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Abstract 

Synaptic abnormalities are a cardinal feature of Alzheimer’s disease (AD) that are known to arise as the disease pro-
gresses. A growing body of evidence suggests that pathological alterations to neuronal circuits and synapses may 
provide a mechanistic link between amyloid β (Aβ) and tau pathology and thus may serve as an obligatory relay of 
the cognitive impairment in AD. Brain-derived neurotrophic factors (BDNFs) play an important role in maintaining 
synaptic plasticity in learning and memory. Considering AD as a synaptic disorder, BDNF has attracted increasing 
attention as a potential diagnostic biomarker and a therapeutical molecule for AD. Although depletion of BDNF has 
been linked with Aβ accumulation, tau phosphorylation, neuroinflammation and neuronal apoptosis, the exact mech-
anisms underlying the effect of impaired BDNF signaling on AD are still unknown. Here, we present an overview of 
how BDNF genomic structure is connected to factors that regulate BDNF signaling. We then discuss the role of BDNF 
in AD and the potential of BDNF-targeting therapeutics for AD.
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Introduction
Alzheimer’s disease (AD) is the most common neuro-
degenerative disorder in the elderly [1]. AD affects 11% 
of the population over the age of 65 and nearly half of 
people aged 85  years and older. However, there is no 
definitive early diagnostic marker and no effective pre-
vention or disease-modifying treatment for AD [2–4]. 
As reported by the AD drug development pipeline in 
2020, a total of 121 agents are undergoing clinical tri-
als [5]. Most candidate agents (80.1%) are disease-mod-
ifying therapies targeting disease onset or progression, 
9.9% are symptomatic cognitive enhancers, and 10.0% 

are symptomatic agents addressing neuropsychiatric and 
behavioral changes. On June 7, 2021, the U.S. Food and 
Drug Administration (FDA) approved aducanumab as a 
disease-modifying therapy for AD under its “accelerated 
approval” pathway, meaning aducanumab demonstrated 
an effect on a surrogate endpoint that predicts it will be 
clinically beneficial [6]. This decision is surprising and 
controversial, especially since the surrogate endpoint 
used was the reduction of amyloid β (Aβ) rather than 
clinical efficacy. Moreover, the FDA’s advisory commit-
tee had previously recommended against aducanumab’s 
approval due to the insufficient evidence to support the 
drug to improve cognitive decline during the phase 3 trial 
[7, 8]. This decision to approve aducanumab as a treat-
ment for AD is particularly alarming as it does not pro-
vide any guidance on which patients would likely benefit. 
There is no definitive evidence showing that removing 
amyloid deposits will be therapeutically beneficial for all 
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individuals diagnosed with AD, especially for patients at 
more advanced stages of the disease process. Further-
more, many previous drugs targeting amyloid deposits 
have failed in later-stage clinical testing due to poor effi-
cacy. As a result, there has been a growing emphasis over 
the past 5  years to pursue intervention strategies that 
target other damaging features of AD, including those 
that might mediate the downstream consequences of Aβ 
accumulation should plaque removal fail to halt disease 
progression. Current examples include candidate thera-
pies that promote neurogenesis and the protection of 
neurons and synapses, as well as interventions that target 
inflammatory, vascular, or epigenetic mediators of AD 
pathology [5].

AD pathology is characterized by an accumulation of 
two aggregated proteins in the brain, Aβ and tau, lead-
ing to the formation of extracellular neuritic plaques and 
intracellular neurofibrillary tangles (NFTs), respectively 
[9]. Following Aβ and tau pathology, AD patients fur-
ther exhibit synaptic abnormalities, neuronal loss, cog-
nitive decline and memory impairments as the disease 
progresses [10–13]. Aβ is the central component of neu-
ritic plaques and is a proteolytic product of the amyloid 
β precursor protein (APP) [14]. NFTs are formed from 
the hyperphosphorylated microtubule-associated protein 
tau. Aβ- and tau-induced neuroinflammation and neu-
ronal apoptosis contribute to AD pathogenesis [15, 16]. 
AD is a complex and multifactorial disorder. Different 
hypotheses have been proposed to explain the pathologic 
process of AD, including the cholinergic hypothesis [17], 
the tau hypothesis [18, 19], the glutamate dysfunction 
hypothesis [20], the amyloid cascade hypothesis [21, 22], 
the inflammatory hypothesis [23], and the mitochondrial 
cascade hypothesis [24]. However, these hypotheses can 
only account for certain aspects of the disease, and the 
mechanism leading to AD pathogenesis remains elusive. 
As the cognitive impairment in AD is due to neurode-
generation, neurotrophic factors including brain-derived 
neurotrophic factor (BDNF) may slow the progression of 
neurodegeneration and serve as a promising strategy for 
AD intervention.

BDNF is a well-studied growth factor in the mamma-
lian brain. It plays a vital role in facilitating nerve growth 
and maturation through development stages and regu-
lating synaptic transmission and plasticity in adulthood 
[25, 26]. In the brain, BDNF is mainly synthesized in cell 
bodies of neurons and glial cells and then transported 
to presynaptic terminals and postsynaptic dendrites. 
The localization of BDNF and its receptor, tropomyo-
sin receptor kinase B (TrkB), to glutamate synapses 
regulates neurotransmitter release, ion channel activity, 
axonal pathfinding and neuronal excitability [27]. In the 
context of AD, BDNF depletion is associated with tau 

phosphorylation, Aβ accumulation, neuroinflammation 
and neuronal apoptosis [28]. Stimulation of BDNF leads 
to tau dephosphorylation through activation of TrkB and 
phosphatidylinositol 3-kinase (PI3K) signaling [29, 30]. 
Aβ disrupts BDNF signaling through dysregulation of the 
glutamatergic N-methyl-d-aspartate receptor (NMDAR)/
Ca2+/calpain signaling cascade [31]. Upregulation of 
BDNF by the extracellular regulated kinases/cyclic AMP 
response element-binding protein (ERK/CREB) signal-
ing pathway can ameliorate the Aβ-induced neuronal 
loss and dendritic atrophy [32]. Silencing BDNF anti-
sense RNA can significantly up-regulate BDNF, reduce 
Aβ-induced neurotoxicity, and enhance cell viability [33]. 
Growing evidence also suggests that the BDNF signaling 
plays a critical role in modulating the downstream con-
sequences of Aβ accumulation in AD. BDNF mediates 
the link between inflammation and neuroplasticity by 
regulating the release of neurotransmitters (such as glu-
tamate and gamma-aminobutyric acid) following nuclear 
factor-κB (NF-κB) activation [34, 35]. As the disease pro-
gresses, BDNF levels in the brain [36], blood [37] and 
cerebrospinal fluid (CSF) [38] of AD patients are reduced. 
In addition, higher serum levels of BDNF have been cor-
related with improved cognitive function in AD [39]. 
These findings have led to an increasing interest in BDNF 
as a potential biomarker for diagnosis of or as a therapy 
for AD. In the following, we will discuss the role of BDNF 
in AD and the pathways by which BDNF alleviates the 
progression of AD, highlighting the potential of BDNF-
targeting therapeutics for this devastating disease.

Overview of BDNF
BDNF gene structure, expression and function
BDNF has a complex gene structure and tissue-specific 
expression pattern. As shown in Fig.  1a, rodent BDNF 
genes consist of 9 exons and 9 individual functional pro-
moters [40, 41]. These promoters control the expression 
of BDNF variants encoding the same BDNF protein. This 
unique genomic structure allows various factors to regu-
late BDNF signaling in different ways. Furthermore, each 
BDNF isoform can be associated with a distinct set of 
functional outcomes [42]. Selective disruption of BDNF 
expression from Bdnf promoter I, II, IV or VI in mutant 
mice (Bdnf-e1, e2, e4 and e6 mice) is linked with differ-
ent BDNF-associated molecular and behavioral pheno-
types. Compared with wild-type mice, Bdnf-e1 and e2 
mutants show more aggressive behaviors accompanied 
by increased gene expressions of serotonin transporter 
5-HTT (Slc6a4) and 5-HT2A (Htr2a). On the other 
hand, Bdnf-e4 and e6 mutant mice are not aggressive and 
show  altered expression of the 5-HT receptor. Specifi-
cally, loss of BDNF from promoters IV and VI suppresses 
GABAergic neurotransmission, resulting in decreased 
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expression of genes involved in peptide and hormo-
nal signaling in the brain, including somatostatin (Sst), 
corticotropin-releasing factor-binding protein (Crhbp), 
cortistatin (Cort) and tachykinin (Tac1). Quantitative 
analysis of BDNF protein further showed that the indi-
vidual BDNF transcripts have a region-specific expres-
sion pattern in the hypothalamus, prefrontal cortex, 
and hippocampus [42]. For example, BDNF promoters I 
and II mainly contribute to the total BDNF levels in the 
adult hypothalamus, while promoters IV and VI con-
tribute more to BDNF levels in the prefrontal cortex and 
hippocampus.

Epigenetic changes in chromatin structure can also reg-
ulate the activity-dependent BDNF transcription. Spe-
cifically, neuronal activation is associated with increased 
production of BDNF and exon IV promoter activity (pro-
moter upstream of BDNF exon IV) in mice [43]. Moreo-
ver, the transcription of Bdnf from the exon IV promoter 
is enhanced in the brains of DNA methyltransferase 1 
null (Dnmt1)−/− mice at embryonic day 18. This altera-
tion may be associated with reduced CpG methylation 
within the Bdnf exon IV promoter or dissociation of the 
methyl-CpG-binding protein (MeCP2) and its corepres-
sors (e.g. MecP2-histone deacetylase-mSin3A complex) 
from the Bdnf exon IV promoter [44–46].

Previous studies have shown that the regulation of 
BDNF at the mRNA level may affect the brain function. 
Two Bdnf mRNA transcripts that facilitate different sub-
cellular localizations have been identified in the murine 
brain [47]. One transcript containing a short 3’ untrans-
lated region (3’ UTR) is localized in the soma of hip-
pocampal neurons, while the other transcript containing 
a long 3’ UTR is distributed in the dendrites. Inducing 

a mutation in the long 3’ UTR in mice leads to expres-
sion of a truncated version of the transcript and impairs 
the dendritic targeting of Bdnf mRNA, such that BDNF 
expression is shifted from dendrites to the soma. This 
results in deficits in the pruning of dendritic spines and 
selective impairment of long-term potentiation (LTP) 
at dendritic synapses [47]. In addition to the transcript 
species selectivity, BDNF mRNAs also display activity-
dependent dendritic localization in vitro, with transcripts 
I and IV selectively affecting proximal dendrites and 
transcripts II and VI selectively affecting distal dendrites. 
It has also been demonstrated that the dendritic targeting 
of short 3’ UTR can be induced by both depolarization 
and NT3, via binding to cytoplasmatic polyadenylation 
element-binding proteins (CPEB)-1, CPEB-2, embryonic 
lethal abnormal vision-like proteins (ELAV)-2 and ELAV-
4, while the inducible dendritic targeting of long 3’ UTR 
requires ELAV-1, ELAV-3, ELAV-4 and Fragile X mental 
retardation syndrome-related (FXR) proteins [48–50]. 
This suggests that specific BDNF variants may selec-
tively respond to different extracellular stimuli in order to 
modulate neuronal development and synaptic plasticity.

