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National Research Institute The objective of this study is to obtain the propagation velocity of an elastic wave in

jor Metals, & 13712 Konamori. loaded isotropic solid and to show the usefulness of the third-order elastic constant
Machida, Tokyo 194-0012, a loaded isotropic solid and to show the usefulness of the third-order elastic constan

Japan in determining properties of practical materials. As is well known, the infinitesimal

elastic theory is unable to express the influence of stress on elastic wave propagating
in loaded materials. To solve this problem, the authors derive an equation of motion
for elastic wave in a finitely deformed state and use the Lagrangian description where
the state before deformation is used as a reference, and Murnaghans finite deforma-
tion theory for the unidirectional deformed isotropic solid. Ordinary derivatives were
used for the mathematical treatment and although the formulas are long the content
is simple. The theory is applied to the measurement of the third-order elastic constants
of common steels containing carbon of 0.22 and 0.32 wt%. Care is taken in preparing
specimens to precise dimensions, in properly adhering of transducer to the surface

of the specimen, and in having good temperature control during the measurements
to obtain precise data. As a result, the stress at various sites in the structural materi-
als could be estimated by measuring the elastic wave propagation times. The results
obtained are graphed for illustration.
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Background

There is little discussion of the practical application of the third-order elastic constants
from the viewpoint of engineering. The third-order elastic constants and its mathematical
procedure of practical materials were first reported by Hughes and Kelly (1953), however
their mathematical treatments were difficult to understand.

In this paper we introduced the formulas to show the relationship between the veloc-
ity of the elastic wave propagation and the stresses under the assumption that the elastic
waves propagate in the unidirectional loaded isotropic materials. Cast in plain mathe-
matics, we use Murnaghans finite elastic theory (Murnaghan 1951) combined with the
Lagrangian description for a simpler description.

Three coordinate systems were used to treat the elastic waves in the finitely deformed
solid; the first coordinate system corresponds to the non-deformed state, the second to
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the statically finitely deformed state, and the third to the state where an infinitesimal
dynamical deformation is superposed on the finite deformation of the second state.

The application of our formulas in estimating unknown stresses were tested by meas-
uring the ratio of change in propagation time to stress for the common steels. The points
to be elaborated are based on followings;

(A)  Use of the Lagrangian description for an unloaded non-deformed isotropic
object;

(B)  Propagation of an elastic wave in a finitely deformed object loaded and stressed
in the uniaxial direction.

(C)  Derivation of the propagation velocity of the elastic wave in a loaded object from
the viewpoint of Murnaghans’s finite deformation theory;

(D)  Application of the third-order elastic constants to the stress measurement.

Coordinates

1. The coordinates of the unloaded and non-deformed isotropic object are denoted by
ai, ay, as, and expressed as a;, herei = 1,2, 3.

2. The coordinates in the statically and elastically deformed state are denoted by
X1, X2, X3, then expressed as Xj, and the displacements are denoted by Uj, Uy, U3,
then expressed similarly by U;, here Uy = X1 — a3, Uy = X5 — ap, Uz = X3 — a3, so
L[i = XL' — a;

3. The coordinates of the statically deformed state superposed by the elastic wave are
denoted similarly by «;. The infinitesimal displacement of elastic wave are denoted by
u1, Uz, us, then expressed by u;, here u; = x1 — X1, up = 22 — Xo, u3 = x3 — X3, so
ui =x; — X;

4. When the coordinate 4; in the non-deformed state changes to the coordinate U; of
the finitely deformed state by applying load and further applying the infinitesimal
displacement of u;, the coordinates x; are expressed as formula (1) as

xi=a;+U +u=X;+u,X;=a;+ U (1)
Strain

Total strain 7);; superposed by the infinitesimal strain of elastic wave 1j;; on the static strain

n;j is expressed as formula (2) as
_ 1/0x, 0xy 5
My = 2\ da; aa]' Y )

nij = Mij + Ny (3)

where subscripts i, j, « and f take 1, 2, and 3. We assume that Greek lettered subscripts
are summed indices, but Roman lettered subscripts are not summed. 8;: Kronecker’s
delta, wheni=j,6;; =1,andi #,8; =0
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Using formula (1), formula (2) is rewritten as
_ 1/ 0xy 0Xy 5
Ty = 2\ da; da; v

(et ) | e (Dt Ue) D
2 Bai c’)ai E)aj atll'

B 1<a(ao,+ua) d(ay + Uy) 5)
- - . yy

2 da; da;
+} d(aq + Uy) % N d(aq + Uy) _ 0y n 0y % 4@
2 8ai 861]' a{lj Bai Bai 8(1,

The first term in formula (4) corresponds to 7;; of formula (3) whereas the second term
corresponds to 7);;. After this, the derivation of the formula stands on the following

assumptions,

(1) Terms equal or higher than second order in the infinitesimal displacement gradient

du;/0X; can be neglected.
(2) Terms equal or higher than third-order products of du;/3X; and the finite displace-
ment gradient d1/;/da; can be neglected.

