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Background
The history of q-calculus dates back to the beginning of the previous century when, 
based on the pioneering works of Euler and Heine, the English reverend Frank Hilton 
Jackson developed q-calculus in a systematic way (Chaundy 1962; Ernst  2000; Kac and 
Cheung 2002). His work gave rise to generalizations of special numbers, series, functions 
and, more importantly, to the concepts of the q-derivative (Jackson 1908), or Jackson’s 
derivative, and the q-integral (Jackson 1910). Recently, based on Jackson’s derivative, a 
q-version of the classical Steepest Descent method, called the q-Gradient (q-G) method, 
has been proposed for solving unconstrained continuous global optimization problems 
(Soterroni et al. 2010, 2012). The main idea behind this new method is the use of the 
negative of the q-gradient of the objective function as the search direction. The q-gradi-
ent is calculated based on q-derivatives, or Jackson’s derivatives, and requires a dilation 
parameter q that controls the balance between global and local search.

The gradient of one-variable function f(x) is simply the derivative. Geometrically, it is 
the slope of the tangent line at a given point x; see Fig. 1. Similarly, the q-gradient of f 
is the q-derivative that has also a straightforward geometric interpretation as the slope 
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of the secant line passing through the points [x,  f(x)] and [qx,  f(qx)]. It is immediately 
evident that the sign of the q-derivative can be either positive or negative, depending on 
the value of the parameter q. For q1 and q2 (Fig. 1), the sign of the q-derivative is posi-
tive and the q-G method will move to the left as the Steepest Descent method would do. 
However, for q3 the sign of the q-derivative is negative which potentially allows the q-G 
method to move to the right direction, towards the global minimum of f.

Figure  2 shows the contour lines of a quadratic function f (x) with x ∈ R
2, shifted 

to x = (10, 10), and the negative of both classical and q-gradient vectors. The nega-
tive of the classical gradient vector of f, the steepest descent direction, is represented 
in Fig. 2 by the bold line segment of number 1. All the other line segments illustrate the 
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Fig. 1  Geometric interpretation of the classical derivative (dotted line) and the q-derivative for different 
values of the parameter q
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Fig. 2  The negative of the gradient vector (bold line segment number 1) and the q-gradient vector of f for 
different values of the parameter q (line segments from 2 to 10 and 2′ to 10′). The parameters (q1, q2) used for 
each line segment are 2: (0.97, 1.03), 2′: (1.03, 0.97), 3: (0.9, 1.1), 3′: (1.1, 0.9), 4: (0.8, 1.2), 4′: (1.2, 0.8), 5: (0.7, 1.3), 
5′: (1.3, 0.7), 6: (0.6, 1.4), 6′: (1.4, 0.6), 7: (0.5, 1.5), 7′: (1.5, 0.5), 8: (−1.2,−0.8), 8′: (−0.8,−1.2), 9: (−1.4,−0.6), 9′: 
(−0.6,−1.4), 10: (−10,−3) and 10′: (−3,−10)
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negative of the q-gradient vector obtained for different values of the parameter q ∈ R
2 , 

q = (q1, q2) . The line segments from 2 to 7 use positive values of q1 and q2 taken sym-
metrically around 1 [q = (q1, q2)], and the line segments from 2’ to 7’ use the same val-
ues of q1 and q2, but with inverted positions [q = (q2, q1)]. The line segments from 8 to 
10 and 8′ to 10′ have a similar description, but use negative values of q1 and q2. Note 
that as the parameter q approaches 1, the negative of the q-gradient tends to the steep-
est descent direction. As can be seen, depending on the value of the parameter q, the 
q-gradient can point to any direction and not only to descent directions.

