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Background
As is well known, in the theory of population dynamical models there are two kinds of 
mathematical models: the continuous-time models described by differential equations, 
and the discrete time models described by difference equations. In recent years more 
and more attention is being paid to discrete time population models. The reasons are as 
follows: First, the discrete time models are more appropriate than the continuous time 
models when populations have non-overlapping generations, or the number of popu-
lation is small. Second, we can get more accurate numerical simulations results from 
discrete time models. Moreover, the numerical simulations of continuous-time mod-
els are obtained by discretizing the models. At last, the discrete-time models have rich 
dynamical behaviors as compared to continuous time models. Predator-prey models 
have already received much attention during last few years. For example, the stability, 
permanence and the existence of periodic solutions of the predator-prey models are 
studied in Fazly (2007), Hu and Zhang (2008), Liu (2010), Xia et al. (2007) and Yang and 
Li (2009). Study of discrete dynamical behavior of systems is usually focus on bounded-
ness and persistence, existence and uniqueness of equilibria, periodicity, and there local 
and global stability (see for example, Khan and Qureshi 2014a, b, 2015a, b, c; Kalabuŝić 
et al. 2009; Khan 2014; Ibrahim and El-Moneam 2015; Kalabuŝić et al. 2011; Elsayed and 

Abstract 

In this paper, we study the dynamics and bifurcation of a two-dimensional discrete-
time predator-prey model in the closed first quadrant R2

+
. The existence and local 

stability of the unique positive equilibrium of the model are analyzed algebraically. It 
is shown that the model can undergo a Neimark-Sacker bifurcation in a small neigh-
borhood of the unique positive equilibrium and an invariant circle will appear. Some 
numerical simulations are presented to illustrate our theocratical results and numeri-
cally it is shown that the unique positive equilibrium of the system is globally asymp-
totically stable.
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Ibrahim 2015a, b; Garić-Demirović et al. 2009; Qureshi and Khan 2015; Kalabuŝić et al. 
2011; Ibrahim 2014; Ibrahim and Touafek 2014) but there are many articles that discuss 
the dynamical behavior of discrete-time models for exploring the possibility of bifurca-
tion and chaos phenomena (Hu et al. 2011; Sen et al. 2012; Chen and Changming 2008; 
Gakkhar and Singh 2012; Jing and Yang 2006; Zhang et al. 2010; Smith 1968).

We consider the following discrete predator-prey model described by difference equa-
tions which was proposed by Smith et al. (1968):

where xn and yn denotes the numbers of prey and predator respectively. Moreover the 
parameters α, β and the initial conditions x0, y0 are positive real numbers.

The organization of the paper is as follows: In Sect. “Existence of equilibria and local 
stability”, we discuss the existence and local stability of equilibria for system (1) in R2

+. 
This also include the specific parametric condition for the existence of Neimark-Sacker 
bifurcation of the system (1). In Sect. “Neimark-Sacker bifurcation”, we study the Nei-
mark-Sacker bifurcation by choosing α as a bifurcation parameter. In Sect. “Numeri-
cal simulations”, numerical simulations are presented to verify theocratical discussion. 
Finally a brief conclusion is given in Sect. “Conclusion”.

Existence of equilibria and local stability
In this section, we will study the existence and stability of equilibria of system (1) in the 
close first quadrant R2

+. So, we can summarized the results about the existence of equi-
libria of system (1) as follows:

Lemma 2.1  (i) System (1) has a unique equilibrium O(0, 0) if α < 1
1−β

 and β < 1;
(ii)	System (1) has two equilibria O(0, 0) and A(β ,α(1− β)− 1) if α > 1

1−β
 and β < 1 . 

More precisely, system (1) has a unique positive equilibrium A(β ,α(1− β)− 1) if 
α > 1

1−β
 and β < 1.