It is important to note that there are remarkable differ-
ences in the regulatory mechanisms of rodent and human 
BDNF genes. As shown in Fig. 1b, the human BDNF gene 
contains 11 exons and 9 promoters [51]. The expression 
of the human BDNF gene in particular brain regions is 
also highly regulated at the transcription level. For exam-
ple, it has been found that the amygdala has relatively 
high expression of BDNF transcripts containing exons I, 
IV and VI. On the other hand, the BDNF exon II tran-
script is relatively upregulated in the cerebellum, while 
higher expression of exon IXabcd transcripts is found in 

Fig. 1  Rodent and human BDNF gene structures. a Rodent Bdnf gene structure. b Human BDNF gene structure. Exons are shown as boxes and 
introns are shown as lines. In both structures, the same color indicates that human exons and rodent exons are homologous. The different exons 
(Vh and VIIIh) are shown as red box and pink box, respectively. In exon II, there are three transcript variants which are marked as A, B and C. In 
human BDNF exon IX, there are four different regions that are marked as a, b, c and d. The numbers above the introns and below the exons indicate 
their base pair sizes. The red arrows indicate the positions in which the transcription starts. ATG represents the sites of the translational start and TAG 
marks the location of stop codons
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the striatum, thalamus and globus pallidus. In humans, 
the promoters upstream of Exons I-VIII control regional 
and cell-type-specific expression, and the promoter 
upstream of Exon IX regulates activity-dependent BDNF 
expression. Exons Vh and VIIIh are human-specific 
and are not found in rodents. Exon Vh has an upstream 
sequence and a separate promoter, while exon VIIIh has 
no independent promoter to control its expression. Thus, 
various BDNF transcripts can be generated by using 
alternative promoters and splicing mechanisms, and 
some of these mechanisms differ substantially for rodent 
and human BDNF genes.

Transcription of noncoding natural antisense RNAs 
from the anti-BDNF gene to the BDNF gene locus 
showed that BDNF and anti-BDNF transcripts form 
dsRNA duplexes in the human brain [51]. This indicates 
that the anti-BDNF transcripts play a crucial role in regu-
lating BDNF expression. The possible roles of anti-BDNF 
may include regulating BDNF pre-mRNA splicing and 
inhibition of BDNF transcription or BDNF translation. 
The transcription of BDNF mRNA can also be regulated 
by Ca2+ influx because Ca2+ can initiate the binding 
of CREB and calcium-responsive transcription factor 
(CaRF) to the BDNF promoters [52]. Moreover, many 
other regulators such as basic helix-loop-helix B2 and 
NF-κB have been identified to bind to BDNF promoters 
[53, 54]. The multiple promoters in the BDNF gene medi-
ate complex transcription mechanisms. How the differ-
ent BDNF mRNA variants then respond to intracellular 
processes and extracellular environments will lead to the 
diversity of BDNF neuronal distribution and biological 
functions.

The full-length BDNF protein has 247 amino acids 
and is encoded by the BDNF gene on human chromo-
some11p13. As a secreted protein, BDNF is initially 
synthesized in the endoplasmic reticulum as a precur-
sor protein, called pre-pro-BDNF, which is cleaved into 
the pro-BDNF isoform (~ 32  kDa) when translocated to 
the Golgi apparatus. There are three fates of pro-BDNF: 
(1) intracellular cleavage by furin or convertases fol-
lowed by release of mature BDNF (mBDNF) (~ 14 kDa); 
(2) secretion as pro-BDNF and extracellular cleavage by 
metalloproteinases 2 (MMP2), MMP9 and plasmin; (3) 
secretion as pro-BDNF without modification [55–58]. 
The cleavage conversion of pro-BDNF is controlled 
by  tissue plasminogen activator (tPA) [59]. BDNF func-
tions are subsequently initiated by binding to one of its 
receptors, such as TrkB and p75 neurotrophin receptor 
(p75NTR) [60]. Notably, the balance of pro-BDNF and 
mBDNF is important for synaptic plasticity. Pro-BDNF 
binds specifically to p75NTR to regulate cell death and 
long-term depression (LTD) [26, 61–63], while mBDNF 
binds more readily to TrkB to promote cell survival and 

LTP [64, 65]. As a co-receptor, sortilin is also involved 
in pro-BDNF-induced apoptosis [66, 67]. The binding 
region of pro-BDNF-sortilin interaction is located within 
amino acid residues 71–100 [68]. Therefore, the distinct 
binding affinities of the BDNF isoforms to various recep-
tors are closely correlated with their action on synaptic 
plasticity. As a portion of pro-BDNF, BDNF pro-peptide 
is generated through N-terminal cleavage of pro-BDNF. 
The BDNF pro-peptide is localized at presynaptic ter-
mini to enhance hippocampal LTD [26, 69] and regulate 
dendritic spine morphology [70]. Therefore, the mBDNF, 
pro-BDNF and BDNF pro-peptide all modulate synaptic 
functions in the brain.

BDNF serves many important functions in the adult 
brain and has been shown to play a critical role in sup-
porting neuronal survival and differentiation [71], 
enhancing synaptic transmission [72] and synaptic 
plasticity [73], and promoting memory processes [71, 
74]. The neurotrophic functions of BDNF are primar-
ily mediated by the TrkB receptor [75]. BDNF and TrkB 
are present at both presynaptic and postsynaptic sites 
in neurons. Presynaptic BDNF promotes neurotrans-
mitter release (e.g. glutamate and GABA) via the TrkB–
MAP kinase–synapsin signaling cascade [76]. It has been 
reported that myosin VI (Myo6) and Myo6-binding pro-
tein (GIPC1) can form a complex to engage TrkB, which 
may be necessary for the BDNF–TrkB-mediated presyn-
aptic function and synaptic plasticity [75]. Postsynaptic 
BDNF signaling contributes to enhancing the function 
of various ion channels, such as NMDAR, as well as cal-
cium, sodium and potassium channels [77, 78]. Once 
activated, the synaptic effects of BDNF signaling occur 
within seconds [79]. Maintaining the functional regula-
tion of the BDNF/TrkB system is vital to healthy ageing, 
as the loss of BDNF signaling in the adult brain has been 
associated with impaired learning and memory [80], 
declining cognition [81], and abnormal mood-related 
behavior [82].

Distribution of BDNF
BDNF mRNA is distributed throughout the central nerv-
ous system (CNS), including the cortical, hippocam-
pal, nigral, amygdala and thalamic regions [83–85]. The 
highest level of BDNF mRNA is found in the hippocam-
pus [86]. Hippocampal BDNF expression is primarily 
localized to the CA2, the medial portion of CA1, and 
the nuclei of granule cells in the dentate gyrus and the 
pyramidal cell layer [87]. In addition, BDNF is highly pro-
duced and expressed in the entorhinal cortex, a key brain 
area for learning and memory and a major relay between 
the cortex and hippocampus. It has been found that 
BDNF produced in the entorhinal cortex is actively trans-
ported to the hippocampus [88]. The mRNA expression 
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of BDNF has also been detected in the granule cell layer 
of the cerebellum [86]. Notably, although BDNF mRNA 
expression is lacking in certain regions of the brain (e.g., 
the adult rodent striatum), substantial amounts of BDNF 
protein can be found in these regions because axons can 
anterogradely transport BDNF mRNA to the terminals of 
BDNF-expressing neurons [85, 86]. Thus, factors regu-
lating the neuronal circuitry between brain regions that 
contain BDNF-producing neurons (i.e., the entorhinal 
cortex) and regions that lack BDNF-producing neurons 
(i.e., the hippocampus) play a critical role in govern-
ing BDNF trafficking in the brain. Another important 
source of BDNF in the body is platelet cells [89]. Periph-
eral BDNF is stored in blood platelets and synthesized 
by vascular cells, epithelial cells, muscle cells, leuko-
cytes and macrophages [90, 91]. Pro-BDNF was found in 
human blood samples with a molar ratio (of pro-BDNF 
to BDNF) of 1:5 in platelets and 10:1 in plasma. Platelet 
activation was also found to selectively release BDNF, 
but not pro-BDNF [92]. Recently, BDNF was also found 
to promote platelet activation, aggregation and secre-
tion by activating a truncated form of the TrkB receptor 
[93]. However, assessments of BDNF levels in platelets 
have not been fully examined in AD patients. Questions 
about the role of pro-BDNF in platelet function and how 
the platelet ratio of pro-BDNF/BDNF related to neuronal 
levels remain unanswered.

Methods of BDNF detection
Several commonly used techniques and novel approaches 
have been reported for detecting BDNF levels [94]. BDNF 
gene expression is commonly measured by reverse-tran-
scription polymerase chain reaction (RT-PCR) or quanti-
tative real-time PCR (qPCR) [95]. While this technique is 
very sensitive, different cell types have unique transcrip-
tomes and thus may possess distinct regulatory mecha-
nisms. More recently, single-cell transcriptomic analysis 
has attracted great interest as a means to provide more 
accurate information on how individual cells respond 
to signals or when they acquire abnormal phenotypes 
[96–98]. In previous research, the expression profile of 
BDNF/TrkB has been studied in various cell types and 
diseases by combining single-cell transcriptome analysis 
with overexpression, knockout, or knockdown of TrkB 
[99–102]. These studies clarified whether the protective 
mechanism of BDNF on neuronal survival or neurogen-
esis is mediated via TrkB; and the targets and effects of 
BDNF anterogradely transported from the cortex to 
other regions of the brain (such as striatum). Recently, 
a qRT-PCR protocol with HEX (hexachloro-fluorescein) 
and FAM (6-carboxyfluorescein) to detect the prod-
ucts of Val66- and Met66-coding BDNF allele has been 

developed for detection of BDNF Val66Met polymor-
phism [103].

Levels of the BDNF protein in brain tissues, blood, CSF 
and saliva can also be detected by sandwich enzyme-
linked immunosorbent assay (ELISA) [104]. There are 
four different types of commercial ELISA kits available 
for BDNF [105], including (1) kits designed to recognize 
pro-BDNF or mBDNF selectively; (2) antibodies against 
the carboxy-terminal of mBDNF; (3) monoclonal anti-
bodies against mBDNF; and (4) monoclonal antibodies 
against recombinant mBDNF. The first class of ELISA 
kits are highly selective for each target, although the 
sensitivity to pro-BDNF in these kits is 0.5 ng/ml,  much 
lower than mBDNF (5–8  pg/ml). Thus, it is not easy to 
achieve accurate detection of pro-BDNF in body fluids 
using this method. The last three routinely used kits rec-
ognize both pro-BDNF and mBDNF. Given the divergent 
biological functions of pro-BDNF and mBDNF, highly 
sensitive ELISA kits must be developed to differentiate 
between the BDNF isoforms. Notably, Bockaj and col-
leagues recently demonstrated a fast and reliable method 
for point-of-care quantification of circulating BDNF lev-
els that could potentially function as a diagnostic tool 
[106]. Briefly, they developed a device (EndoChip) capa-
ble of detecting BDNF using only small amounts of blood 
collected through a finger prick. The device is a polymer-
based chip with nanopores and a wrinkled gold film (elec-
trode/sensing layer). An increase in BDNF concentration 
(0.1–2.0  ng/ml) causes remarkable differences in redox 
current. Alternatively, the levels of BDNF in brain tissues, 
cell lysates and media of cultures have been measured by 
immunoprecipitation/western blot analysis, which can 
clearly distinguish between pro-BDNF and mBDNF [107, 
108]. A reliable measurement of low levels of endogenous 
pro-BDNF can also be obtained by designing monoclonal 
antibodies specific for the pro-domain [109].