Figure 3 illustrates the points sampled by the q-G method, with two different strategies 
to generate the parameter q, over a multimodal function f (x), x ∈ R

2. The initial point 
of the search is x0 = (11, 11) and the strategy adopted to define the step length is the 
same in both cases. Note that the function f has a local minimum at x = (10, 10) and a 
global minimum at x = (13, 13). In Fig. 3a, the parameter qki  is fixed and close to 1 along 
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Fig. 3  Behavior of the q-G method for different values of the parameters qki  (∀i, i = 1, 2) along the iterations 
k: a qki ≈ 1 (local search) and b qki → 1 (global search)
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all the iterations k (qki ≈ 1, ∀i, i = 1, 2) and, consequently, the q-G method performs 
a local search converging to the nearest local minimum to the starting point. In Fig. 3b, 
the parameters qki  are different from 1 in the beginning and tend to 1 along the itera-
tive procedure (qki → 1, ∀i, i = 1, 2), with the q-G method performing a global search, 
with exploration of the search space and exploitation of the global minimum vicinity. As 
can be seen in Fig. 3, the possibility of having different values of the parameter qki , and 
not only values close to 1, enables the method to move against the local descent direc-
tion, escape from the local minimum and sample other regions of the search space. In 
other words, when the values of qki  are sufficiently different from 1, the q-gradient vector 
can point to any region of the search space. This potentially allows the q-G method to 
move towards the global minimum.

These simple examples show that the use of the q-gradient, based on Jackson’s deriva-
tive, offers a new mechanism for escaping from local minima. The algorithm for the q-G 
method is complemented with strategies to generate the parameter q and to compute 
the step length in a way that the search process gradually shifts from global in the begin-
ning to almost local search in the end. As here proposed, the q-G algorithm has only 
two free parameters to be adjusted: the initial standard deviation (σ 0) and the reduction 
factor (β). Although a bad choice may lead to some deterioration in its performance, the 
q-G method has shown to be sufficiently robust for still being capable of reaching the 
global minimum.

We evaluated q-G’s performance of against 34 optimization methods and on 34 test 
problems. First, we considered ten 2-D optimization problems, eight unimodal and two 
multimodal, as defined in (Luksan and Vlcek 2000), and compared the q-G method with 
22 derivative-free algorithms described in (Rios and Sahinidis 2013). Second, we evalu-
ated our approach on twelve 10-D and twelve 30-D test problems, ten unimodal and 
fourteen multimodal. These test problems have been proposed as a benchmark for the 
CEC′2005 Special Session on Real-Parameter Optimization of the IEEE Congress on 
Evolutionary Computation 2005 (Suganthan et al. 2005). For this second set of problems, 
we compared the q-G with 11 Evolutionary Algorithms (EAs) participants of the compe-
tition and with the steepest descent (SD) method.

The rest of the paper is organized as follows. The "q-gradient vector" section intro-
duces the q-gradient vector. "The q-G method" section presents an algorithm for the q-G 
method. "Computational experiments" section shows the numerical results, and "Con-
clusions" section presents our main conclusions.

The q‑gradient vector
Let f(x) be a differentiable one-variable function. The classical derivative of f is given by

and it is related to infinitesimal summation of the independent variable x. The q-deriva-
tive is related to dilations of the independent variable x that is multiplied by the param-
eter q as follows (Jackson 1908)

(1)
df (x)

dx
= lim

�x→0

f (x +�x)− f (x)

�x
,

(2)Dqf (x) =
f (qx)− f (x)

qx − x
,
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where x �= 0 and q �= 1. The parameter q can be any number different from 1. Therefore, 
the q-derivative can be written as (Koekoev and Koekoev 1993)

Similarly, let f (x) be a differentiable function of n real variables, then the first-order par-
tial q-derivative of f with respect to the variable xi can be given by (Soterroni et al. 2010)

Thus, the q-gradient is the vector of the n first-order partial q-derivatives of f defined as 
(Soterroni et al. 2010)

where the parameter q is a vector q = (q1, . . . , qi, . . . , qn) ∈ R
n. The classical gradient is 

recovered in the limit of qi → 1, for all i = 1, ..., n.