Next, 7j;; in formula (4) is written as

al, dug 0X,
5011’ + i @, 7'3
d0a; 0Xp Oaj

5, 4 Ola) 0o 3Xp | Oug OXp Ouy 39Xy
Y 0Xg da;  9Xp da; 09X, da

1 ol allg oy allg 0y
~ —|(|6yi+— )65 + — Sai + —— | | 8si
2[(az+ Bai><ﬂ/+ 8ﬂj>+<al+ 361j><ﬂl+ 361,‘>:|3X/3 )

In the above formula (5), the two terms in the first factor are symmetric with regard to
interchanging i and j; then interchanging ¢ — f, and § — « in the second factor, and
similarly changing the subscript of the Greek alphabet in the 01, /0Xg yields

"4._1 5‘+% 8‘4_% %_‘_%
1=\ gy J\°P " a; ) ) \oxs T X, ©)

Accordingly 7;; = 7];;, and the infinitesimal strain is symmetric.
See Appendix A about the calculations of 711, 722, and 7j33.

Stresses
Static stress Tj;
Following Murnaghan’s theory, static stress Tj; is written as

3(pod)
T: =T
ij Jia 37701]' 7
where Jj, is the Jacobian matrix, po¢ the free energy per unit volume of deformed iso-
tropic solid, and pp the density of isotropic solid in non-deformed state. The free energy

per unit volume can be written in terms of the strain invariants Iy, I, I3
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00 = Aol + —oul, + L3 —2mLiy + nl3 (8)

(A+2M)I ) £+ m)
2 ! 3

and hence its derivatives with respect to the static strain coefficients are

9 al
(009) _ ((z L 200 + (€ + 2m)2 — 2m12) !
amj a’?ij
o, 9l
— (u+mh)— 4 n =2 )
Nij nij

where Ag =0, 1 and p are the Lamé constants, /,m,n are Murnaghan’s third-order
elastic constants, and the strain invariants are defined by

It = n11 + 122 + 133 = Npadpa

I, = n22 123 133 731 mi M2
n32 733 n13 N1 n21 1M22
1
= E(nao{nﬂﬂ - naﬁnﬁa) (10)
mi M2 M3 1
I3 =|n21 M2 M3 | = inaa(nyynﬂf} — Naplpa), (0 #= B #Y) (11)

131 132 133

The derivatives of the above invariants of /1, I and I3 are given as,

0l ol I
=1, =0, =n +n33 =1 —ni,
N1 9123 a1
aly dls3
—— = —N32, 7—— = 1227133 — 1237132, (12)
9n23 onn
ol3 _ _ ni1 Ni2
P N12M31 — N11732 = ’7731 N30 (13)
Thus the derivative of the free energy po¢ with respect to 111, for example, becomes
ad ,
éz 09) _ G+ 2001 + (€ + 2m)I2 — 2mly
11
—2(n +ml) (1 — n11) + n(N22m33 — N23732) (14)

See Appendix B on the derivative with respect to 122, 733, 123, 131, N12-
Infinitesimal stress of elastic wave T;;
The total stress Tij is defined as the sum of the infinitesimal stress f"ij and the static stress Tj;

that is,

Ty = (Ty + Ty) (15)

Page 4 of 20
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Using formula (7) and replacing p for po¢, formula (15) is rewritten as
')
=Jia ( 0nj )

= U+ (5,

ap 3P
8770,})

a A
_]LOt ¢ +]l0! ¢ +]l0l ¢

7701] a’?a} 8770:1’
~ 0
PR (16)
anaj
)
=Jiaz - 5 + Vo + )5 (17)
Naj IMayj

Here the elements of the Jacobian matrix are expressed as

;o 0x;
w — aaiy
0X; d(a; + Uj)
Jia = =
0dy 0dy
ol
= §;
io aaa
7i0( :jiot — Jia
_ axi BXi
" day  dag
_ O (18)
0dy

Using the above formula (18),

j. 0X1 — (14 all J 3X2 oy
1= 8a1 - aﬂl ’ 8= 8613 8613
A 0x1 0X1 ouy A ouy A ous

==, = -, = 19
Ju da,  daL _ 9a J22 323 J33 303 (19)
A sz 3X2 3142 A 8M3 a 3M1
J2z = das  das a3’ J31 = b’ Ji2 = 8y (20)

See Appendix C about expressions for the derivatives of du; /day, du1/das, and duy /das.

o 09 I
” ~ o7 21
Jia 0naj i 0naj @D

Settingw = 1,and j = 1in the 8d3/817a,', yield

06 (3 9
i <anu) O (22)
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Expanding formula (22) using formula (14) then gives

g - - S . o
P M + €1} — 2mly + 2011 (w + mIy) + n(iixafiss — 7237132)
— M — €5% 4 2mly — 2011 (0 + mIy) — n(n22n33 — 123732)
~ ()L —+ 2/,L + 241 + 4mn11)ﬁ11 + ()» + 241 — (2}’}’1 — n)ﬂgg)ﬁgz
+ (A + 200 — 2m — m)n22)33 + 2m — n) (923732 + 1327)23)