Techniques such as confocal microscopy are used to 
visualize the expression, secretion, and trafficking of 
BDNF. As a practical example, Sindbis viral infection of 
hippocampal neurons has previously been used to ena-
ble cultured neurons to selectively express constructs 
containing either valine BDNF (valBDNF) or methio-
nine BDNF (metBDNF), followed by GFP [110]. Visual-
izing valBDNF-GFP or metBDNF-GFP fluorescence via 
confocal microscopy could then be used to identify the 
effects of these single nucleotide polymorphisms (SNP) 
on the expression, distribution, intracellular traffick-
ing and activity-dependent secretion of BDNF in living 
neurons. While confocal microscopy provides excellent 
spatial resolution, it is not well suited for investigating 
real-time dynamic processes. As an alternative, lentivirus 
encoding BDNF-pHluorin, a reporter composed of full-
length (pro)BDNF and a pH-sensitive form of GFP, has 
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also been used to investigate dynamic biological events 
such as the secretion of BDNF in primary cortical neu-
rons [111, 112]. As a drawback, it is difficult to detect 
the reporter gene in intracellular vesicles because of 
the low pH in the lumen. Deacidification causes a rapid 
enhancement in fluorescence during exocytosis, which 
then decays because the cargo diffuses into the extracel-
lular medium [111]. To address this, the spatiotemporal 
dynamics of BDNF exocytosis can be monitored using 
total internal reflection fluorescence time-lapse micros-
copy. A Bdnf-Luciferase transgenic mouse model was 
also generated for high-throughput screening of candi-
date agents that  activate endogenous BDNF expression 
in cultured primary cortical neurons [113, 114]. Taken 
together, the recent advances in these methods may help 
to examine further the transcription, translation, expres-
sion, secretion, transportation, biological function and 
therapeutic potential of BDNF in AD.

The role of BDNF in AD
Animal studies
Different animal models are used to dissect many of the 
molecular and cellular mechanisms that drive the patho-
genesis of AD. Currently, the most popular approaches 
employ various transgenic rodent models that exhibit 
amyloid and tau pathologies, such as Tg2576 [115], APP 
and presenilin 1 (APP/PS1) [116], Tau/APP [117], J20 
[118], 3× Tg [119] and 5× FAD [120] transgenic mice, as 
well as McGill-R-Thy1-APP [121] transgenic rats. Simi-
larly, these transgenic models have been previously used 
to investigate how the expression and regulation of BDNF 
are altered in the context of AD-like pathologies, and 
how intervention strategies or therapeutic agents that 
enhance BDNF could serve as a potential treatment for 
AD [117, 122, 123]. For example, previous studies have 
shown that APP/PS1 transgenic mice that express the 
mutated variant of human APP and PSEN1 genes linked 
to familial AD, namely, the Swedish APP KM670/671NL 
mutation (APPswe) and PSEN1 L166P mutation, exhibit 
memory deficits and impaired hippocampal neurogen-
esis in adulthood [124]. Facilitating social interaction 
by housing APP/PS1 mice with wild-type mice reverses 
the deficits in memory and neurogenesis, an effect that 
can be mimicked by overexpressing BDNF or blocked 
by ablating it. Gene delivery or overexpression of BDNF 
has also been shown to enhance hippocampal LTP and 
inhibit the effect of Aβ and tau on cell loss [88, 125, 126]. 
Furthermore, BDNF treatment decreases the generation 
of toxic Aβ by promoting the α-secretase processing of 
APP in transgenic APP/PS1 mice, suggesting it may be 
able to modulate the amyloidogenic pathway directly 
[127].

In loss-of-function experiments, triple transgenic APP/
PS1/BDNF+/− mice exhibited an earlier onset of learning 
deficits and accelerated impairment in a two-way active 
avoidance task compared with APP/PS1 or BDNF+/− 
mice [128]. However, no change in plaque density was 
observed between APP/PS1 and APP/PS1/BDNF+/− 
mice [128]. Similarly, by crossing BDNF+/− mice with 
APPdE9 mice (bearing APPswe and PSEN1ΔE9 muta-
tions), researchers found that while the haploinsuffi-
ciency-induced decrease of BDNF impaired learning and 
memory, it did not alter amyloid pathology [129]. Aged 
triple transgenic mice (3× Tg, bearing APPswe, MAPT 
P301L, and PSEN1 M146V mutations) have widespread 
Aβ plaques and neurofibrillary tangles [119]. Knockdown 
of BDNF in the aged 3× Tg/BDNF+/− mice led to a sig-
nificant reduction of BDNF levels, but this did not appear 
to exacerbate Aβ and tau pathology [130]. These results 
suggest that chronically reduced expression of BDNF 
does not affect Aβ and tau pathologies. On the other 
hand, Wang et  al. reported that deprivation of BDNF/
TrkB indeed contributes to AD-like pathologies in wild-
type mice [28]. Several possible causes may contribute to 
these conflicting results. First, there may be inherent dif-
ferences in the animal models themselves. For example, 
compensatory processes may have occurred to respond 
to the chronically depleted levels of BDNF in the trans-
genic models. Second, decreased BDNF expression 
may reduce APP expression [131]. Third, there may be 
a dose-sensitivity window whereby the degree of BDNF 
knockdown could have a differing effect on Aβ or tau 
pathologies. Lastly, BDNF may target the cellular and 
molecular pathologies downstream of Aβ accumulation 
when exerting its therapeutic effects.

Clinical investigations
The first report on BDNF from studies in a clinical popu-
lation came from Phillips and colleagues who found that 
BDNF mRNA was reduced in postmortem hippocam-
pal samples obtained from AD patients, suggesting that 
BDNF may have contributed to the progressive atrophy of 
neurons in AD [132]. Similar reductions in BDNF mRNA 
levels have been found in samples from the parietal cor-
tex and entorhinal cortex of AD patients [133, 134]. 
Other reports have suggested that the decreased BDNF 
protein in the hippocampus, temporal cortex, and CSF in 
AD may correlate with the degeneration of specific neu-
ronal populations, such as the basal forebrain cholinergic 
system [135–137]. Reduced levels of both pro-BDNF and 
mBDNF also occur early in the progression of AD [36]. 
However, it should be noted that although decreased 
BDNF levels in brain tissues have been associated with 
AD progression, there have been conflicting reports 
on whether BDNF levels are reduced in the CSF of AD 
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patients. These conflicting results may be caused by a few 
different factors. First, most clinical studies have ana-
lyzed total BDNF concentrations by ELISA, which cannot 
reliably differentiate pro-BDNF from mBDNF. Second, 
the lower threshold for detection must be increased as 
there is a low baseline level of CSF BDNF [138]. Third, 
CSF BDNF levels also decrease during healthy aging, sug-
gesting this may only serve as a prognostic biomarker for 
younger individuals with an elevated risk of developing 
AD [137]. These limitations should be addressed before 
BDNF is used as a promising biomarker for AD diagnosis 
in the clinical setting.

Efforts to determine whether plasma BDNF levels can 
serve as a blood-based biomarker in AD have received 
increasing attention over the past decade [139–141]. 
Blood sample collection is minimally invasive and far 
more suitable for detecting and monitoring AD patholo-
gies in healthcare settings than existing methods that 
require CSF or PET analyses. However, previous studies 
on plasma BDNF levels in AD patients have conflicting 
results. While some studies reported that the periph-
eral BDNF levels in AD patients were decreased [138, 
142–144], others found no difference or even enhanced 
BDNF concentrations in AD patients [145–147]. Many 
meta-analyses have been performed to systemically ana-
lyze the change of peripheral BDNF during the develop-
ment and progression of AD. It has been reported that 
patients with AD have significantly lower peripheral 
blood BDNF levels than healthy controls [148]. A higher 
serum BDNF level has also been linked to a reduced risk 
of dementia [149]. When compared with the age- and 
sex-matched healthy controls, blood BDNF levels initially 
increase during the early stages of AD and then reduce 
in patients with moderate or severe AD [150]. The initial 
increase in blood BDNF levels could be caused by com-
pensatory repair mechanisms that arise during the early 
stages of AD. Then, as the severity of the disease pro-
gresses (such as Mini-Mental State Examination [MMSE] 
score < 20), these compensatory mechanisms may begin 
to fail, resulting in decreased peripheral blood BDNF lev-
els. The association between serum BDNF and AD pro-
gression has been linked to the rate of cognitive decline. 
Decreased serum BDNF levels are specifically associated 
with fast cognitive decline in AD patients (that is, a lower 
MMSE score > 4 per year), rather than slow cognitive 
decline [140]. The association also occurs between the 
serum pro-BDNF levels and the hippocampal pro-BDNF 
levels, which are related to the hippocampal pTau expres-
sions [151].

The evidence from clinical investigations suggests that 
BDNF could act as a biomarker and therapeutic tar-
get in AD. However, several key questions remain to be 
answered. First, how do factors associated with altered 

peripheral BDNF levels and AD risk (i.e., age, lifestyle, 
and comorbid physical conditions) modulate plasma 
BDNF levels as the disease progresses? Answers to these 
questions could provide insights into the diagnostic value 
of peripheral BDNF and open up the door for personal-
ized therapeutic strategies. Second, what factors must 
be considered when measuring plasma BDNF concen-
trations? For example, BDNF concentration in serum is 
over 100-fold higher than plasma concentrations due to 
the degranulation of platelets during the clotting process 
[90, 91, 152]. BDNF levels in the peripheral blood are 
also known to be regulated by other cells such as mon-
onuclear and epithelial cells [153], and these regulatory 
mechanisms may be altered under certain conditions 
that could obscure any findings. Third, would the diag-
nostic validity of plasma BDNF levels be improved when 
combined with other blood-based biomarkers? Some 
researchers proposed composite biomarkers (i.e., serine/
threonine kinase, DYRK1A, BDNF, and homocysteine) to 
identify AD at an early stage [154].

Genetic evidence
Certain BDNF gene polymorphisms have a significant 
impact on hippocampal function and memory. The 
dbSNP: rs6265 SNP in the human BDNF gene is a com-
mon functional nucleotide polymorphism that leads to a 
methionine (Met) substitution for valine (Val) at codon 
66 (Val66Met, G196A) [155]. The substitution of Val by 
Met modulates both the intracellular trafficking of pro-
BDNF and the secretion of mBDNF [110, 156]. Further 
insight into this mechanism comes from studies dem-
onstrating that the Val66Met SNP impairs the dendritic 
trafficking of BDNF mRNA by disrupting interaction of 
BDNF with translin [157] and disturbing the intracellular 
sorting and secretion of BDNF by blocking its interaction 
with sortilin [158].

Several lines of evidence have shown that the BDNF 
Met66 allele exacerbates Aβ-dependent AD pathogen-
esis and adversely impacts hippocampal function and 
human episodic memory [110, 159–162]. Since the 
BDNF Val66Met has no relationship with the rates of 
change in cognitive decline among healthy adults with 
low Aβ, it has been proposed that high Aβ levels cou-
pled with Met66 carriage may be used as prognostic 
markers in the preclinical stage of AD [163]. Further 
support comes from studies showing that the BDNF 
Val66Met polymorphism decreases the hippocam-
pal–medial prefrontal connectivity, increases the vul-
nerability of the memory network to Aβ, and worsens 
cognitive decline [164]. Among the elderly with normal 
cognition, those who carry BDNF Val66Met will expe-
rience faster cognitive decline and greater hippocam-
pal atrophy [165]. APOE is a risk factor for late-onset 
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AD. MCI patients carrying both the APOE ɛ4 and 
BDNF Met alleles exhibit more obvious memory defi-
cits, though no significant changes in brain structure 
are observed [165]. Moreover, the BDNF Met66 allele is 
associated with increased CSF concentrations of total 
tau and increased pTau concentrations in mutation car-
riers [159].

Many findings suggest that the BDNF Met66 allele 
may exacerbate AD-related pathologies. However, stud-
ies examining this relationship more closely suggest that 
this association may depend on the severity of the disease 
and the sex of the individual. It has been reported that 
the Met66 allele increased AD risk in females but not in 
males, suggesting that BDNF may be a sex-specific risk 
factor for AD [166–168]. Additionally, the transition 
from healthy cognition to cognitive impairment in AD 
can be characterized as a progression from subjective 
cognitive decline (SCD) during the preclinical stages to 
mild cognitive impairment (MCI) during prodromal 
stages, and then to dementia during the clinical stages of 
the disease. The Val66Met polymorphism increases the 
risk of progressing from SCD to MCI, and from MCI to 
AD, exclusively in women. The Met allele also diminishes 
the transition time from SCD to MCI [169]. Therefore, 
the influence of Val66Met polymorphism on AD varies 
by both sex and disease severity (or stage of the disease). 
Furthermore, the reduced levels of BDNF protein in the 
temporal cortex of AD patients are suggested to have no 
association with BDNF polymorphisms [135]. Genome-
wide association studies of AD have similarly shown that 
the BDNF Val66Met is not a risk factor for AD [170]. 
These findings suggest that the BDNF Val66Met poly-
morphism may interact with events downstream of AD 
pathogenesis, accelerating the progression of dementia in 
a subset of patients.