The q‑G method
Let a general nonlinear unconstrained optimization problem be defined as

where x ∈ R
n is the vector of the independent variables and f : Rn → R is the objective 

function. A common optimization strategy is to consider an iterative procedure that, 
starting from an initial point x0, generates a sequence {xk} given by

where k is the iteration number, dk is the search direction and αk is the step length or the 
distance moved along dk in the iteration k.

Gradient-based optimization methods can be characterized by the different strategies 
used to move through the search space. The Steepest Descent method, for example, sets 
dk = −∇f (xk) as the search direction and the step length αk is usually determined by a 
line-search technique that minimizes the objective function along the direction dk. In 
the q-G method, the search direction is the negative of the q-gradient of the objective 
function −∇qf (x).

Therefore, the optimization procedure defined by (7) becomes

Key to the performance of the q-G method is the correct specification of the parameter 
q. Considering a function of n variables f (x), a set of n different parameters qi ∈ R− {1} 
(i = 1, . . . , n) are needed to compute the q-gradient vector of f. The strategy adopted 
here is to draw the values of qixi, ∀i, i = 1, . . . , n, from a Gaussian probability density 
function (pdf), with a standard deviation that decreases as the iterative search proceeds 
and the mean equal to the current point of the search xi.

(3)Dqf (x) =







f (qx)−f (x)
qx−x , x �= 0 and q �= 1

df (x)
dx

, otherwise.

(4)Dqi ,xi f (x) =







f (x1,...,qixi ,...,xn)−f (x1,...,xi ,...,xn)
qixi−xi

, xi �= 0 and qi �= 1

∂f (x)
∂xi

, otherwise.

(5)∇qf (x)
T =

[

Dq1,x1 f (x) . . . Dqi ,xi f (x) . . . Dqn,xn f (x)
]

(6)min f (x)

(7)xk+1 = xk + αkdk

(8)xk+1 = xk − αk∇qf (x
k).
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Starting from σ 0, the standard deviation of the pdf is decreased by the following “cool-
ing” schedule, σ k+1 = β · σ k, where 0 < β < 1 is the reduction factor (see Fig. 4d). As 
σ k approaches zero, the values of qki  tend to 1, the algorithm reduces to the Steepest 
Descent method, and the search process becomes essentially local. In this sense, the role 
of the standard deviation here is reminiscent of the one played by the temperature in a 
Simulated Annealing (SA) algorithm, that is, to make the algorithm sweeps from a global 
random sampling in the beginning to a local deterministic search in the end. As in a 
SA algorithm, the performance of the minimization algorithm depends crucially on the 
choice of parameters σ 0 and β. A too rapid decrease of σ k, for example, may cause the 
algorithm to be trapped in a local minimum.

Figure 4a–c show 500 line segments that represent the possible search directions of 
the q-G method for a 2-D quadratic function at x0 = (11, 11). The parameters q were 
generated by a Gaussian distribution with standard deviation σ k that decreases along the 
iterative procedure as σ k+1 = β · σ k, with a initial standard deviation σ 0 and the reduc-
tion factor β. In the beginning of the iterative procedure (Fig. 4a), the search directions 
can point to anywhere but, as the σ k tends to 0, the parameter qki  tends to 1 and, conse-
quently, the search directions tend to the steepest descent direction (Fig. 4c).