+ 2m(msiiz1 + n31M13 + M2i21 + 121712) (23)
See Appendix D for a detailed derivation. Other derivatives are similarly obtained
An expression for 3¢ / 32 can be obtained through changing subscripts 12, 2—3,

3—1 in the formula 23).
The formula of 3¢ /9dn33 can be obtained in a similar manner. Also

09

~ (2m — nm)na sz + 2mno1 (N1 + 122)
N2

+ 2u + 2mly — nn33)io1 + n(n317j23 + 123731) (24)

and hence byl < 2

09

~ (2m — n)n12iis3 + 2mn12(faz + 111)
an21

+ Qu + 2mly — nn33) 12 + (32013 + N13732) (25)

Using the above formulas (21) to (25), formula (17) for the infinitesimal stress is rewrit-

ten as follows.

. 9 3¢
T11 = J1e o E
~ (o4 2u + (o4 201 + (34 + 811 + dm)m1) 11
+ A+ (A+200L + Anz — (A+2m — m)n3)n2
+ A+ (A+200 + Anz — (A+2m — m)n2)13

1 . 1 . . .
+ 5(/1 +2m — n)nans + 5(2/“ + 3u + 2m) (9515 + nete)

Uy ouq
2 + i 26
M<mz 0Xy s 8X3> (26)

See Appendix E for details of the derivation for Tn. Also,

Too & (421 + Qo+ 205 + B4+ 8 + 4m)n) 1ia
+ A+ A+200L + ing — (A4 2m — n)n1)ns
+ A+ (A +200 + 2m — (4 +2m — nm)n3)n

1 . 1 . . .
+ 5(/1 +2m — m)nsns + E(ZA + 2m + 314) (Nanjg + Nete)

BI7%) ouy
2 + ) 27
M<7723 0X3 21 8X1> 7)
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Tas ~ (A+ 21 + (A4 205 + 3/ + 8 + 4m)ns) 13
+ A+ A+200L + Iny — (A4 2m — m)na)n
+ (/1 + (/L + 2K)11 — (/1 +2m — Vl)nl + }vng)ﬁg

1 . 1 . . .
+—5(14-2W1—1ﬂn6n6+-5(2A4-2W1+-3M)0mn4-%n5n§

3%3

dus
9 (28)
+ ,U«(USI 73)(1 + 7732)

0Xo

In the expression for le, the subscripts of 1, 2, and 3 for 1, and 1, change cyclically with
1—2,2— 3,3 — 1. Similarly, indices 4, 5, 6 change cyclically like 4 — 5,5 — 6, 6 — 4.
For nep and duy /90X, the subscripts change cyclically as well with 1 — 2,2 — 3,3 — 1.

Hence from

P Y )
173 = Jou +Joa T
0Na3 0743

— s 2 4 Oy + 2 2

= 2un31 X, A+ 2un33 e

1 1. 1 .
+ 5((z+ 2 — )iy + 5 (+ 4+ 2m)tiy + S G+ A + 2y ) na

1 )
+§@M+%M+Mh—@u+Mm+mWﬁm

1 } 1 . 29
+ 4 (1 + myeris + i+ mnsiis (29)

we obtain

Ty = Gl + 2unn) 222 4 2y, 28
= (A _— —_—
32 1 U122 X, M“n21 e

1 1 . . 1 .
+ 5((H 2 — iy + 5 2m iy + S G+ 4 —|—2m)173)n4

1 .
+§@M+MM+Mh—Qu+Mm+MMQm

1 . 1 .
+1@M+M%%+ZQM+M%% (30)

See 13 about induction process of Tn.

dus

R X ous
T3 = (A +2 — 49 —
31 = (Al + Mﬂu)aXi‘F /umaX2

+ %(/1+2M+2m —mnz + %(i+4ﬂ+2m)77'3

+ %(i+4u+2m — n)n

+ %(2,% +2(u+ml — Qu+nmny + 2W73) 15
+£@M+M%%+i@ﬂ+@%% €Y

T13 can be obtained from formula (31) for T by substituting elements as follows:

duz /90X, — du1/0Xs, dus/0Xy — duy/dXo, Nale —> Nel4, Nela —> Nalle

Page 7 of 20
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and retaining the elements within the parentheses as these are unaffected by the inter-
change in the formula of f"lg.
Tu is expressible as

A N 8Lt1 au1
Ty = (Al 2 — 42 —
12 = (A + 2un2) X, + 2un2s3 e

1 . 1 . .
+ 5(/14‘2/1,4-2}’1’1 —mn3 + E(/L+4,U,+2m)7]1

1 .
+ E(i+4,u+2m — My

1 .
+ 5 (204 200+ )l = @u - myns + 2m )i

1 o1 .
+ g Gu+mnsiia + o (2u + mnas (32)

from which TA21 can be obtained by changing elements 0du;/0X; — duy/0Xy,
du1/0X3 — dug/0Xs3, N51a —> Nalls, Naljs — ns14, while retaining the elements in the
parentheses as these are unaffected by the index interchanges.