Ultimately, there are conflicting results regarding the 
association between the BDNF Met66 allele and AD-
related risk and pathologies. Differences in these findings 
may arise because the targeted phenotypes of these stud-
ies are different, and the BDNF gene mainly manifests in 
the early stages of AD. Other factors may influence the 
role of BDNF Val66Met polymorphism in AD, including 
ethnicity, age and sex. The BDNF Val66Met has linkage 
disequilibrium with other BDNF polymorphisms, such 
as C270T (rs2030324) and G712A, which may affect 
their interactions and downstream phenotypes, and par-
ticipate in the occurrence and development of AD [171, 
172]. Altogether, though the current studies do not iden-
tify that mutations in the BDNF gene are a risk factor for 
AD, substantial evidence supports the notion that BDNF 
may be a potential target for AD therapy. The association 
between BDNF Val66Met polymorphism and AD risk 
should be further examined in future studies.

Potential mechanisms underlying BDNF’s effect 
on AD
Neuronal protective effects
Neurotrophins such as BDNF play an essential role 
in maintaining a functional nervous system in both 
healthy and diseased states. Under physiological con-
ditions, the processing from pro-BDNF to mBDNF is 
important for neuronal development, neuronal sur-
vival, and synaptic plasticity. The mBDNF and its 
receptor, TrkB, are widely expressed in the develop-
ing and adult mammalian brains [173, 174]. The path-
ways associated with changes in neuronal excitability 
are triggered by the binding of mBDNF to TrkB, indi-
cating that TrkB activation is crucial for controlling 
the survival, morphogenesis, and plasticity of neurons 
[175]. Moreover, mBDNF/TrkB elicits many other 
downstream intracellular signaling pathways, such as 
mitogen-activated protein kinase/extracellular signal-
regulated protein kinase (MAPK/ERK), PI3K, and 
phospholipase Cγ/protein kinase C (PLCγ/PKC) [175–
177]. These signaling pathways are associated with acti-
vation of the transcription factor CREB that mediates 
the transcription of genes essential for synaptic plastic-
ity [175]. For example, the BDNF/TrkB signaling-medi-
ated hippocampal LTP is dependent on the recruitment 
of PLCγ, followed by phosphorylation of calcium/calm-
odulin kinase IV (CaMKIV) and CREB [176]. In turn, 
the expression of BDNF is modulated partially by the 
phosphorylation of CREB in a Ca2+-dependent manner 
[178]. Additionally, there is a Ca2+ response element 
(CRE) in the BDNF gene to mediate BDNF transcrip-
tion. In postsynaptic neurons, Ca2+ influx promotes 
phosphorylation of CREB through binding to CRE, 
resulting in the activation of BDNF transcription [178]. 
BDNF transcription in these neurons is at least par-
tially CREB-dependent, as mutation of CRE or block-
ade of CREB function leads to a massive loss of BDNF 
transcription [178].

Under pathological conditions such as AD, BDNF 
is involved in Aβ accumulation, tau phosphorylation, 
neuroinflammatory response and apoptosis (Fig.  2). As 
discussed previously, AD-related deficits in memory 
processes are associated with reduced BDNF levels at 
the synapses. Specifically, Aβ has been shown to impair 
the processing of BDNF in both an activity-dependent 
and an activity-independent manner. While Aβ reduces 
the activity-dependent BDNF transcription by impair-
ing CREB phosphorylation, Aβ-stimulated reductions 
in basal BDNF levels are associated with a decrease of 
CREB transcription [179]. This may be because that 
CREB phosphorylation alone is not sufficient to cause 
BDNF induction. CREB family member works coopera-
tively with other transcription factors, such as CaRF [52] 
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and myocyte enhancer factor 2 (MEF2) family members 
[180], to mediate BDNF transcription. Further knowl-
edge will be needed to characterize the mechanisms in 
depth.

Inhibition of tau phosphorylation
NFTs formed by hyperphosphorylated microtubule-
associated protein tau are one of the neuropathological 
hallmarks of AD. In primary neurons and AD animal 
models, the overexpression or hyperphosphorylation 
of tau decreases BDNF expression, and in turn, BDNF 

regulates the expression, phosphorylation and distribu-
tion of tau [181, 182]. Overexpression of human tau in 
hTau (heterozygous mouse tau-knockout) and 8c-het 
(homozygous mouse tau-knockout) transgenic mice 
dramatically reduces the BDNF level [181]. Overexpres-
sion of Aβ in APP23 mice results in a reduction of BDNF 
mRNA, while APP23 × Tau-knockout mice show rescued 
BDNF levels and have no significant difference from the 
non-transgenic group [181]. These results indicate that 
overexpression of tau is responsible for BDNF down-
regulation, and knockout of tau may rescue BDNF levels. 

Fig. 2  BDNF-related signaling pathways in AD. The pathways related to neuronal excitability are triggered by the interaction between BDNF and 
TrkB, inducing its dimerization and autophosphorylation of tyrosine residues in the cytoplasmic kinase domain. MEK, PI3K and PLCγ signaling 
pathways are activated to phosphorylate the transcription factor CREB that mediates transcription of genes essential for synaptic plasticity. 
GSK3 becomes inactive after phosphorylation, resulting in synthesis of glycogen in the liver cells. When GSK3 remains in its active form, it 
hyper-phosphorylates tau protein in nerve cells, resulting in the microtubule destabilization and neurofibrillary tangle formation and finally leads 
to AD. GSK3 also induces the overexpression of Bax to mediate apoptotic injury. Additionally, interaction between pro-BDNF and p75NTR induces 
apoptosis through the JNK cascade. The activated NF-κB promotes the expression of β-secretase 1 (BACE1) gene, followed by the overexpression 
of BACE1 protein and enhanced BACE1 enzyme activity. Aβ is generated from APP by two enzymes: β-secretase (BACE1 is the major one) cuts APP 
first to produce a C-terminal fragments (CTFs), including C89 and C99. C99 is a membrane bound product. Then γ-secretase (including presenilin, 
nicastrin, APH-1 and PEN-2) cleaves C99 at a position inside the cell membrane to generate the mature Aβ peptide. In turn, Aβ inhibits the 
expression of TrkB, leading to neurodegeneration. BDNF: brain-derived neurotrophic factor, p75NTR: p75 neurotrophin receptor, TrkB: tropomyosin 
receptor kinase B, Aβ: amyloid β, APP: amyloid β precursor protein, BACE1: β-secretase 1; NRIF: NT receptor interacting factor, JNK: c-Jun N-terminal 
kinase, TRAF6: TNF receptor associated factor 6, IRAK: Interleukin-1 receptor-associated kinase, IKK: inhibitor of nuclear factor kappa-B kinase, IκB: 
inhibitor of NF-κB, NF-κB: nuclear factor-κB, TLR4: Toll-like receptor 4, MyD88; Myeloid differentiation primary response gene 88, TNF-α: tumor 
necrosis factor-α, MEK: mitogen-activated protein kinase kinase, ERK1/2: extracellular signal-regulated protein kinase 1/2, CREB: cAMP-response 
element binding protein, PI3K: phosphoinositide 3-kinase, Akt: protein kinase B, PLCγ: phospholipase Cγ, PKC: protein kinase C, GSK3β: glycogen 
synthase kinase-3β, Cyt C: cytocheome C
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To clarify the interaction between BDNF and tau, Xiang 
et  al. demonstrated that BDNF depletion promotes tau 
proteolytic cleavage by provoking δ-secretase activation 
[183]. The subsequently generated tau N368 fragment 
binding to the TrkB receptor C-terminal tail, a site of 
PLC-γ1 binding, antagonizes BDNF/TrkB neurotrophic 
signaling and induces neuronal cell death. Furthermore, 
deprivation of BDNF/TrkB promotes phosphorylation 
of the Janus kinase 2/signal transducer and activator of 
transcription 3 (JAK2/STAT3) pathway and activation of 
CCAAT/enhancer-binding protein β/asparagine endo-
peptidase (C/EBPβ/AEP), resulting in the expression of 
δ-secretase [28]. In the Tau-P301L transgenic zebrafish 
model, significant down-regulation of BDNF is observed, 
which occurs in a TrkB receptor-independent manner at 
as early as 48  h after the Tau-P301L zebrafish embryos 
are fertilized [184]. BDNF knockdown leads to defec-
tive axonal development and neuronal cell death, which 
can be rescued by exogenous BDNF treatment. In Tau-
P301L larvae, however, supplementation of exogenous 
BDNF repairs primary axonal growth and motility, but 
it does not prevent neuronal apoptosis. Treatment with 
a TrkB agonist, 7,8-dihydroxyflavone, completely rescues 
the locomotor phenotype of Tau-P301L larvae. Accord-
ingly, reduction of BDNF is an early consequence of tau-
induced neurotoxicity, and that the BDNF/TrkB signaling 
is necessary to protect against the tau-induced neuro-
degenerative effects. Furthermore, long-term treatment 
strategies targeting BDNF or TrkB may provide addi-
tional protection against neuronal loss and cell death. 
The pro-BDNF is also associated with the occurrence 
and development of AD. First, the pro-BDNF level in AD 
cortices is lower than that in healthy controls, which is 
consistent with the report from Peng et al. [36]. Second, 
the reduced expression of hippocampal TrkB receptors 
is linked to higher p-tau levels. Third, higher serum lev-
els of pro-BDNF are correlated with lower pro-BDNF 
and higher p-tau in the hippocampus [151]. Thus, the 
total BDNF, mBDNF, pro-BDNF and TrkB receptors are 
closely associated with tau pathology, and more exten-
sive studies are required to better understand the mecha-
nisms linking BDNF/TrkB signaling to tau pathology, 
including the role of each BDNF isoform in different dis-
eases and in various tissue specificities.

GSK3 is a key molecule linking BDNF to tau. As shown 
in Fig. 2, the effect of BDNF on GSK3 activity has been 
evaluated in the Akt and PKC signaling pathways. After 
BDNF binds to TrkB, the downstream PI3K is activated, 
followed by phosphorylation of Akt, which further phos-
phorylates GSK3α and GSK3β to inactivate the GSK3 
proteins [185]. In addition, GSK3 phosphorylation is 
PKC-dependent. Inhibition of GSK3 increases BDNF 
mRNA and protein levels in cultured cortical neurons 

[186]. The biological activity of tau is modulated by 
its degree of phosphorylation. GSK3β acts as a critical 
kinase for tau protein phosphorylation [187]. It has been 
reported that the full-length GSK3β (47  kDa) is signifi-
cantly decreased, and truncation of GSK3β (41  kDa) is 
markedly increased in the AD human brain when com-
pared with healthy control cases [188]. The GSK3β 
truncation is positively correlated with the site-spe-
cific phosphorylation of tau (including Ser199, Thr202, 
Thr205, Thr212, Thr217, and Ser396). The mechanism is 
that excitotoxic conditions lead to a Ca2+-induced over-
activation of calpain I, which cleaves GSK3β at Ser381-
Ser382, resulting in enhanced kinase activity and the 
subsequent phosphorylation of tau proteins [188]. These 
results indicate that increasing GSK3β expression will 
decrease BDNF mRNA levels, and that enhancing GSK3β 
enzyme activity will promote tau phosphorylation. 
However, some conflicting results question the efficacy 
of BDNF as a mediator of tau phosphorylation. In tau-
mutant P301L transgenic mice, the BDNF gene delivery 
attenuates cognitive deficits, promotes synaptic degen-
eration, but has no effect on tau hyperphosphorylation or 
the activity of tau-related enzymes, including GSK3β and 
phosphatase PP2A [189]. Inherent differences between 
the types of experimental models may partially account 
for the contradictory findings. Phosphorylated tau may 
quickly respond to BDNF supplementation in  vitro. 
However, in vivo BDNF treatment is a long-term process. 
Further studies are required to examine the mechanism 
of BDNF on tauopathies in humans and animal models.