x
1

x 2

8 9 10 11 12 13 14
8

9

10

11

12

13

14

a Directions: 1 − 200

x
1

x 2

8 9 10 11 12 13 14
8

9

10

11

12

13

14

b Directions: 201 − 400

x
1

x 2

8 9 10 11 12 13 14
8

9

10

11

12

13

14

c Directions: 401 − 500

0 100 200 300 400 500
0

1

2

3

4

5

6

7

8

9

10

k

σk

d Evolution of σk

Fig. 4  a–c Possible 500 search directions of the q-G method for a 2-D quadratic function at x0 = (11, 11) 
obtained from parameters q generated by a Gaussian distribution with mean µk = x
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The algorithm of the q-G method is completed with a strategy for calculating the step 
length αk based on standard parabolic interpolation. Given the current point of the 
search xk and the parameter qk, we calculate γ = �qkxk − xk� to define the triplet of 
points (a,b, c) = (xk − γdk , xk , xk + γdk), where dk is the search direction in the itera-
tion k. The step length corresponds to the distance between the current value and the 
minimum value of the parabola passing through a, b and c. Other strategies for comput-
ing the step length are, naturally, possible. Nevertheless, the use of a line-search tech-
nique is not recommended since the search directions of the q-G method are not always 
descent directions. Descent directions are required for the success of this kind of one-
dimensional minimization (Nocedal and Wright 2006).

Summarizing, the algorithm of the q-G method for unconstrained continuous global 
optimization problems is described as follows.

Algorithm for the q-G method
Given x0 (initial point), σ 0 > 0 and β ∈ (0, 1):

1.	 Set k = 0

2.	 Set xbest = xk

3.	 While the stopping criteria are not reached, do:

a.	 Generate qkxk by a Gaussian distribution with σ k and µk = xk

b.	 Calculate the q-gradient vector ∇qf (x
k)

c.	 Set dk = −∇qf (x
k)/�∇qf (x

k)�
d.	 Calculate γ = �qkxk − xk�
e.	 Calculate the triplet (a,b, c) = (xk − γdk , xk , xk + γdk)

f.	 Compute αk by parabolic interpotation, and xk+1 = xk + αkdk

g.	 If f (xk+1) < f (xbest) set xbest = xk+1

h.	 Set σ k+1 = β · σ k

i.	 Set k = k + 1

4.	 Return xbest and f (xbest).

The q-G method stops when the appropriate stopping criterion is attained. In real-
world applications (i.e., in problems for which the global minimum is not known), it 
can be the maximum number of function evaluations, or the value of the local gradi-
ent ||∇f (xk)|| < ǫ (ǫ > 0), since the q-G method converges to the Steepest Descent 
method. The algorithm returns the xbest as the minimum value of the objective function f 
obtained during the iterative procedure, i.e., f (xbest) ≤ f (xk), ∀k.

Computational experiments
The q-G method was tested on two set of problems followed by a systematic comparison 
with derivative-free algorithms. First, we applied our approach on ten 2-D test problems 
defined in (Luksan and Vlcek 2000), eight unimodal and two multimodal, and compared 
it with 22 derivative-free algorithms described in (Rios and Sahinidis 2013). Second, the 
q-G method was evaluated on twelve 10-D and twelve 30-D test problems, ten unimodal 
and fourteen multimodal, and it was compared with 11 Evolutionary Algorithms (EAs) 
participants of the CEC′2005 Special Section on Real-Parameter Optimization of the 
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2005 IEEE Congress on Evolutionary Computation, and the Steepest Descent method. 
The q-G method and the Steepest Descent method were performed on a iMac 2.7GHz 
with Intel Core i5 processor and 8GB RAM running Intel Fortran Composer XE for Mac 
OS* X.

The q-G method has two free parameters, the initial standard deviation σ 0 and the 
reduction factor β. The optimal setting for these parameters is typically problem depend-
ent. The value of σ 0 should not be too small so that the algorithm does not behave like its 
classical version too early, and not too large so that the iterates do not escape the search 
space frequently. Extensive numerical tests have shown that σ 0 = κL, where κ =

√
D/2 , 

D is the dimension of the problem and L is the largest distance within the search space 
given by L =

√

∑n
i=1(xmaxi − xmini), provides a simple heuristic for setting this param-

eter. For example, we set σ 0 = L for all the 2-D problems. This strategy may not provide 
the best parameter setting for every test function, but is good enough for a wide range of 
problems.