Propagation velocity of elastic wave to the direction of static uniaxial stress
The infinitesimal displacement of an elastic wave u; is expressed as

ui =Aexpi(wt—kXj) 33)

where A is the amplitude, @ the angular frequency, k the wave number, and i the imagi-
nary unit.

The equation of motion for an elastic wave is written as

Pu; 0Ty, 0T 0X
00 2z _ o _ io B (34)
ot 0dgy 0Xg Oday

The various expansions of formula (34) are given as (A) to (E) as bellow:

(A)  For longitudinal wave

82u1 afm 0Xp _ %11 0Xg j—'lz 0Xg j—'lg 0Xg

P98 = 0Xg day | 0Xp dai | 9Xp day | 90Xy das (33)
dU;/0a; = 0, (i # j) The expansion of the above formula (35) is

32141 3’?111 3111 3’%12 3U2 8%13 3”3

—=— 1+ — |+ — 1+ — |+ — |1+ — 36
P52 T ax < dar > X, daz ) T oxs das (36)

up =A expi(wt —kX1), up=u3=0 nr=n3=n=15="16=0

Accordingly,
Pu_ gy i(Hz (4200 + (3 + 80 + 4m) ) 37
ey = ( m)aX1 u+ (4 1 2+ 8u +4m)m |m (37
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From the expressions for 9%u1/9t% 8/9X1, and 1j1 of the above formula (37),
32141 / 37’[1
ot2 X1

and hence

= (0/k)?* =V} (38)

oV = (1+ 771)(/1 +2u+ (A+200L + (BA+8u + 4m)n1)
T11 )
xA+2M+?(z+2u+z+2e+3ﬂ+8u+4m—2u(i+2e))
T11
=i+ 2+ o (51 100 + 26 + dm — 20(4 + 213)) (39)

where the term quadratic in strain, n? is neglected, and we have used

oth _Tu  m _m

771 = = ’
day E nmoom

=—v (40)

where v is Poisson’s ratio, and E is Young’s modulus
(B)  For transverse wave

82M2 Bul 3T21 3U2 3%22 3U3 3T23
g _ (g fy i (g 2202 g 0 002 41
AP < +8a1>8X1+< +8a2>8X2+ e ) o @1

uy =Aexpi(wt —kXy), ur=u3=0, 1ng#0
the others are 0,

al;
3(11‘

—0,i #)
then

82142
po— 5 = (L+n) (A1 + 2un)

ot
1 32142
+ E(ZM +2(u+m) — Q2u + n)nz + 2!”]2))W (42)
1
82u2 82M2 2 2
W/TXIZ = (w/k)* =V}, (43)
2 ) 1
poVip =1+ m)(u + (A+p+m)y +2un11 + punz — 5(2M + n)ns)
T11 n
=/L—i-?(M—I—Z—l—u+m—|—2u—v(2}v+2,u+2m+u—M—5))
T
=M+%(Z+4u+m—v<2i+2u+2m—g)) (44)

where the term of 57 is also neglected in a similar way to formula (39).
(C)  For transverse wave

82u1 3U1 3%11 3U2 3%12 3U3 3%13
=14+ = | 1+ = ) =+ (1= ) ===
Py ( toaa ) T\ s ) o T U T s ) o

uy =Aexpi(wt —kX3), up=u3=20 (45)



Takahashi and Motegi. SpringerPlus (2015)4:325

2
g ) (241 + 20m + e+ et = (w2 s + )8”1
i ] i — n our
Lo 312 n 1 2 e RV 1 M 5 N3+ Ui 9Xs
(46)
\ n
poVa = 1+ m)(u + A+ +mi + un + 2ung — (M + 5)773)
T
:M+%(l+u+m—v(2i+4u+2m—g)) @7)
(D)  For longitudinal wave
82u2 . (1 3U1) 3%21 (1 31,[2) 3%22 (1 3U3) 8’%33
P = d9a, ) 9x, day ) 09X, das ) 9Xs (48)
uy = A exp i(wt — kX5), ui1=u3=0
9%y 9%u
P02 — (14 1p2) (;L F2u+ (4200 + 34+ 8 + 4m)n2) e (49)
ot ax3
T
poV2 = z+2u+%(/sz—u(/1+2u+2z+4e+3z+8u+4m))
T
=2+2,u—|—%(i—|—2£—v(6)~+10M+4E+4m)) (50)
(E)For transverse wave
32143 81,[1 8%31 81,[2 8%32 31,[3 8%33
=14+ )+ 1+ — | ==+ (1+ =) ==
PYs) < dar ) X1 < dar ) 9o das ) 8X; (51)
us =Aexpi(wt —kX3), uy=uy=0
8%us n 92us
po—— =1+ nz)(ﬂJl + 2un2 + p 4 (e +m)h — (u + f)m + M’?S) 7
at 2 dX2
(52)
\ n
poVis = 1+ nz)(u + A+ pn+mih — (M + §>"1 +2une + uns)
Tn n
=,U«+?()»+,u+m—,u— > —V(M+2/1+2u+2m+2u+u))
T
=u+%(z+m—g—v(2z+6u+2m)> (53)