Reduction of Aβ generation
Aβ is generated from proteolytic cleavage of APP through 
the amyloidogenic pathway [190–193]. Under physi-
ological conditions, APP is predominantly cleaved via the 
non-amyloidogenic pathway, which occurs by α-secretase 
cleavage to generate the soluble αAPP fragment (sAPPα) 
and the membrane-anchored C-terminal fragment (CTF) 
C83. C83 is then cleaved by γ-secretase, resulting in the 
release of the nontoxic P3α fragment and CTFγ [194–
197]. APP can also be cleaved by β-secretase (BACE1) at 
the Glu11 site or by θ-secretase (BACE2) to produce C89 
and C80, respectively, precluding Aβ generation [193, 
198–200]. Alternatively, APP undergoes amyloidogenic 
cleavage by BACE1 at the Asp1 site to release sAPPβ and 
C99. Next, γ-secretase cleaves the C99 to release toxic 
Aβ1-40 or Aβ1-42 [201].

Experimental studies suggest that Aβ deposition is 
closely associated with the loss of BDNF. Intracere-
broventricular injection of Aβ1-42 oligomers downregu-
lates BDNF mRNA and protein expression [202]. The 
Aβ oligomers impair the axonal BDNF retrograde traf-
ficking, thereby adversely impacting BDNF signaling and 
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synaptic function [203]. Oligomeric Aβ1–42 stimulation 
also significantly reduces the overall expression of BDNF 
by specifically downregulating BDNF transcripts IV and 
V [204]. In turn, the interruption of BDNF signaling trig-
gers hippocampal amyloidogenesis by promoting the 
accumulation of PS1 N-terminal catalytic subunits, APP 
C-terminal fragments, and abnormal aggregation of Aβ 
[205]. Moreover, full-length TrkB modulates APP levels 
by increasing APP transcription [206]. In turn, BDNF 
can regulate the surface expression of full-length TrkB 
in a time-dependent manner. This effect was first dem-
onstrated in hippocampal and neuronal cultures, where 
the level of TrkB on the plasma membrane was found to 
initially increase following treatment with BDNF (within 
seconds) and then decrease following prolonged treat-
ment (minutes to hours) [207].

The BDNF/TrkB signaling can directly modulate APP 
processing. For example, retinoic acid increases the 
expression of TrkB in neuronal cultures [208]. Combining 
retinoic acid treatment with BDNF shifts APP processing 
to α-secretase, promoting the release of sAPP. Similarly, 
treating APP/PS1 mice with BDNF decreases the genera-
tion of toxic Aβ by promoting the α-secretase processing 
of APP [127]. By transfecting SH-SY5Y cells with GST-
APP in the presence of YFP-tagged TrkB wild-type or 
kinase death mutant (K572R), and then treating the cells 
with BDNF, Xia et  al. found that BDNF induced TrkB 
to phosphorylate APP Y687 residue and APP traffick-
ing to trans-Golgi network, resulting in the decrease of 
APP exposure to δ-secretase cleavage. Thus, δ-secretase 
cleaves TrkB, leading to the reduction of p-APP Y687 
and alteration of APP trafficking [209]. Moreover, they 
reported that both TrkB (N365 and N486/489 residues) 
and APP can be cleaved by δ-secretase in AD brains, 
resulting in the mitigation of TrkB signaling and the 
reduction of p-APP Y687. Therefore, both BDNF/TrkB 
pathway and δ-secretase may be potential targets for AD 
treatment [210]. The Sortilin Related Receptor 1 (SORL1/
SORLA) and its SNP are highly associated with the 
occurrence and development of late-onset AD and have 
been shown to affect the metabolism, trafficking, and 
processing of APP [211–213]. BDNF activates the tran-
scription of Sorla via the ERK pathway, thereby dimin-
ishing the production of Aβ [214]. On the other hand, 
Sorl1-knockout mice exhibit lower levels of BDNF and 
fewer deposits of Aβ in the brain [215]. SORL1 inhibits 
the degradation of APP by γ-secretase, resulting in the 
reduction of toxic Aβ. Moreover, the expression of BDNF 
is decreased via the SORL1–NMDAR–CREB–BDNF 
signaling pathway [216]. These findings suggest that the 
beneficial effects of BDNF on APP processing are at least 
partly dependent on SORL1. However, in human pluripo-
tent stem cells, depletion of SORL1 contributes to AD by 

selectively impairing the neuronal endosomal trafficking 
of APP, which is independent of APP processing [211]. 
This discovery seems to echo the sentiment that risk fac-
tors for late-onset AD may be characterized moreso by 
deficits in trafficking and clearance than production and 
processing.

It is worthwhile to mention that another neurotro-
phin, nerve growth factor (NGF), has been shown to 
regulate APP processing via an independent set of recep-
tors (TrkA and p75NTR) and sortilin [217]. Advanced 
Aβ-amyloidosis is characterized by the impaired metabo-
lism of NGF and a concomitant loss of cholinergic syn-
apses and neuronal phenotype in the basal forebrain of 
McGill-R-Thy1-APP transgenic rats [218]. This suggests 
that deficits in NGF metabolic signaling may contribute 
to the high vulnerability of cholinergic neurons in AD. 
There is also a difference in BDNF and NGF signaling 
to regulate APP processing. The APP-TrkA binding sites 
encompass both α- and β-secretase cleavage sites. When 
NGF binds to TrkA, it may drive APP metabolism in a 
manner that promotes processing via the non-amyloi-
dogenic pathway [219]. The phosphorylation of APP at 
Threonine 668 (T668) increases the gene expression of 
BACE1 [220]. NGF blocks the T668 phosphorylation 
of APP and promotes the normal metabolism through 
TrkA signaling [221, 222]. NGF promotes the bind-
ing of TrkA to APP, thereby hindering the interaction 
between APP and BACE1. The NGF/TrkA/APP path-
way is linked to the Tyr kinase signaling adaptor SH2-
containing sequence C [221]. NGF binding with TrkA 
can mediate the phospholipase C-γ (PLC-γ) [223], ERK 
[224], and PI3K/Akt signaling pathways [225]. TrkA and 
p75NTR receptors share the same binding site in the APP 
juxta-membrane domain [226]. APP (597–695) is neces-
sary for the interplay between APP and p75NTR [226]. The 
binding of sortilin to TrkA promotes TrkA anterograde 
axonal transport, strengthens neurotrophic factor signal 
transduction, and interacts with APP to affect its metab-
olism [227].

NGF is essential for the survival of cholinergic neurons, 
and it is a potential therapeutic target for AD. Results of a 
phase 1/2 clinical trial demonstrated that while delivering 
adeno-associated virus (AAV)-NGF into the cholinergic 
neurons of the nucleus basalis of Meynert of AD patients 
is safe, it has no benefit on cognitive improvement [228]. 
However, a follow-up analysis on the autopsied brains of 
three trial participants revealed that NGF failed to reach 
the cholinergic neurons in any of the injections. There-
fore, further studies are needed to determine the clini-
cal efficacy of NGF gene therapy [228]. Tuszynski et  al. 
also reported that the BDNF gene therapy might be bet-
ter than NFG in AD treatment [229]. BDNF is widely 
expressed in the cortex and is more potent than NGF to 
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rebuild neural circuits, ameliorate cell loss and improve 
neuronal function in AD. Additionally, targeted deliv-
ery of the BDNF gene into the entorhinal cortex or hip-
pocampus may be more effective for AD treatment [230].

Interaction with inflammatory factors
Lipopolysaccharide (LPS) is an endotoxin from the outer 
membrane of Gram-negative bacteria. Direct injection of 
LPS into the brain or periphery is a popular method used 
to study and induce inflammation that activates both 
the neuroimmune and neuroendocrine systems [231]. 
Administration of either pro-inflammatory cytokines or 
LPS leads to a remarkable decrease in BDNF gene expres-
sion [232]. The neuroinflammation- and LPS-induced 
memory deficits have been attributed to the activation 
of TLR4/NF-κB signaling and inhibition of CREB/BDNF 
expression in AD models [233]. Inflammation signifi-
cantly decreases BDNF transcription. A single intraperi-
toneal injection of E. coli has been shown to profoundly 
reduce the expression of different BDNF transcripts in 
the hippocampus of aged rodents [234]. More specifi-
cally, aged rats exhibit a loss of the exon IV-specific tran-
script in CA1, exon II- and VI-specific transcripts in 
CA3, and exon I- and II-specific transcripts in the den-
tate gyrus [234]. These effects may be mediated by C/
EBPβ, an inflammatory cytokine-activated transcription 
factor, which has been shown to bind to the BDNF pro-
moter and repress its transcription [235]. In turn, BDNF 
deficiency has also been shown to promote C/EBPβ acti-
vation by stimulating the JAK2/STAT3 signaling path-
way, indicating that these mechanisms may be coupled 
together [28]. Importantly, triggering this cascade either 
via BDNF depletion or C/EBPβ activation could accel-
erate Aβ and tau pathology in 3× Tg mice, suggesting 
that BDNF/TrkB reduction and C/EBPβ activation may 
work cooperatively to drive AD pathogenesis. Although 
BDNF links inflammation and neuroplasticity, the sys-
temic inflammatory response affects not only BDNF but 
also NGF and neurotrophin-3 (NT-3) [232]. More evi-
dence is needed to determine how inflammation specifi-
cally alters the transcription of BDNF and the underlying 
mechanisms.

Our previous studies have confirmed that the expres-
sion of NF-κB is increased in the brains of AD patients, 
and that NF-κB signaling up-regulates human BACE1 
gene transcription to facilitate β-secretase cleavage and 
Aβ generation (Fig. 2) [15]. Furthermore, we have shown 
that the GSK3β-mediated BACE1 gene expression is 
dependent on NF-κB signaling, and that inhibition of 
GSK3β can decrease BACE1 expression and reduce Alz-
heimer-associated phenotypes [236]. The sAPPβ has also 
been shown to activate NF-κB, resulting in the produc-
tion of inflammatory cytokines (i.e., IL-6) in microglial 

cells and hippocampal neurons [237]. Collectively, these 
data suggest that the NF-κB-mediated Aβ production 
and neuroinflammation may be potential targets for AD 
treatment. To that end, a few key points regarding the 
interaction between BDNF and NF-κB in AD should be 
kept in mind. First, since the BDNF gene contains bind-
ing sites for activated NF-κB in the 5’ flanking region of 
exon IV, NF-κB plays an important role in BDNF-induced 
neuroprotection [40, 238]. Specifically, activated NF-κB 
can translocate into the nucleus, where it binds to the 
promoters on transcripts I, III and IV of the Bdnf gene 
to initiate BDNF transcription [53, 238–240]. Second, 
exogenous BDNF promotes the TrkB-mediated NF-κB 
activation, which is beneficial for neuronal survival [238]. 
BDNF treatment has been shown to dose-dependently 
increase the mRNA and protein expression of Bcl-xL 
in the rat hippocampus through phosphorylation of 
NF-κB at the Ser529 site and the activation of casein 
kinase II [241]. Alternatively, blocking NF-κB activation 
suppresses BDNF-induced late-phase LTP [242]. The 
crosstalk between BDNF and NF-κB is critical for neuro-
protection. However, chronic NF-κB activation will lead 
to neuroinflammation, followed by neurodegeneration 
and cognitive impairment. Further examination of the 
neuroprotective concentrations of BDNF and the period 
of NF-κB activation is warranted. These findings would 
provide key insights into the clinal relevance of BDNF-
targeting therapies in AD.