The value of β, which controls the speed with which the algorithm shifts from global 
to local search, also depends on D. As a rule of thumb, log(1− β) ∼ −κ gives good esti-
mates for β. For example, for D ranging from 1 to 8, 0.9 ≤ β ≤ 0.99 is a good choice; for 
8 ≤ D ≤ 18, we choose 0.99 ≤ β ≤ 0.999; for 18 ≤ D ≤ 32, 0.999 ≤ β ≤ 0.9999; and so 
on. Naturally, the choice of β should be balanced with the maximum number of function 
evaluations of one is willing or limited to perform.

First set of problems

The first ten 2-D test problems, eight unimodal and two multimodal, are described in 
Table 1. The evaluation of the objective function at the global optimum f (x∗) (last col-
umn of Table 1) is used to define a successful run. A run is considered successful if the 
objective function value at x is within 1% or 0.01 of the global optimum (Rios and Sahin-
idis 2013). For each problem, 10 independent runs were performed from random start-
ing points obtained from a uniform distribution within the search space, as defined in 
(Rios and Sahinidis 2013). The same starting points were used for all methods, including 

Table 1  A subset of problems prosed at (Luksan and Vlcek 2000) for dimension 2-D

The column [xmin , xmax ]D shows the domain used to define L, and the column f (x∗) has the evaluation of the function on 
the global optimum x∗

Test problems [xmin, xmax ]
D f (x∗)

Problem 3.1 Rosenbrock Unimodal [−10, 000, 10, 000]2 0

Problem 3.2 Crescent Multimodal [−5000, 10, 000]2 0

Problem 3.3 CB2 Unimodal [−50, 50]2 1.9522245

Problem 3.4 CB3 Unimodal [−50, 50]2 2

Problem 3.5 DEM Unimodal [−10, 000, 10, 000]2 −3

Problem 3.6 QL Unimodal [−10, 000, 10, 000]2 7.20

Problem 3.7 LQ Unimodal [−10000, 10000]2 −1.4142136

Problem 3.8 Mifflin 1 Unimodal [−10, 000, 10, 000]2 −1

Problem 3.9 Mifflin 2 Unimodal [−10000, 10000]2 −1

Problem 3.10 Wolf Multimodal [−10, 000, 10, 000]2 −8
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our approach. The stopping criterion used by all algorithms is Nmax = 2500 evaluations 
of the objective function per run.

The resolution of all 22 derivative-free methods and the q-G method over this set of 
ten problems, each one solved for 10 independent runs, results in a total number of 100 
optimization instances per algorithm. In order to perform a qualitative comparison of 
the different methods over this set of problems, we calculate for each algorithm the frac-
tion of solved problems given by the ratio between the number of successful runs and 
the total number of instances. This ratio is computed every 50 evaluations of the objec-
tive function. Figures 5, 6 and 7 show the fraction of multimodal, unimodal and all prob-
lems, respectively, solved by each method to reach the optimality tolerance along the 
iterative procedure.

The q-G method solved 100 % of the multimodal problems (see Fig. 5), 79 % of the 
unimodal problems (see Fig. 6) and, in total, our approach solved 83 % of the problems 
arriving in a 7th position among the 23 methods. The comparison was performed under 
the same initial conditions and stopping criterion, and the q-G method used the same 
set of free parameters for all problems, namely σ 0 = L and β = 0.95.