Measurement of the propagation velocity of elastic waves and the third-order
elastic constants
Figure 1 gives a diagram of the axial cross-section through a specimen for tensile testing.
In its fabrication, we had to take special care in mixing the raw materials, melting, casting,
annealing, and precision working to fix the final form. As stress in the gripping regions is
complicated, and should be eliminated, two specimens with identical grip sizes but differ-
ent gauge lengths were prepared (Takahashi and Motegi 1987).

A transducer was attached at the face of the long axis of the specimen fixed with a
chuck with the lead wire. The transducer, a 2—5 MHz PZT, was used for both longitudinal

Page 10 of 20
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A strain gauge

A I )
| Y
A v

strain gauge

L : Longitudinal wave transducer
S: transverse wave transducer

Figure 1 Specimen.

and transverse waves in our experiment. The adhesion conditions between transducer
and specimen produced an influence on the accuracy of measurements. The room tem-
perature was kept constant during the measurement. In the above formulas (A)—(E) in
the Sect. (4.3), the propagation velocity of elastic waves depends on factor 7T7;/E and the
second or the third-order elastic modulus.

I
Vii=Vol1+ % g (54)
where ;; is the strain dependency coefficient. Thus, for example

2 2 T11\° 2 (4}
Vll = VO 1+ 6(11? ~ VO 1+ 20[11? (55)

Without load, Vo2 = (A +2w)/po. If o171 is written as in formula (56), then using V7 from
formula (39),

on (54 + 10p + 2 + 4m — 20 (4 + 20)) (56)

T 200+ 2u)
Similarly ayy is written as in formula (57). Then letting i = j = 2 and using V53 as in for-
mula (50), we have

(A+20 —v(64+ 10 + 4L€ + 4m)) (57)

1
oy = —————
2720+ 2u)

The values of o171 and a2y can be obtained from measuring Vj;, Vy and strain in the for-
mula (54). The value of a;; is necessary to obtain the third-order elastic constants. From
the obtained a1, @2, @23, and Lame’s constants 4, 4, and Poisson’s ratio v, Murnaghan’s
third order elastic constants are given as:

€= Qai — 5 +21)/2(1 — v) — 2m — vA)/(1 — 2v) (58)

m = ((an — a2)/2(1 +v) — 1) G+ 2u) — % (59)



Takahashi and Motegi. SpringerPlus (2015)4:325 Page 12 of 20

n=2A+m—2v(A+3u+m)— 2uas3) (60)

Engineering application of the third order elastic constants
When the third-order elastic constants are a priori obtained for the structural materials,
the stress situation in various sites in the material can be estimated by measuring the elas-
tic wave propagation times. These applications are given in both Japanese and USA patents
(Takahashi 2007, 2012).

Figure 2 shows the stress measurement for structural object under an applied load of
T11 using an elastic wave. We denoted the width of the non-loaded object by W'.

The propagation time ¢ is defined by the following,

WA —-vInu/E)
Vo(1 + a22T11/E)

(61)

where V) is the propagation velocity of the elastic wave in the non-loaded object and o2
the strain dependency coeflicient.
Formula (61) is rearranged to give

E (At

Ty =-
axp +v\i

), At=t—1 (62)
where ) is propagation time in the non-loaded object and A¢/f is the change ratio in
propagation time with ¢y = W /Vj.

If we know «ayy, E, and v, the value of T1; can be obtained through measuring At/ty
using formula (62).

Figure 3 shows the relationship between the change ratio in propagation time with
stress for the carbon steel samples S20C and S30C.

Table 1 shows the chemical composition for both S20C and S30C samples of which
were used in the stress experiment.

(Wide band) Counter
Pulser Amplifier Comparator (100MHz)
B e NN SE—— —
T1l
| —
Gate
(Echo select)
? W: Oscilloscope
width
Transducer
Figure 2 Schematic diagram of stress measurement system.
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Figure 3 Change ratio in propagation time vs stresses.
Table 1 Chemical composition of $20C and S30C specimens (wt%)
Sample C Si Mn
S20C 022 0.29 0.52
S30C 032 0.31 0.81