BDNF‑targeting strategies for AD modification
Numerous studies have suggested that therapeutically 
increasing BDNF levels in brain regions important for 
memory and cognition may lead to improved clinical 
outcomes of AD patients [183, 243]. However, the deliv-
ery route of exogenous BDNF is limited due to its short 
plasma half-life and the limited diffusion across the 
blood–brain barrier (BBB) [244–246]. As a result, many 
intervention strategies have sought to restore BDNF level 
and signaling endogenously. These therapies target BDNF 
either by directly promoting its endogenous produc-
tion (i.e., via BDNF gene therapy) or indirectly enhanc-
ing BDNF signaling and secretion in the brain (i.e., via 
exercise). In the following section, we further discuss 
the current therapeutic approaches to targeting BDNF 
in the treatment of AD (Fig.  3). Several review papers 
have already presented a comprehensive overview and 
analysis of the outcome of clinical trials involving various 
BDNF-targeting pharmacological treatments in neuro-
degenerative diseases [247–249]. Therefore, we specifi-
cally focus on providing novel insights into the molecular 
mechanisms underlying current BDNF-targeting thera-
peutic strategies in AD. We will explain how recent pre-
clinical and clinical research findings have inspired new 
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approaches to administering or modulating BDNF signal-
ing, and the potential of BDNF as a diagnostic biomarker 
of or a therapeutic agent for AD.

Improvement of endogenous BDNF production
Drug treatment
Currently, the FDA-approved drugs for AD include 
acetylcholinesterase inhibitors (AChEIs), an NMDAR 
antagonist, and the IgG1 anti-Aβ monoclonal antibody 
(aducanumab). Approved AChEIs—including done-
pezil, galantamine, and rivastigmine, and the approved 
NMDAR antagonist (memantine) are symptomatic treat-
ments that do not treat the underlying pathological cause 
of AD. Thus, aducanumab is the first and only disease-
modifying drug licensed for AD [6]. Most (if not all) of 
the drugs approved for AD treatment are known to influ-
ence the level of BDNF. In the following section, we will 
discuss molecular mechanisms underlying the associa-
tion between BDNF signaling and drugs that have been 
approved for the treatment of AD.
AChEIs
A pathological hallmark of AD is that the choliner-

gic neurons of the basal forebrain are the first to fall 
prey to neurodegeneration [250]. AChEIs such as done-
pezil enhance cholinergic transmission and have been 
approved for the treatment of AD on the basis that they 
were found to delay the progression of cognitive decline 
in clinical trials. Notably, experimental studies have also 
shown that AChEI administration enhances the choliner-
gic tone in cholinergic neurons of the basal forebrain in 
mice, and that these effects are mediated by the activation 

of Trk receptors [251]. Similarly, BDNF promotes the 
survival and differentiation of cholinergic neurons in the 
same region of the rat brain [252]. These findings suggest 
that AChEI administration may have some neuroprotec-
tive effects in AD, which is conferred by the activation of 
neurotrophic signaling. In support, clinical studies have 
shown that the AChEI donepezil increases the level of 
CNS BDNF in AD patients [208].

As the neuroprotective effects of AChEIs are transient 
at best, a more provocative question is what mechanism 
governs their regulation of neurotrophin signaling. One 
possible explanation comes from studies on the effect of 
AChEIs in other neurodegenerative conditions. Admin-
istration of donepezil has been found to protect against 
vascular dementia by inhibiting the nuclear transloca-
tion of histone deacetylase 6 (HDAC6) and the bind-
ing of HDAC6 to BDNF promoter IV, which enhances 
BDNF expression [253]. HDAC6 is upregulated in the 
cortex and hippocampus of AD patients [254, 255]. The 
consequences of HDAC6-BDNF binding have previ-
ously been studied in the context of other risk factors 
for AD. For example, ApoE4 has been shown to promote 
the nuclear translocation of HDACs in human neurons, 
resulting in decreased BDNF expression [255]. Specifi-
cally, ApoE4 has been found to induce HDAC6 to bind 
to BDNF promoter IV, thereby inhibiting the expression 
of BDNF. Therefore, these findings suggest that inhibiting 
the HDAC6-BDNF binding in the cortex could increase 
BDNF levels and exert neuroprotective effects in AD. 
Another key question is what BDNF signaling pathways 
do AChEIs activate. Previous experimental studies have 

Fig. 3  Strategies to improve BDNF levels in the brain. The current therapeutic approaches to enhancing  BDNF concentration include endogenous 
BDNF enhancement and exogenous BDNF supplement. The former one aims to induce endogenous BDNF production or secretion. The latter one 
attempts to release BDNF in situ or further transport it into target brain regions
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shown that administration of donepezil  or galantamine 
in mice enhances the production of BDNF, thereby sup-
pressing neuronal apoptosis via the activation of PI3K/
Akt and ERK pathways and phosphorylation of CREB 
[256]. However, it is worth re-stating that the neuropro-
tective effects of AChEIs do not prevent the progression 
of AD. Therefore, although these studies suggest that 
AChEIs can exert neuroprotective effects via enhanc-
ing endogenous BDNF levels, more investigations are 
required.

Antidepressants
Depressive symptoms are common in patients with 

cognitive impairment. The overall prevalence of depres-
sion in AD patients is up to 50% [257–259]. A large-
scale longitudinal study has found that the depressive 
symptoms in AD patients reflect prodromal features of 
dementia, and dementia is not likely a consequence of 
long-term depression [260]. This suggests that the path-
ological mechanisms may differ from those of depres-
sive symptoms in adulthood–that is, in adults without 
dementia. Despite these differences, antidepressants are 
still the only treatment option available for the depres-
sive symptoms in dementia[261]. In general, the effect of 
antidepressants on BDNF expression is not well under-
stood. Several studies suggest that antidepressants like 
the selective serotonin reuptake inhibitor (SSRI) fluox-
etine increase BDNF levels and are dependent on normal 
TrkB signaling to elicit their behavioral effects [262, 263]. 
This implies that the therapeutic efficacy of SSRIs may be 
dependent upon activation of the BDNF/TrkB pathways. 
However, other studies have reported that certain SSRIs 
(i.e., fluoxetine, paroxetine, and sertraline) regulate the 
expression of BDNF mRNA in a dose- and time-depend-
ent manner, such that the acute treatment downregulates 
BDNF expression, whereas chronic treatment upregu-
lates it [264, 265]. One possible explanation for this effect 
is that the bi-phasic shifts in BDNF regulation may be 
caused by differences in the expression pattern of individ-
ual BDNF exons. For example, 4 h after systemic injection 
of paroxetine, the expression of BDNF exon IV was found 
to be selectively downregulated in the rat hippocam-
pus [266]. In rats, neuronal activity has been shown to 
induce BDNF exon IV expression as an immediate-early 
gene response, meaning BDNF exon IV mRNA levels can 
exhibit fast and transient changes, whereas BDNF exon 
I levels exhibit slower responses [266, 267]. Moreover, 
the therapeutic effects of paroxetine therapy are associ-
ated with polymorphism of the BDNF gene, whereby 
carriers of the A allele of BDNF G196A polymorphism 
respond better to the paroxetine therapy in AD-related 
depression [268]. These findings support the notion that 
the ability of SSRIs to alleviate depression-related symp-
toms may be mechanistically linked to the BDNF/TrkB 

signaling. Nonetheless, although antidepressant drugs 
are  a primary therapeutic approach currently used for 
the treatment of depression in AD patients, several sys-
tematic meta-analyses have suggested that SSRIs fair no 
better than a placebo in their ability to alleviate depres-
sive symptoms in AD [269–272]. Additional high-quality  
randomized controlled trials  with different drug types, 
dosages, and treatment periods should be conducted to 
confirm the effectiveness and safety of antidepressants in 
AD patients.

Estrogens
Estrogen and its receptor-mediated signaling path-

ways play vital roles in brain function. Both estrogen and 
BDNF have been shown to exert highly potent effects 
in the hippocampus, and thus have been explored as 
potential pathological mediatory and therapeutic tar-
gets in psychiatric conditions characterized by memory 
loss [273–275]. Estradiol (E2) and BDNF have also been 
shown to help regulate many of the same biological func-
tions, including modulating the activity of NMDARs 
(especially the NR2B subunit), promoting neurogenesis in 
the dentate gyrus, and facilitating the formation of mem-
ories [276, 277]. It has been reported that estrogen recep-
tor α (ERα) and BDNF are colocalized in CA3 subregion 
of the developing hippocampus [278, 279]. LPS-induced 
sickness behavior in mice shows that the role of BDNF in 
the response to neuroinflammatory challenge occurs in a 
sex-dependent manner [280]. Notably, LTP was found to 
produce an elevated inflammatory response in the cor-
tex and hippocampus of wild-type males, as well as in 
BDNF+/− males. Alternatively, the elevated inflammatory 
response was found to occur only in BDNF+/− females 
(not in wild-type females) and only in the hippocampus. 
These results either suggest that the BDNF/TrkB signal-
ing may be significantly more sensitive to inflammatory 
insults in the female hippocampus, or that the basal lev-
els of BDNF are significantly higher in the hippocampus 
of females than males.

Inherent differences in the role of BDNF as an inflam-
matory mediator between males and females may arise 
because the BDNF gene contains a sequence homologous 
to the estrogen response element [281], and the estrogen 
ligand-receptor complexes can bind to this sequence and 
rapidly increase BDNF transcription. Additionally, the 
aromatization of testosterone in male mice leads to high 
levels of E2 in the brain [282]. As a result, the expression 
of BDNF can still be regulated through estrogen-medi-
ated mechanisms in male mice [280]. However, the effects 
of exogenous E2 treatment on various types of memory, 
and the estrogen-receptor pathways that are activated, 
have been shown to differ significantly in the hippocam-
pus of male and female rodents [283]. Thus, these differ-
ences may be more related to the inherent differences in 
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the expression of estrogen-receptors and downstream 
signaling pathways between males and females than to 
E2. In agreement, BDNF may act as a signaling molecule 
downstream of E2 to mediate its structural and elec-
trophysiological effects [284]. E2 and BDNF have been 
shown to share several signal transduction pathways and 
transcription factors, such as AKT, ERK, MAPK, PI3K, 
Src/Fyn, Ca2+/calmodulin-dependent protein kinase II 
(CaMKII) and CREB [285–288]. 17β-estradiol admin-
istration induces the phosphorylation of TrkB and the 
expression of mature BDNF. However, 17β-estradiol 
activates hippocampal TrkB signaling independently of 
enhanced mBDNF [289]. Although many studies have 
highlighted the benefits of estrogen replacement therapy 
(ERT) among AD patients [290–293], the impact of ERT 
on the risk of cognitive decline remains highly conten-
tious [294, 295].

Cannabinoids
Since the 1990s, the endocannabinoid system has 

received increasing interest due to its neuroprotec-
tive effect, and there is considerable evidence suggest-
ing that targeting the cannabinoid system might be 
an effective strategy to protect against AD [296–298]. 
Cannabinoid type 1 (CB1) receptors primarily localize 
at nerve terminals and regulate excitatory and inhibi-
tory neurotransmission [299]. In kainic acid (KA)-
induced excitotoxicity, inactivation of CB1 receptors 
can decrease the KA-induced BDNF mRNA levels, indi-
cating that CB1 receptor-mediated neuroprotection 
may be, at least partially, dependent on BDNF expres-
sion [300]. The CB1 receptor is the main molecular tar-
get of endocannabinoids and phytocannabinoids, such 
as Δ9-tetrahydrocannabinol, extracted from the Can-
nabis sativa plant [301]. To better understand CB1/
BDNF interaction, healthy volunteers were intrave-
nously injected with Δ9-tetrahydrocannabinol, which 
increased serum BDNF levels [302]. One possible 
explanation is that the CB1 receptor-mediated BDNF 
expression relies on the activation of the BDNF gene 
promoter IV via the PI3K/Akt/mTORC1/BDNF path-
way, which is capable of enabling rapid responses to 
promote BDNF production [303]. A major drawback of 
using Δ9-tetrahydrocannabinol as a therapeutic agent in 
AD is that it has been shown to produce deficits in cog-
nitive behaviors that are impaired in AD, such as learn-
ing and memory [304]. However, overexpressing BDNF 
in these regions protects against the cognitive deficits 
induced by adolescent cannabis exposure in mice [304]. 
In turn, BDNF-TrkB-CB1R interactions promote the 
release of endocannabinoids at cortical excitatory syn-
apses [305]. Endogenous BDNF also plays a crucial role 
in cannabinoid-induced neurogenesis in the subventricu-
lar zone and hippocampal dentate gyrus [306]. Although 

cannabinoids have demonstrated the potential to offer 
multifaceted protection against AD, further studies are 
warranted to determine whether chronic administration 
of cannabinoids can be considered a safe, effective, and 
low-cost therapy for AD.