Second set of problems

The performance of the q-G method was also evaluated on twelve 10-D and twelve 30-D 
test problems, ten unimodal and fourteen multimodal. Their characteristics are summa-
rized in Table  2. These functions are a subset of the problems proposed at CEC′2005 
(Suganthan et  al. 2005). The q-G method is compared with the top eleven Evolution-
ary Algorithms (EAs) participants of the competition: BLX-GL50 (Garcia-Marinez and 
Lozano 2005), BLX-MA (Molina et  al. 2005), CoEVO (Posik 2005), DE (Ronkkonen 
et al. 2005), EDA (Yuan and Gallagher 2005), DMS-L-PSO (Liang and Suganthan 2005), 
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L-SaDE (Qin and Suganthan 2005), G-CMA-ES (Auger and Hansen 2005a), L-CMA-
ES (Auger and Hansen 2005b), K-PCX (Sinha et al. 2005) and SPC-PNX (Ballester et al. 
2005). In addition, we applied the Steepest Descent (SD) method to the same test prob-
lems in order to compare the q-G method with its classical version.
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The test problems proposed at CEC′2005 are based on classical benchmark functions 
such as Sphere, Rosenbrock’s, Rastrigin’s, Ackley’s and Griewank’s function. They con-
tain difficulties such as huge number of local minima, shifted global optimum, rotated 
domain, noise, global optimum outside the initialization range or within a very nar-
row basin, and a combination of different function properties (Suganthan et al. 2005). 
The function f15, for example, is a composition of Rastrigin’s, Weierstrass, Griewank’s, 
Ackley’s and Sphere functions. The selected subset of the CEC′2005 test problems com-
prises those for which at least one of the thirteen algorithms (eleven EAs, the q-G and 
SD methods) was capable to achieve a fixed accuracy or a target function value defined 
in (Suganthan et al. 2005).

To ensure a fair comparison, we applied on the q-G and SD methods the same evalua-
tion criteria defined in (Suganthan et al. 2005) and used by the EAs. For each function 
and dimension, the algorithms performed 25 independent runs from different starting 
points generated with a uniform random distribution within the search space1 (see col-
umn [xmin, xmax]D of Table  2). The stopping criteria are either the termination error 
value equal to 10−8 or less {i.e., [f (xbest)− f (x∗)] < 10−8, where x∗ is the global opti-
mum} or the maximum number of function evaluations (Max_FEs) equal to 10,000× D. 
More details of the functions and evaluation criteria can be found in (Suganthan et al. 
2005). The resolution of these twelve 10-D and twelve 30-D problems, each one solved 
for 25 independent runs, results in a total number of 600 optimization instances per 
algorithm. Here we are also using fixed free parameters σ 0 =

√
5L with β = 0.995 for all 

10-D problems, and σ 0 =
√
15L with β = 0.9995 for all 30-D problems. The SD method 

uses golden section technique to generate the step length. For the multimodal functions, 

1  For the Shifted rotated Griewank’s function (f7) the domain used to generate the initial points is [0, 600]D, where D is 
the dimension of the problem.

Table 2  A subset of the test problems proposed at CEC′2005 for dimensions 10-D and 30-D

The column “[xmin , xmax ]D” shows the domain used to generate the initial points of the search, where D is the dimension. The 
column f (x∗) shows the evaluation of the function on the global optimum x∗. A complete description of these problems can 
be found in (Suganthan et al. 2005)

Test problems [xmin, xmax ]
D f (x∗)

Unimodal

 f1 Shifted sphere function [−100, 100]D −450

 f2 Shifted Schwefel’s problem 1.2 [−100, 100]D −450

 f3 Shifted rotated high conditioned elliptic function [−100, 100]D −450

 f4 Shifted Schwefel’s problem 1.2 with noise in fitness [−100, 100]D −450

 f5 Schwefel’s problem 2.6 with global optimum on bounds [−100, 100]D −310

Multimodal

 f6 Shifted Rosenbrock’s function [−100, 100]D 390

 f7 Shifted rotated Griewank’s function without bounds – −180

 f9 Shifted Rastrigin’s function [−5, 5]D −330

 f10 Shifted rotated Rastrigin’s function [−5, 5]D −330

 f11 Shifted rotated Weierstrass function [−0.5, 0.5]D 90

 f12 Schwefel’s problem 2.13 [−π ,π]D −460

 f15 Hybrid composition function [−5, 5]D 120
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whenever the SD method terminates before reaching the termination error and the 
number of function evaluations is less than Max_FEs, it is restarted from a randomly 
generated point inside the search space.