Now we will study the dynamics of system (1) about these equilibria. The Jacobian 
matrix of linearized system of (1) about the equilibrium (x, y) is

The characteristic equation of the Jacobian matrix J of linearized system of (1) about the 
unique positive equilibrium A(β ,α(1− β)− 1) is given by

where

Moreover the eigenvalues of the Jacobian matrix of linearized system of (1) about the 
unique positive equilibrium A(β ,α(1− β)− 1) is given by

(1)xn+1 = αxn(1− xn)− xnyn, yn+1 =
1

β
xnyn,

(2)J =
(

α − 2αx − y − x
1
β
y 1

β
x

)

.

(3)�
2 + p�+ q = 0,

p = 2− αβ , q = α − 2αβ .

�1,2 =
−p±

√
�

2
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where

Now we will state the topological classification of these equilibria as follows:
Lemma 2.2  (i) For the equilibrium point O(0,  0), following topological classification 

holds:

(i.1)	 O(0, 0) is a sink if α < 1;
(i.2)	 O(0, 0) is a saddle if α > 1;
(i.3)	 O(0, 0) is non-hyperbolic if α = 1.

Lemma 2.3  For the unique positive equilibrium A(β ,α(1− β)− 1) of system (1), fol-
lowing topological classification holds:

(i)		  A(β ,α(1− β)− 1) is a sink if one of the following parametric conditions holds:
(i.1)	 � ≥ 0 and 0 < α < 1

1−β
;

(i.2)	 � < 0 and 0 < α < 1
1−2β

 ;
(ii)		 A(β ,α(1− β)− 1) is a source if one of the following parametric conditions holds:

(ii.1)	 � ≥ 0 and α > 1
1−β

;
(ii.2)	 � < 0 and α > 1

1−2β
;

(iii)	� A(β ,α(1− β)− 1) is non-hyperbolic if one of the following parametric conditions 
holds:
(iii.1)	 � ≥ 0 and α = 1

1−β
;

(iii.2)	 � < 0 and α = 1
1−2β

;

From Lemmas 2.2 and 2.3, we summarize the local dynamics of system (1) as follows:

Theorem  2.4  (i) If α < 1
1−β

 and β < 1, then system (1) has a unique equilibrium 
O(0, 0), which is locally asymptotically stable;

(ii)	If α > 1
1−β

 and β < 1, then system (1) has two equilibria O(0,  0) and 
A(β ,α(1− β)− 1), in which A(β ,α(1− β)− 1) is locally asymptotically stable.

In the following section, we will study the Neimark-Sacker bifurcation about the 
unique positive equilibrium A(β ,α(1− β)− 1) by using bifurcation theory (Guckenhe-
imer and Holmes 1983; Kuznetson 2004).

Neimark‑Sacker bifurcation
From Lemma 2.3, it is established that A(β ,α(1− β)− 1) is non-hyperbolic when 
α = 1

1−2β
. Henceforth, we choose α as a bifurcation parameter to study Neimark-Sacker 

bifurcation of system (1) in the small neighborhood of A(β ,α(1− β)− 1). For simplic-
ity, we denote the parameters satisfying non-hyperbolic condition by

� = p2 − 4q,

= (αβ + 2)2 − 4α.

HA =
{

(α,β):� < 0, α =
1

1− 2β
, β <

1

2
, α,β > 0

}

.
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Consider system (1) with arbitrary parameters (α1,β1) ∈ HA, which is described as 
follows:

It is clear that if α1 > 1
1−β1

and β1 < 1, then A(β1,α1(1− β1)− 1) has a unique positive 
equilibrium of system (4). Given a perturbation of model (4) as follows:

where |α∗| ≪ 1, which is small parameters.
The characteristic equation of the Jacobian matrix of linearized system of (5) about the 

unique positive equilibrium A(β1,α1(1− β1)− 1) is given by

where

Moreover when α∗ varies in a small neighborhood of 0, the roots of the characteristic 
equation are

and there we have

Further calculation shows that �
k
1,2 �= 1 for α1 = 1

1−2β1
 and k = 1, 2, 3, 4. Now, 

let un = xn − β1, vn = yn − α1(1− β1)+ 1, then we transform the equilibrium 
A(β1,α1(1− β1)− 1) of system (5) into the origin. By calculating we obtain

In the following, we study the normal form of system (6) when α∗ = 0. Expanding (6) as 
a Taylor series at (un, vn) = (0, 0), we get

where

(4)xn+1 = α1xn(1− xn)− xnyn, yn+1 =
1

β1
xnyn.