Discussion

The coordinates used for describing an isotropic solid before deformation, the large non-
linear displacement, and the infinitesimal displacement of the elastic wave have been
clearly defined using orthogonal Cartesian coordinates. The expressions for stress and
strain as presented in Egs. (6) and (21) are polynomial and the strain tensor is symmetric,
so their development becomes comparatively easy. The theory reported by Hughes and
Kelly (1953) for the measurement of the third-order elastic constants of practical materi-
als is difficult because of its unique treatment of the strain and the use of special coordi-
nate functions as well as of the bulk modulus to obtain the third-order elastic constants.
Our method using the tensile testing machine is easy to apply in the measurement of the
parameters necessary for the determination of these elastic constants. Murnaghans third-
order elastic constants ¢, m, n can be obtained from their changes with time. We dem-
onstrated that they are very useful for the evaluation of stress in structural materials and
in the identification of materials. The density of the material is not required in obtaining
these changes and hence the method is of great benefit in practical applications. In estab-
lishing the equation of motion of elastic wave, the infinitesimal strain, stress, and Jacobian
are found to be the main elements along with the load stress. The carbon content and the
stress applied to the carbon steel are varied systematically in accordance with the rela-
tion of frequency ratio with stress (Takahashi et al. 1978) and also from the relation of
stress with the time rate of change of the longitudinal and transverse waves (Takahashi
and Motegi 1987). These provide the fundamental data for stress measurements and are
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essential for the identification of materials. In stress measurements of actual structures, it
is necessary to collect quantitative data under various conditions as laboratory conditions
are hard to establish.

Conclusion
The change of propagation velocity of elastic wave due to the static stress cannot be
expressed essentially by the infinitesimal elastic theory. The second and the third-order
elastic moduli and additional elastic strains contribute to the change in propagation veloc-
ity. The analysis of the applied stress, strain, infinitesimal stress of elastic wave and its
strain related to an isotropic elastic body were performed using the theory of Murnaghan
combined with the Lagrangian description. The formulas are lengthy, but the contents is
simple. Our analytical procedure is different to that of Hughes and Kelly (1953), however
the results obtained were equivalent in regard to the equations giving the propagation
velocity of an elastic wave.

Finally this paper demonstrated that the third-order elastic constants for engineering

materials were useful in estimating the unknown stresses of structural materials.

Nomenclature

ai, az, a3 coordinate of the non-deformed state

X1, Xo, X3 coordinate of the statically and finitely deformed state

x1, X2, X3 coordinate of the state where dynamic and infinitesimal deformations are
superposed on the finitely deformed state.

U, U,, U3 coordinated for finite displacement

u1, Uy, u3  coordinates for infinitesimal displacement

nij static strain coefficients in the finitely deformed state

1ij infinitesimal strain coefficients of the elastic wave

nij coefficients for total strain superposed by the infinitesimal strain of 7);; on the
static strain

dij Kronecker’s delta function

I, I, I3 strain invariants

00 density in the non-deformed state

Pod free energy per unit volume

Jij Jacobian matrix in the finitely deformed state

f ] Jacobian matrix in the infinitesimal deformed state, and the total Jacobian
matrix

l,mn Murnahan’s third-order elastic constants

A Lamé constants

E Young’s modulus

Tj stress in the finitely deformed state

YA"ij stress in the infinitesimal deformed state

Tij total stress superposed by the f"ij on the stress Tj;

, K angular frequency and wave number

v Poisson’s ratio

A amplitude

Vij elastic wave velocity

o, greek letter subscripts indicate summation over all spacial indices 1, 2 and 3,

for example 014 = 111 + 12 + 113
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Appendix A
The following presents a calculation of 717 using formula (6) of the main text

it = ( (a1 + 22 (50 4+ 222 ) ) (2
N1 = ol day B1 day X5 (63)

. a1 \2 ol oly ol \ olUs ol aly\ .
N1 = (14—7) n + (14—7)777124- (14—7)7 13+7<1+ 7)7121

3&11 3(11 adl 3&11 8a1 7 3611 adl
ol ol . ol olUs .
aﬂl 3611 122 aal 3&11 123
ols aly\ . dls ol . ols ols .
+ 7(1*‘ 7)7731 — N3+ 133 (64)
3a1 3611 3&11 8611 aal 3&11

Al AU, duy. duy  duy

We then neglect higher-order terms of da 90 and set e = Mbays T o9 =6

duy y duz _ o dup | duz _
axs Tax, =M5ax, T ax, =4

With the change in subscripts of 17 given as follows,
ni1 = ML M2 —> 12,133 —> 143,132 —> 14 131 — 15 121 — N6
we obtain
j N(1+2au1),+au2.+au3. 65
111 a1 m 9a N6 9a, U (65)
Also changing the subscripts as prescribed by 1—2,2—3,3—1 and
4 — 5,5 — 6, 6 = 4 produces the other coefficients of infinitesimal strain,

ally als . dlh

~ o~ (1 27). alUs auy .
n22 ( + o n2 + oy N4 + s N6 (66)

R aus\ . dlh ., ol .
N33 & (1 + 2*)773 + N5+ 4 (67)
das das das

s = = ( (602 + 22 ) (555 4 248 ) ) (e, Op
18 =9 \\"2 7 94, J\°P 7 as ) ) \oxs T ax, 68)

In similar manner with 713, replacing « and g with 1, 2, 3, and summing up each term, we

find on neglecting higher orders involving the derivative terms,

N 8L12.+8L13, 18L[1'_|_18u1,+1 1+8L[2+8u3 )
18 = 5 T P 2945 T 204, T 2 bay "o ) ()

ols . oy . 10U, . 10U, . 1 s JdlUy\ .
Sy 4 Sy (14 22 S

da1 T das 2 da, 2 das 2 das | da (70)

f31
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R _3U1,+3U2_+13U3,+13UB_+1(1+3U1+3U2)_

2= day n da1 Ty day A day G dar  daz " (71)
We then use the following expressions

oy ol ols ols ols ol 5

da; =1 day =12, das =13, day = N4 da =15, a1 =Tl6 (72)
and the following relation

al, _ alg

dag  dag (73)

which can be applied in the case of an isotropic object, to simplify the expression for
each of the infinitesimal strains.