To evaluate the performance of the methods on this second set of problems, we com-
puted a “success rate” (SR) and a “success performance” (SP) for each algorithm and 
function as (Suganthan et al. 2005)

SR represents the fraction of runs that were successful. A successful run for this set of 
problem is defined as a run in which the algorithm achieves a given accuracy level2 with 
less or equal Max_FEs (Suganthan et al. 2005). SP is the number of function evaluations 
needed for an algorithm to achieve the minimum, with a given accuracy, in a successful 
run. Table 3 presents SR and SP values obtained by the q-G and SD methods, for all the 
twelve 10-D and twelve 30-D test functions.

The performance comparison of the q-G method with its classical version (SD 
method) and the top eleven EAs of CEC′2005 was made for two groups: the five uni-
modal and the eight multimodal test functions. For each group and dimensions, 10-D 
and 30-D, we calculated the average success rate and the average success performance 
of each algorithm. The average success rate of an algorithm is the arithmetic mean of 
the SP values in a group of functions. The average success performance is the arith-
metic mean of the SP values for the functions with at least one successful run. Tables 4 
and 5 show the resulting ranking of the algorithms for the unimodal and multimodal 

(9)SR =
number of successful runs

number of total runs
,

(10)SP =
mean of FEs for successful runs × number of total runs

number of successful runs
.

2  The accuracy level is defined for each function in (Suganthan et al. 2005).

Table 3  Success rate (SR) and  success performance (SP) of  the q-G and  the SD methods 
for each function and dimension

Functions 10-D 30-D

q-G SD q-G SD

SR SP SR SP SR SP SR SP

f1 1.00 2.83e+3 1.00 4.68e+1 1.00 1.82e+3 1.00 8.80e+1

f2 0.96 4.15e+4 1.00 3.28e+4 0 – 0.04 7.39e+6

f3 0 – 0 – 0 – 0 –

f4 0.96 3.99e+4 0 – 0 – 0 –

f5 0 – 0 – 0 – 0 –

f6 0 – 0 – 0 – 0 –

f7 1.00 1.22e+4 0 – 1.00 9.28e+4 1.00 2.28e+4

f9 1.00 2.08e+4 0 – 0.88 1.69e+4 0 –

f10 1.00 2.69e+4 0 – 0.96 2.57e+4 0 –

f11 0 – 0 – 0 – 0 –

f12 0 – 0.08 3.55e+5 0 – 0 –

f15 0 – 0 – 0 – 0 –
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functions, respectively, and the dimensions 10-D and 30-D. The algorithms are ranked 
by the following criteria:

1.	 Highest value of the average success rate (column “Average SR  %”).
2.	 Number of solved functions in each group (column “SF”). A function is considered 

solved by an algorithm if at least one of the runs is a successful run or if the SR is dif-
ferent from 0.

3.	 Lowest value of the average success performance (column “Average SP”).

Table 4  Rank of the algorithms for the unimodal problems and dimensions 10-D and 30-D

