the adaptive wavelet framelet and thresholding denoising follow the selection 
rule provided in Cai et al. (2014), that is α = 5.1σ and �̃ = 2.6σ.

Example 5.2  “barbara” (Fig. 2a) is usually used to assess the ability of catching textures 
for different algorithms owing to its abundant textures. Figure  2b is the degenerated 
“barbara” with multiplicative speckle noise variance σ = 0.1. Figure  2c, d respectively 
present the recovered images by non-adaptive wavelet framelet and adaptive wave-
let framelet with the 8× 8 Haar wavelet as the initial filter. Figure 2e, f are the corre-
sponding difference images respectively. Obviously, adaptive framelet approach (Fig. 3d) 
has the advantages in preserving textures and suppressing artifacts compared with the 

(17)PSNR = 20log10
255

1
MN �x − x0�2

,
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Fig. 1  Denoised results for polluted “lenna” by adaptive wavelet tight frame and non-adaptive wavelet tight 
frame. a Denotes the original image and b is the noisy image. c, d are respectively the recovered images by 
adaptive wavelet tight frame method and the corresponding non-adaptive one with 8× 8 Haar wavelet. e = 
a–c and f = a–d are the corresponding difference images

Table 1  Denoised results for  polluted “lenna” by  adaptive wavelet tight frames and  the 
corresponding non-adaptive ones in terms of different filter sizes

Initial tight frame Filter size Non-adaptive algorithm Adaptive algorithm

2× 2 31.25 31.54

Haar wavelet 4× 4 32.91 33.89

8× 8 33.16 34.64

2× 2 31.26 31.45

Local DCT 4× 4 33.57 33.85

8× 8 34.32 34.68

3× 3 32.07 33.26

Linear framelet 7× 7 33.12 34.63

15× 15 33.32 34.77



Page 9 of 12Zhou et al. SpringerPlus  (2016) 5:122 

non-adaptive scheme (Fig. 3c) from the zoomed part of “barbara” (Fig. 3). Repeatedly, 
we compare the results by adaptive tight framelet approaches in terms of different ini-
tial filter sizes and filter types with the results by corresponding non-adaptive ones (see 
Table 2).

Table 3 lists the SNR results of the adaptive B-Spline wavelet framelet method in terms 
of larger speckle noise with variance σ = 0.2. From Table 3, we can see that our algo-
rithm can also obtain better results than the corresponding non-adaptive ones.

Conclusion
In this paper, we have generalized the adaptive tight frame methods to multiplicative 
noise removal problem. We learn the image-specific wavelet tight framelet based on 
the logarithmic transformed image by using SVD based explicit formulas. Numerical 

Fig. 2  Denoised results for polluted “barbara” by adaptive wavelet tight frame and non-adaptive wavelet 
tight frame. a is the original image and b is the noisy image. c, d are respectively the recovered images by 
adaptive wavelet tight frame method and the corresponding non-adaptive one with8× 8 Haar wavelet. e = 
a–c and f = a–d are respectively the difference image
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Fig. 3  The zoomed denoised results for “barbara”, a is the original zoomed image and b is the zoomed noisy 
image. c, d are respectively the zoomed recovered images by adaptive wavelet tight frame method and the 
corresponding non-adaptive one

Table 2  Denoised results for polluted “barbara” by wavelet tight frame method and adap-
tive wavelet tight frame in terms of different filter sizes

Initial tight frame Filter size Non-adaptive algorithm Adaptive algorithm

Haar wavelet 2 × 2 29.44 29.55

4× 4 30.18 31.39

8 × 8 30.46 32.72

Local DCT 2 × 2 29.37 29.48

4× 4 31.27 31.55

8 × 8 32.32 32.71

Linear framelet 3 × 3 29.91 30.94

7× 7 30.63 32.41

15× 15 31.05 32.67

Table 3  Larger noise removal results by  our proposed adaptive wavelet tight frame 
and the corresponding non-adaptive one

Image Filter size Non-adaptive algorithm Adaptive algorithm

3× 3 26.64 27.58

Lenna 7× 7 26.96 28.96

3× 3 24.75 25.81

Barbara 15× 15 24.87 27.95
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experiments demonstrate that the derived adaptive tight frame balanced based regulari-
zation method improves the image restoration quality compared with the corresponding 
non-adaptive one not only in enhancing PSNR value but also in preserving fine image 
features.
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