(5)xn+1 = (α1 + α∗)xn(1− xn)− xnyn, yn+1 =
1

β1
xnyn.,

�
2 − p(α∗)�+ q(α∗) = 0,

p(α∗) =2− (α1 + α∗)β1, q(α∗) = (α1 + α∗)− 2(α1 + α∗)β1.

�1,2 =
−p(α∗)∓ ι

√

4q(α∗)− p2(α∗)

2
,

=
(α1 + α∗)β1 − 2∓ ι

√

4(α1 + α∗)− ((α1 + α∗)β1 + 2)2

2
,

|�1,2| = (q(α∗))
1
2 ,

d|�1,2|
dα∗ |α∗=0 =

1− 2β1

2
> 0.

(6)

un+1 = (α1 + α∗)(un + β1)(1− un − β1)− (un + β1)(vn + α1(1− β1)− 1)− β1,

vn+1 =
1

β1
(un + β1)(vn + α1(1− β1)− 1)− α1(1− β1)+ 1.

(7)
un+1 = a11un + a12vn + a13u

2
n + a14unvn,

vn+1 = a21un + a22vn + a23unvn,

a11 = 1− α1β1, a12 = −β1, a13 = −α1, a14 = −1,

a21 =
α1(1− β1)− 1

β1
, a22 = 1, a23 =

1

β1
.
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Now, let

and

then T is invertible. Using translation

then system (7) becomes of the following form:

where

and

Furthermore,

and

In order to guarantee the Neimark-Sacker bifurcation for (8), we require that the follow-
ing discriminatory quantity is not zero (Guckenheimer and Holmes 1983):

η =
α1β1 − 2

2
, ζ =

1

2

√

4α1 − (α1β1 + 2)2,

T =
(

a12 0

η − a11 − ζ

)

,

(

un
vn

)

=
(

a12 0

η − a11 − ζ

)(

Xn

Yn

)

,

(8)
Xn+1 = ηXn − ζYn + F̄(Xn,Yn),

Yn+1 = ζXn + ηYn + Ḡ(Xn,Yn),

(9)
F̄(Xn,Yn) = c11X

2
n + c12XnYn,

Ḡ(Xn,Yn) = c21X
2
n + c22XnYn,

c11 = a12a13 + (η − a11)a14, c12 = −ζ ,

c21 =
1

ζ
[(η − a11)a12a13 + ((η − a11)a14 − a23)(η − a11)a12],

c22 =
[

a23 −
(η − a11)a14

a12

]

a12.

F̄XnXn

∣

∣

(0,0)
= 2c11, F̄XnYn

∣

∣

(0,0)
= c12, F̄YnYn

∣

∣

(0,0)
= 0,

F̄XnXnXn

∣

∣

(0,0)
= F̄XnXnYn

∣

∣

(0,0)
= F̄XnYnYn

∣

∣

(0,0)
= F̄YnYnYn

∣

∣

(0,0)
= 0,

ḠXnXn |(0,0) = 2c21, ḠXnYn |(0,0) = c22, ḠYnYn |(0,0) = 0,

ḠXnXnXn |(0,0) = ḠXnXnYn |(0,0) = ḠXnYnYn |(0,0) = ḠYnYnYn |(0,0) = 0.