Herbal extracts
Herbal extracts have been proposed as an alterna-

tive medicine to delay the progression of AD, and some 
extracts have been shown to work through regulat-
ing BDNF. For example, resveratrol (3, 5, 4’-trihydroxy-
trans-stilbene) treatment ameliorates oxidative stress and 
cognitive deficits in a rat model of vascular dementia by 
increasing hippocampal BDNF expression [307]. Chronic 
administration of curcumin, the main active ingredient 
in turmeric, alleviates AD-associated cognitive impair-
ments via upregulating BDNF/ERK and Akt/GSK3β sign-
aling in the hippocampus [308–311]. However, as the low 
bioavailability of curcumin limits its effect in humans, 
some modified curcumin formulations are being studied. 
Huperzine A is a novel lycopodium alkaloid extracted 
from the Chinese herb Huperzia serrata (Qian Ceng Ta). 
It belongs to the class of non-competitive AChEIs, and 
has an antagonistic effect on NMDARs [312]. Huperzine 
A improves oxidative glutamate toxicity by activating 
the BDNF/TrkB-dependent PI3K/Akt/mTOR signaling 
pathway [313]. Moreover, oral administration of huper-
zine A remarkably alleviates the neuronal damage and 
memory deficits by increasing the expression and levels 
of BDNF, which it accomplishes by phosphorylating the 
MAPK/ERK pathway [314]. However, in a recent phase II 
clinical trial in individuals with AD, huperzine A (200 μg) 
failed to demonstrate clinical efficacy [315]. Other herbs, 
such as Ginkgo biloba, Panax ginseng, Rehmannia gluti-
nosa Libosch., Polygala tenuifolia Willd, Salvia miltior-
rhizae Bunge, and Ficus erecta Thunb. leaves, have also 
been investigated for therapeutic efficacy in AD and are 
considered as potential agents that could endogenously 
increase BDNF [316–323]. However, clinical evidence 
supporting the beneficial effect of herbal extracts on 
BDNF is still lacking.

Lithium and zinc
Lithium or zinc supplementation has been proposed as 
a novel AD therapeutic strategy due to their modula-
tory effects on multiple targets, including inflamma-
tion, autophagy, oxidative stress and mitochondrial 
dysfunction [324–327]. Notably, lithium treatment in 
AD patients has been shown to increase BDNF serum 
values (~ 30%) and mitigate cognitive impairment [328]. 
However, a negative correlation between lithium in 
drinking water and changes of AD mortality has been 
reported [329]. It should be noted that limitations in the 
experimental design may have caused these conflicting 
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results. While using “microdoses” of lithium in mild 
cognitive impairment has yielded encouraging results, 
prolonged exposure and high doses of lithium treat-
ment induce toxicity [330, 331]. For example, De-Paula 
et  al. stimulated primary cortical and hippocampal 
neurons with therapeutic (2  mM) and subtherapeutic 
(0.02 and 0.2 mM) dosages of lithium [332]. They found 
that administering low subtherapeutic doses of lithium 
(0.02  mM) had a more extensive and robust effect on 
enhancing neuronal BDNF in different brain regions 
than the higher doses typically considered to be thera-
peutic. Interestingly, the role of lithium on BBB integ-
rity in rats is dependent on their state of mental health. 
Whereas lithium treatment repairs the stress-induced 
BBB hyperpermeability in the hippocampus, it has the 
opposite effect in normal controls [333]. This suggests 
that lithium may interact with BDNF signaling path-
ways in a context-dependent manner.

Experimental research has shown that zinc interacts 
with multiple AD-related pathologies, some of which 
are directly mediated by BDNF. Zinc activates GPR39 
metabotropic receptors in the CNS [334, 335]. GPR39 
knockout mice display decreased CREB and BDNF lev-
els in the hippocampus, but not in the frontal cortex 
[336]. This suggests that the expression of BDNF and 
CREB can only be modulated by zinc in certain brain 
regions. In zinc transporter-3 knockout mice, deficits in 
learning and memory were observed at 6 months of age, 
accompanied by decreased levels of TrkB, NMDAR2b, 
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid receptor (AMPAR)2a, BDNF, and pro-BDNF 
[337]. Oral supplementation with zinc has been found 
to reduce Aβ and tau pathology in the hippocampus, 
ameliorate mitochondrial dysfunction, reduce inflam-
mation, inhibit oxidative stress, and increase BDNF 
concentration [338–343]. Importantly, zinc gluconate 
solution can cross the BBB to biosynthesize fluorescent 
zinc oxide nanoclusters, enabling high spatiotemporal 
bioimaging [344]. Therefore, zinc supplementation has 
the potential to play a dual role in AD treatment, neu-
roprotection and bioimaging, with the latter function 
being beneficial for evaluating its own efficacy. Results 
from nuclear magnetic resonance spectroscopy, light 
scattering, and cryo-electron microscopy indicate that 
Zn2+ binding to the BDNF Met66 prodomain and Val66 
prodomain result in different conformational and mac-
roscopic structures [345]. The substitution of Met66 
results in a higher affinity of prodomain to Zn2+, owing 
to the His40-mediated stabilization of its multimeric 
structure. Moreover, the molecular mechanism of zinc 
deficiency-induced cognitive impairment is associated 
with hippocampal BDNF DNA methylation [346]. In 
brief, this suggests that the upregulation of BDNF may 

contribute to the neuroprotective effects of lithium or 
zinc in AD treatment.

BDNF gene delivery
The primary obstacle for BDNF gene delivery is the selec-
tion and optimization of vehicles. Gene-delivery vehicles 
are mainly divided into two categories: synthetic carriers 
and recombinant viruses. The former includes polymers 
and liposomes, and the latter includes AAV, poxvirus, 
retrovirus, adenovirus, lentivirus and herpes simplex 
virus [347, 348]. Each delivery vector has its advantages 
and disadvantages. Polymer-based vectors used for 
BDNF gene delivery include nanoparticles and hydrogels, 
among others [349]. Liposomes, which are natural bio-
degradable lipid bilayers, have great advantage of being 
similar to natural cell membranes. These nonviral carri-
ers are based on the electrostatic interactions of cationic 
compounds that spontaneously complex with the BDNF 
plasmid. Polymer-based vectors exhibit a number of 
desirable traits, including ease of manufacturing, good 
safety and stability, low immunogenicity, and simple 
methods to incorporate target ligands [350, 351]. Unfor-
tunately, the transfection efficiency of polymers as gene-
delivery vectors is several orders of magnitude lower than 
that of recombinant viruses. Thus, using a recombinant 
virus is still the primary means for BDNF gene delivery 
[352, 353]. On the downside, viral vectors can induce 
inflammation and immune responses. Although the sys-
temic immune response induced by systemic injection of 
viral vectors can be considered harmful in clinical trials, 
gene therapy of the brain is considered a relatively safe 
intervention strategy [354, 355].

BDNF gene delivery exerts protective effects against 
Aβ- and tau-related pathologies in AD. However, this 
treatment has no direct action on Aβ deposition and 
tau hyperphosphorylation. Treating J20 APP transgenic 
mice with Lenti-BDNF gene delivery for 5 months allevi-
ated learning and memory deficits, ameliorated synaptic 
degeneration, and reduced atrophy [126]. However, this 
BDNF treatment did not change amyloid plaque density. 
Similarly, P301L mutant tau transgenic mice receiving 
recombinant human BDNF gene using an AAV8 vector 
(AAV-BDNF) showed higher BDNF levels in the brain 
and improved memory deficits, although the AAV-BDNF 
gene delivery had no direct effect on tau protein, GSK3β, 
and phosphatase PP2A [189]. On the other hand, BDNF 
supplementation indeed did successfully alleviate tauop-
athy-induced memory impairments by inhibiting neuron 
loss, synaptic degeneration, and impaired neurogenesis 
[189].

FDA-approved clinical trials of gene therapies have 
previously applied the AAV delivery strategy because it 
can target specific neurons in the brain regions, allowing 
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widespread and stable expression of proteins with the 
safety of long-term treatment [356–358]. MR-guided 
infusion of AAV2-BDNF has been used to accurately 
and consistently target BDNF into the non-human pri-
mate entorhinal cortex [230]. Moreover, real-time MR 
imaging of AAV in the primate brain has been applied 
to accurately target intracranial structures and moni-
tor the vector distribution in real-time during injection, 
thereby ensuring accurate targeting and spread of the 
vector [359]. Mutant AAVs have also been studied inten-
sively. Delivery of BDNF using the tyrosine triple mutant 
AAV (tm-scAAV2) showed that the RNA expression of 
BDNF was about 300 times higher than that of the AAV 
group, and produced significantly higher proteins [360]. 
These methods enable more effective clinical translation 
to alleviate neuronal loss and prevent neuronal dysfunc-
tion in AD. In February 2021, a first-in-human Phase I 
clinical trial was launched to assess the safety and efficacy 
of modified AAV2-BDNF in the treatment of patients 
with AD or MCI [361]. The modified method for deliv-
ering BDNF will be more conducive for the delivery and 
distribution of BDNF into the entorhinal cortex and 
hippocampus.

Another approach for extended delivery of BDNF is 
the use of cell-based vectors, such as neural stem cells 
(NSCs), mesenchymal stem cells (MSCs), Schwann cells, 
CD4 T cells, and fibroblasts [362–365]. Direct BDNF 
gene delivery using MSC can overcome BBB block-
ing [366]. In previous research, BDNF-transduced bone 
marrow stromal cells (BMSCs) were transplanted by 
intravenous injection into irradiated female SJL/J mice 
for 8 weeks, resulting in a dramatic delay of experimen-
tal autoimmune encephalomyelitis onset and a reduc-
tion in overall severity [367]. On the other hand, these 
BDNF-producing cells only allow prolonged delivery of 
BDNF. Unfortunately, this method is difficult to be con-
trolled precisely because the delivered BDNF dosages 
are dependent on cell survival and the stability of trans-
fection. Another concern is that bone marrow-derived 
cells can migrate and reside in various nonhematopoi-
etic tissues, therefore producing undesired effects. Thus, 
encapsulation of these BDNF-producing cells has been 
proposed to achieve continuous and local release. Encap-
sulated BDNF-producing fibroblasts in alginate-poly-
L-ornithine survived for at least one month after being 
transplanted into the site of cervical spinal cord injury in 
rats without immunosuppression [363]. Transfection of 
BDNF gene recombinant MSCs via the adhesive peptide 
PPFLMLLKGSTR-modified scaffold improved cell sur-
vival and BDNF expression [368]. Alginate-based com-
positions have also been used to transport NSCs-BDNF 
and BMSCs-BDNF, maintaining long-term survival 
and proliferation of cells, as well as controlled release of 

BDNF [362]. However, when delivering the BDNF gene to 
APP transgenic mice after “disease onset”, no protection 
against neuronal death was found following a 1.5-month 
therapeutic period [88]. This suggests that BDNF gene 
delivery might not be a suitable therapeutic strategy for 
AD at all stages of the disease. As such, both early and 
long-term treatments may be required.