10-D 30-D

Algorithms Average SF Average Algorithms Average SF Average

SR  (%) SP SR (%) SP

G-CMA-ES 100 5 3.85e+03 G-CMA-ES 88 5 3.70e+04

EDA 98 5 1.46e+04 L-CMA-ES 80 4 3.32e+04

DE 96 5 5.68e+04 EDA 80 4 1.81e+05

L-CMA-ES 86 5 4.20e+04 DMS-L-PSO 57 3 1.57e+05

BLX-GL50 80 4 3.22e+04 SPC-PNX 53 3 2.36e+05

CoEVO 80 4 3.53e+04 L-SaDE 50 3 2.36e+05

SPC-PNX 80 4 2.72e+04 K-PCX 40 2 7.53e+03

DMS-L-PSO 76 4 3.75e+04 BLX-GL50 40 2 1.09e+05

L-SaDE 72 4 2.96e+04 SD 21 2 3.70e+06

BLX-MA 59 3 4.10e+04 q-G 20 1 4.51e+04

q-G 59 3 2.80e+04 BLX-MA 20 1 3.17e+04

K-PCX 57 3 2.01e+04 DE 20 1 1.39e+05

SD 40 2 1.64e+04 CoEVO 9 2 1.11e+06

Table 5  Rank of  the algorithms for  the multimodal problems and  dimensions 10-D 
and 30-D

10-D 30-D

Algorithms Average SF Average Algorithms Average SF Average

SR (%) SP SR (%) SP

G-CMA-ES 69 6 7.53e+04 G-CMA-ES 41 6 1.41e+06

L-SaDE 59 5 6.06e+04 q-G 41 3 4.51e+04

DMS-L-PSO 54 5 5.18e+04 K-PCX 35 5 2.07e+05

K-PCX 47 4 2.99e+04 DMS-L-PSO 30 3 6.33e+05

q-G 43 3 5.67e+03 L-CMA-ES 29 2 3.56e+04

DE 39 6 6.91e+05 BLX-GL50 29 2 1.38e+05

BLX-GL50 29 4 9.42e+04 L-SaDE 23 2 1.17e+05

L-CMA-ES 35 3 3.64e+04 SD 14 1 2.28e+04

EDA 21 4 1.68e+05 EDA 14 1 1.31e+05

BLX-MA 13 2 1.87e+05 DE 13 1 2.00e+05

SPC-PNX 1 2 1.45e+05 SPC-PNX 10 2 2.79e+05

SD 1 1 3.55e+05 CoEVO 6 1 5.69e+05

CoEVO 0 0 – BLX-MA 5 1 6.58e+05
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 For the unimodal problems, the q-G method does not perform very well arriving 
in eleventh and tenth positions for dimensions 10-D and 30-D, respectively. The aver-
age success rates for the unimodal problems are 59 % for 10-D and 20 % for 30-D. 
Note that the increase of the dimension affected the performance of all algorithms, 
in terms of either SR or the number of solved functions. Overall, the performance 
of the q-G method is not very different from its classical version, the SD method, 
which arrives in the thirteenth and ninth positions, for dimensions 10-D and 30-D, 
respectively.

This picture changes for the multimodal problems, where the q-G method performed 
well, arriving in fifth and second positions for 10-D and 30-D, respectively. The aver-
age success rates of the q-G method are 43 and 41 % for 10-D and 30-D, respectively. 
As expected, the SD method has a poor performance over the multimodal problems 
arriving in twelfth and eighth positions for dimensions 10-D and 30-D, respectively. 
Again, the increase of the dimension affected the performance of all algorithms.

Conclusions
In this paper we presented the q-G method, a generalization of the Steepest Descent 
method based on the use of the q-gradient vector to compute the search direction. This 
strategy provides the algorithm an effective mechanism for escaping from local minima. 
As implemented here, the search process performed by the q-G method gradually shifts 
from global search in the beginning to local search in the end. Our computational results 
have shown that the q-G method is competitive and promising. For the multimodal 
functions in the two set of problems, it performed well compared to the other deriva-
tive-free algorithms, some considered to be among the state-of-the-art in the evolution-
ary computation and numerical optimization communities.

Although our preliminary results show that the method is effective, further research is 
necessary. Currently, a novel version of the q-G method, which is able to guarantee the 
convergence of the algorithm to the global minimum in a probabilistic sense, is under 
development. This version is based on the generalized adaptive random search (GARS) 
framework for deterministic functions (Regis 2010). In addition, gains in the perfor-
mance of the q-G method are expected with the implementation of several improve-
ments, such as inclusion of side, linear and nonlinear restrictions, development of better 
step selection strategies and others.
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