(10)� = −Re

[

(1− 2�̄)�̄2

1− �
ξ11ξ20

]

−
1

2
�ξ11�2 − �ξ02�2 + Re(�̄ξ21),
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where

After calculating, we get

Analyzing the above and the Neimark- Sacker bifurcation conditions discussed in Guck-
enheimer and Holmes (1983), we write the theorem as follows:

Theorem 3.1  If the condition (10) holds, i.e., � �= 0 and the parameter α alters in the 
limited region of the point (0, 0), then the system (4) passes through a Neimark- Sacker 
bifurcation at the unique positive equilibrium A(β1,α1(1− β1)− 1). Moreover, if � < 0 
(respectively � > 0), then an attracting (respectively repelling) invariant closed curve 
bifurcates from the equilibrium A(β ,α(1− β)− 1) for α > 0 (respectively α < 0).

Numerical simulations
In this section, we will give some numerical simulations for the system (1) to support 
our theoretical results. If we choose β = 0.23, then from non-hyperbolic condition 
(iii.2) of Lemma 2.3, the value of bifurcation parameter is α = 1.85185. In theoreti-
cal point of view, the unique positive equilibrium is stable if α < 1.85185, loss its sta-
bility at α = 1.85185 and an attracting invariant close curves appear from the positive 
equilibrium when α > 1.85185. From subfigures a and b of Fig.  1 it is clear that if 
α = 1.48 < 1.85185, then unique positive equilibrium is locally stable and correspond-
ing to Fig. 1a, b one can easily seen from Fig. 2a that it is an attractor. So, Fig. 1 shows the 
local stability of system (1) whereas Fig. 2 shows that the unique positive equilibrium of 
system (1) is globally asymptotically stable. Figure 3 shows that for different choices of 
parameters when α > 1.85185, then unique positive equilibrium is unstable and mean-
while an attracting invariant closed curve bifurcates from the positive equilibrium, as in 
Fig. 3a–i.

(11)

ξ02 =
1

8

[

F̄XnXn − F̄YnYn + 2ḠXnYn + ι
(

ḠXnXn − ḠYnYn + 2F̄XnYn

)]

|(0,0),

ξ11 =
1

4

[

F̄XnXn + F̄YnYn + ι
(

ḠXnXn + ḠYnYn

)]

|(0,0),

ξ20 =
1

8

[

F̄XnXn − F̄YnYn + 2ḠXnYn + ι
(

ḠXnXn − ḠYnYn − 2F̄XnYn

)]

|(0,0),

ξ21 =
1

16

{

F̄XnXnXn + F̄XnYnYn + ḠXnXnYn + ḠYnYnYn

+ι
(

ḠXnXnXn + ḠXnYnYn − F̄XnXnYn − F̄YnYnYn
)}

|(0,0).

(12)

ξ02 =
1

4
[c11 + c22 + ι(c21 + c12)],

ξ11 =
1

2
[c11 + ιc21],

ξ20 =
1

4
[c11 + c22 + ι(c21 − c12)],

ξ21 = 0,
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Conclusion
This work is related to stability and bifurcation analysis of a discrete predator-pray model. 
We proved that system (1) have two equilibria namely (0,  0) and A(β ,α(1− β)− 1). 
Moreover, simple algebra shows that if α > 1

1−β
, β < 1 then system (1) has unique posi-

tive equilibrium A(β ,α(1− β)− 1). The method of linearization is used to prove the 
local asymptotic stability of equilibria. Linear stability analysis shows that O(0,  0) is a 
sink if α < 1, saddle if α > 1, and non-hyperbolic if α = 1. For the unique positive equi-
librium A(β ,α(1− β)− 1), we have different topological types for possible parameters 

Fig. 1  Phase portraits of system (1)
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and proved that it is locally asymptotically stable and under the condition α = 1
1−2β

 the 
eigenvalues of the Jacobian matrix are a pair of complex conjugate with modulus one. 
This means that there exist a Neimark-Saker bifurcation when the parameters vary in 
the neighborhood of HA. Then we present the Neimark-Saker bifurcation for the unique 
positive equilibrium point A(β ,α(1− β)− 1) of system (1) by choosing α as a bifurca-
tion parameter. We analysis the Neimark-Sacker bifurcation both by theoretical point of 
view and by numerical simulations. These numerical examples are experimental verifica-
tions of theoretical discussions.

Fig. 2  Phase portraits of system (1)
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