Appendix B
0 ,
% =+ 2011 4 (L + 2m)I} — 2mly — 2(ju + mI) T
22
+ 2n22(p + ml) + n(n3znin — n31m13) (74)
3(pod)
ai;(;f = M + LI} = 2mly + 2n33( + mly) + n(niinze — N12m21) (75)
3(pod)
Po9) _ 2(u + ml)nsz + n(N12m31 — N11732) (76)
0123
9(po)
317(;? = 2(u + ml1)nms + n(n23n12 — n22013) (77)
9(pod)
o 2(p 4 mly)na1 + n(n31123 — 133121) (78)

Derivatives of the free energy with respect to 933, 713, and n2; are equivalent to those
above because of the symmetry n;; = n;;
Given the definition of the invariants I 1and jz in terms of the infinitesimal strain,

Iy = f11 + fizz + 7133 (79
and
Iy = (I — m)i + (I — m22)fo + (L — 1337133
— 1327123 — M23732 — N131131 — M31713 — N21712 — N12721

= L1y — nuiin — a2z — N337i33 — N32M23
— 1230132 — M13731 — N31113 — M21712 — N127)21 (80)

then their partial derivatives follow directly;
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o onh 0l __ _
an1 =1 danaz 0, amy — 122 + 33 0'123 = 732
dl3

_ _ oy _ _
ana 1227133 — N23732  Gp,- = M12731 — 111732

The expression of the first invariant can be used to obtain

al:
2 —h—m (81)
ann

Appendix C

From the definition of the Jacobian matrix, we have the following expressions:

j . 3141 (142 8L11 au1 4 22 3U2 3141 4 3U3 8u1
1= 8a1 - 3(11 8X1 8a1 8)(2 aal 8X3 (82)
A 3141 8U1 3141 3U2 3141 8U3 8Lt1

= — = 1 — —
e P PR ) i < tom ) 0Xy | day 9Xs (83)
A 8141 3U1 8u1 8U2 8u1 8U3 8u1

= — = 1 - | —
J13 das 8613 3X1 t oas das 8X2 + ( + das ) 0X3 (84)

Similar expression for jzl, jzg, and the others can be obtained from the formula,
a P 4 Ot a l
- _(5106 + da e

Appendix D
We develop here an approximation for the partial derivative of $ with respect to static

strain 111 to illustrate our procedure:

o - - S . o
— =\ + 01} — 2mly + 211 ( + my) + n(ija2iss

N1
— fi3fizn) — A1 — €I} + 2mly — 211 (i + mly) — n(n2n33 — 123032)
(85)

= 4+ ey — L)y + L) — 2mly + 2uing + 2m(Gindy — niih)

+ (227133 — N22M33 — 723732 + N23732) (86)
= (A4 €L + L)L — 2mly 4 2ufny + 2m(Guh + ndy + d11h) 87)

+ (922133 + N22733 + N1221133 — 7123132 — 1237132 — 723732)
~ (A +2¢I)L

—2m(Iily — mu1finn — a2z — N33033 — N32iias

— 1237132 — M137131 — N31713 — N21712 — N127121)

+2un11 + 2mlin1 + 2m771121 + n(n33n22 + N22133

— 1321723 — 123732) (88)

= (A4 200 — 2mL + 2mmi)] + Qmnin + 2u + 2mL) i
+ (2mnao + nn33) N2 + (2mnsz + nn22)i3z + (2m — 1) (932123
+ 1321123 + N230132) + 2m (21712 + M2ij21 + Mi3h31 + N31713) (89)
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= (A4 2Ll 4 2mn11 + 2mnn
+ 2011 + (A + 2(€ — m)Iy 4 2mn11 + 2mnan + n33) 12
+ (2 +2( — m) + 2mn11 + 2mn33 + nn2)fis3
+ 2m(n12021 + M217012 + M3031 + 131713)
— (2m — n) (123132 + N32723) ©0)

= (A +2u+ 2L +4dmn)in + A+ 28 — 2m — n)ns3)iae + (A + 224
— (2m — mN2)N33 + 2m — n)(n23732 + N321)23)
+ 2m(n13731 + 31713 + N12f21 + N21712) 91)

Appendix E
We develop here an approximation for the stress in the infinitesimal deformed state using

jﬂn to illustrate our procedure:

A I
anal 3"&1
__8u1

T11 =1

= 7()~11 + 017 — 2mly + 211 (u + mly) + n(n2n33 — 123732))
2

8u1
+ %(2(M + ml)niz + n(M32m13 — N33M12))

8u1
+ %(2@ + ml)ms + n(n23ni2 — 122M13))

ol R
+ <1 + 8al> (A4 2u + 285 + 4mn11)n1 + (A + 2¢4L
1
— (2m — n)n33)M22
+ (A+ 28 — 2m — n)n22)N33 + 2m — 1) (n23032 — N32723)

+ 2m(n13131 + 31713 + N12f21 + N21712))
ol R n N
+ g(@m — mn12033 + 2mn12(f11 + Haz)
2

+ 2u + 2mly — nn33)i12 + 1132113 — N13732))
ol R n o
+ g((ZWl — n)n13iian + 2mn13 (33 + f11)
3

+ Qu + 2mly — nna2)iz + n(n23ii2 + 112123)) (92)

3M1

au1
~ — (A + 2um1) + 2unn—
Bal 8a2

+ 2/“713% + %((/1 + 2w + A(22 + 1733))
das day
+ (A +2u + 280 + 4mni)nn + (4 + 280) (22 + 133)
+ (2m — n)(23132 + N32723 — N33722 — N227133)
+ 2m(n21112 + N12M21 + M13731 + 131713)
ou

420 2, 40, 0
2 9 n12 2 s n13 93)
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Using the formulas for du; /94, etc in Appendix C, we then obtain

A N 3[,[1 8M1 3”2 3M1 3[,[3 E)ul
T =~ (4h + 2un11)(<1 + 86”) 5a +— 24, 3%, +— 3a, 3X3>
31,[1 8141 (1 3U2> 8141 3U3 8u1>

8 8X1 3&2 8X2 86!2 3X3

3U1 8u1 + 3U2 3141 (1 3U3> 3141)
d0as X, das 3X2 das ) 0X3

+ 2unu<

+ 2!“713(

ally - R A R
+ g(ﬂl +2ui1) + (A +2eh)L + 2 + dmni1) 011
1
+ (2m — n) (32023 + N23732 — N337)22 — 1M227133)
ol ol
+ 2m(n31713 + M3i31 + M2f21 + n2ai12) + 24— dan 2 + ZMTUB (94)

8u1 u ui

~ Gl + 2um) L 49,91 g
1 U1 X, aX MUN13 X3

3611
+ (2m — n)(N32023 + 123732 — N337)22 — 1M221133)

ol \ » olh N
+ )»+2£Il+ig L+ | 20— +2pu 4+ 4mni1 | n11
1

oy . ol .
+ 2m(n31713 + 331 + ni2i21 + n21912) + 2#(77712 + 7713)

da das )

~ (I +2 ) +2 ou +2 ou +x+2u+ﬂaul
1 Mn11 ManaX l“?lSaX 1 ﬂl

ol \ . ally \ . alls
1+220 n + 1+2°22 n2 + 1+2°22 73
day day das
n ols n il \ . n all; n als )\ . n all, n auy \ .
3612 3(13 4 3(13 aal T aﬂl 8612 o
ol aur\ . il . als
+ 14— ) +dmn 1+2— )m+——n6+ —1s
day daq daq da;

1. 1. . .
+ @2m —n) (7732774 + M23-Ma — N3312 — 7722773>

2 2
ol 1 UL 1
+ 22—~ + 2 —— = 1js

1 1 1 1
2m =1 S 51 5
+ <7731 N5 +M13515 + N125M6 + N21 576 day 2 das 2

2 2 2 2

(96)

ou 8u1
T~ (Ol +2 2 2
11~ (A 4 2um)n + MU128X + IU7133X3

+ (A 42051 + (L +2n2)152 + (1 + 213) 153 + natja + 1515 + nels)

ol ol
+ (2¢1 + An) (g1 + 172 + 1j3) + 21 <(1 + 3n)n1 + da 776 + 837)5)
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+ 4dmmin + 2m — n) (2(n23 + 132)14 — N372 — 712773)
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1 1 ol
oml L .1 . aly oy .
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Ti ~ (A + 2un + A(1 4 2n1) + 200 + Iy
+2u(1 + 3n1) + 4mn)n1 + (AL + 2m2) + Ay + 285 — Cm — m)n3)1

. (2m —n) .
+ (A1 +2n3) + Any + 2001 — 2m — m)n)ns + (lm + 2?74) N4

al3 ol
+ /»775+2M87+mﬂ5+ﬂi 5

P
ine+ 20282 e+ 01 280 i 4o OUL | s 241 98
oL ath duy duy
N6 Ma N6 Ma N6 + 21 ’”23)(2 '7133)(3 (98)

Tii = A+ 21+ O+ 200 + B4+ 81 + 4m)n)1
+ A+ (A+200L + iny — (2 +2m — m)n3)n2

\ . 1 .
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