Physical interventions
Numerous physical interventions have been used to 
slow down the progression of AD, such as laser therapy, 
repetitive transcranial magnetic stimulation (rTMS) and 
exercise [369–372]. Low-level laser treatment has been 
shown to alleviate Aβ-induced neuronal loss and den-
dritic atrophy by enhancing BDNF via ERK/CREB path-
way activation [32]. In clinical trials, laser therapy has 
been successfully applied to treat prostate cancer, lung 
cancer, and acute pain [373–375]. However, it has not 
been translated well to AD patients. Novel approaches 
and more clinical studies are needed to evaluate the effi-
cacy of laser therapy for Alzheimer’s patients. rTMS is a 
non-invasive therapy for cognitive dysfunction in AD that 
acts by regulating neuronal excitability [376]. Different 
frequencies of rTMS target different brain regions, mak-
ing it theoretically possible to improve cognitive deficits 
that are highly localized to a particular brain region [377]. 
Additionally, the cognitive benefits of rTMS have been 
associated with the induction of hippocampal BDNF 
expression. Low-frequency (1  Hz) rTMS increased hip-
pocampal BDNF and NMDAR expression, and rescued 
deficits in LTP and spatial memory in an Aβ1-42-induced 
toxicity rat model [378]. While this approach seems 
promising, changes in BDNF expression following rTMS 
treatment are difficult to detect in human brain tissues. 
The role of transcranial direct current stimulation (tDCS) 
in memory improvement has also been investigated as 
a possible intervention strategy that could promote the 
BDNF signaling pathway [379, 380]. Mice subjected to 
tDCS stimulation exhibit enhanced acetylation at Bdnf 
promoter I that persists for one week, suggesting that 
remodeling of Bdnf may mediate the long-lasting effects 
of tDCS treatment. The action of tDCS varies in Val/Val 
and Met/Met carriers [381]. Compared with BDNFVal/Val 
mice, BDNFMet/Met show decreased levels of BDNF exon 
IV- and VI-specific transcripts, higher trimethyl-histone-
H3-Lys27 binding to BDNF exon V, VI and VIII promot-
ers, and impaired trafficking of BDNF VI transcript to 
CA1 and CA3 regions. Moreover, tDCS promotes syn-
aptic plasticity via activity-dependent BDNF secretion 
[382].

Physical exercise, especially aerobic exercise, is benefi-
cial for improving cognitive function. Studies have attrib-
uted many of the therapeutic benefits of exercise in AD 
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to its effect on BDNF levels [383, 384]. Exercise increased 
the levels of pCREB, CaMKIV and BDNF in the CA1 and 
dentate gyrus of rats with  intracerebroventricular  infu-
sion of 250 pmol/day Aβ1-42 peptides for two weeks [385]. 
Four weeks of cardiovascular exercise in mice led to a 
remarkable increase in BDNF mRNA and protein levels, 
accompanied by an improved synaptic load in the dentate 
gyrus region [386]. Moreover, six months of voluntary 
physical exercise in 5× FAD mice rescued cognitive defi-
cits by increasing astrocytic BDNF in the hippocampus 
[387]. Astrocyte-released BDNF plays a vital role in mod-
ifying the morphology and density of dendritic spines 
through a truncated form of the TrkB (TrkB T1) recep-
tor [388]. The TrkB T1 receptor specifically localizes at 
GFAP+ astrocytes to increase the number of GFAP+ 
astrocytes and improve Aβ plaque-associated astrocytic 
morphology via the BDNF/TrkB signaling pathway [386]. 
A ten-week treadmill training program in APP/PS1 mice 
also restored hippocampal memory and dendritic arbor 
in the CA1 and CA3 regions via BDNF/TrkB signaling 
pathways [389]. For obvious reasons, these results can-
not be directly translated to humans. Exercise protocols 
used in animal studies are significantly different from 
those used in humans, and how exercise enhances BDNF 
levels during AD is still unknown. A meta-analysis by 
da Costa Daniele et  al. found that exercise indeed pro-
motes neurogenesis and reduces cerebral Aβ deposition 
in both healthy and dementia models [390]. However, 
evidence on exercise-induced inflammation, oxidative 
stress, metabolism and insulin sensitivity was scarce. 
Few studies have compared the beneficial effects among 
acute exercise, chronic exercise and high-intensity train-
ing in AD. It has been demonstrated that aerobic exercise 
training is associated with increased polyunsaturated free 
fatty acids, decreased phospholipids, sphingolipids and 
ceramides, and alterations of gut microbiome metabo-
lites–among which, approximate 30% of these metabo-
lites are correlated with altered BDNF levels [391]. Thus, 
more direct evidence should be obtained to confirm how 
to use exercise to prevent or treat AD.

Regulation of microbiota
A growing body of evidence has suggested that dys-
regulation of the human microbiome may contribute 
to the pathogenesis of AD. Poor dental status (i.e., loss 
of teeth) has been considered an early sign of AD, and 
irregular tooth brushing is a high risk factor for demen-
tia [392, 393]. P. gingivalis, T. forsythia, and T. denticola 
have been implicated as the main pathogens responsible 
for triggering inflammatory responses, and are associ-
ated with the pathogenesis of AD [394]. Gut microbial 
diversity is altered in AD patients [395]. Compared with 
healthy controls, AD individuals’ microbiome show a 

lower abundance of Firmicutes and Actinobacteria, and 
a higher abundance of Bacteroidetes at the phylum level. 
Researchers have also identified 13 genera as poten-
tial CSF biomarkers of AD pathology. Among these, 
increased levels of Dialister and SMB53 are associated 
with less AD pathology. The abundance of Bacteroides, 
Turicibacter and SMB53 (family Clostridiaceae) is closely 
linked with CSF chitinase-3-like protein 1 in AD patients, 
supporting that the change of intestinal bacterial abun-
dance may be correlated with glial activation in AD.

The BDNF level is closely related to the composi-
tion of gut microbiota. Compared to mice with normal 
gut microbiota, germ-free mice show lower mRNA and 
protein concentration of BDNF in the hippocampus, 
amygdala and cortex [396–398]. After transferring fecal 
microbiota, the levels of cognitive behavior, inflamma-
tory mediators, microglia activity, and BDNF in recipient 
mice are similar to those of donor mice [399]. This mech-
anism is associated with the activation of AKT-GSK3β/
β-catenin pathways. These results suggest that the CNS 
BDNF levels can be significantly disturbed due to the 
absence of gut microbiota and restored by microbiota 
transplantation. Furthermore, probiotic supplements 
are beneficial for up-regulating BDNF levels. VSL#3 is a 
probiotic mixture composed of 8 Gram-positive bacterial 
strains. In aged (20–22 months) male rats, VSL#3 treat-
ment increases the abundance of Actinobacteria and Bac-
teroidetes, suppresses microglial activation, and enhances 
BDNF levels [400]. How might gut microbiota regulate 
BDNF levels? Some neurochemicals such as neurotrans-
mitters, butyrate, short-chain fatty acids, and second-
ary bile acids, can be synthesized and recognized by gut 
microbiota [396, 401–406]. Accordingly, gut microbiota 
may influence CNS BDNF function by modulating the 
activity of these neurochemicals.

Exogenous administration of BDNF
Intravenous injection of BDNF is limited by its short 
plasma half-life (as short as 0.92  min) and poor BBB 
permeability [244]. Thus, it is a challenge to evaluate 
the local distribution and action of BDNF in targeted 
brain regions. As shown in Table 1, some precise local 
delivery methods have been proposed, including intra-
hippocampal [407], intra-cortical [408–411], intra-
nucleus accumbens [412], intranasal [413, 414], and 
intra-cochlear [415] infusions. Preclinical studies have 
shown that the brain-specific delivery of BDNF is ben-
eficial for promoting the expression of BDNF receptors, 
inducing lasting potentiation of synaptic transmission, 
and increasing neurogenesis and ectopic granule cells 
[416, 417]. However, exogenous BDNF delivery is hard 
to apply in clinical settings because most direct delivery 
methods of BDNF are highly invasive, and treatment 
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duration and dosing times are ambiguous. Moreover, 
BDNF is unstable and easy to degrade in a biological 
medium. Intranasal delivery of 70 μg [125I]-radiolabeled 
BDNF results in delivery of 1.6–25.1  ng/ml of BDNF 
within 25  min in brain parenchyma, and this value 
increases further by 60 min [418]. In addition to reach-
ing the CNS directly, this concentration of BDNF is 
sufficient to activate the PI3K/Akt pathway. Thus, a 
great deal of evidence supports the clinical potential 
of using intranasal delivery of BDNF because (1) there 
is a large surface area for drug absorption through 

the nasal mucosa, (2) intranasal delivery bypasses the 
BBB, (3) the needle-free and easy self-administration 
improves patients’ compliance, (4) it enables both rapid 
and direct CNS delivery of BDNF with high bioavail-
ability by avoiding first-pass hepatic clearance, (5) it 
causes minimal systemic exposure, (6) a small dosage 
can be used, avoiding adverse effects, and (7) no drug 
modification is required. The dosage of intranasal pro-
tein is minimal, whereas the administration period 
is prolonged. Intranasal delivery of BDNF (42  pmol, 
1 μM)-PBS solution (bilateral, administered once every 

Table 1  Local delivery routes of exogenous BDNF

BBB blood–brain barrier, BDNF brain-derived neurotrophic factor, CREB cAMP-response element binding protein, ERK extracellular regulated protein kinases, SA self-
administration, TrkB tyrosine kinase receptor type B, DG dentate gyrus, vHPC ventral hippocampus, LTM g long-term memory, dmPFC dorsomedial prefrontal cortex, 
NAc nucleus accumbens, vmPFC ventromedial prefrontal cortex, BSA bovine serum albumin

Delivery route Model Targeted brain region BDNF delivery vehicle Results References

Intrahippocampal infusion Rats Hippocampus BDNF-containing PBS Improves lasting potentiation 
of synaptic function in the 
dentate gyrus

[416]

DG BDNF (no detailed information) Increases neurogenesis of DG; 
most new neurons appear to 
become granule cells

[417]

vHPC BDNF dissolved in PBS Increases excitability in infral-
imbic targets and supports 
extinction memories

[411]

CA1 BDNF-containing sterile saline Reverses the impairments in 
memory persistence; gener-
ates persistent LTM storage via 
activation of ERK

[407]

Intracortical infusion Rats dmPFC BDNF-containing PBS Alleviates cocaine-induced 
decrease in basal extracellular 
glutamate; reduces cocaine-
mediated increase in extracel-
lular glutamate with the NAc

[408]

Inhibits cocaine-induced phos-
phorylation of ERK and CREB

[409]

Mice vmPFC BDNF reconstituted in 0.9% 
saline

Rescues paradoxical reversal 
learning enhancement 
induced by stress or prefrontal 
cortical damage

[410]

Intra-nucleus accumbens 
injection

Rats Nucleus accumbens BDNF dissolved in saline Suppresses dopamine release 
and dopamine-related behav-
iors induced by methampheta-
mine

[412]

Intranasal delivery Rats Nasal cavity 125I-BDNF dissolved in sterile 
PBS

Intranasal delivery of 70 μg 
[125I]-radiolabeled BDNF results 
in 1.6–25.1 ng/ml within 
25 min in brain parenchyma

[418]

BDNF reconstituted in sterile 
PBS

Alleviates cerebral local inflam-
mation induced by ischemia/
reperfusion

[414]

BDNF-containing saline Improves visual depth percep-
tion in amblyopic rats

[413]

Intracochlear infusion Cats Cochlear BDNF-containing sterile artifi-
cial perilymph

Increases the total volume 
of cochlear nucleus to exert 
neurotrophic effects

[407]

Guinea pigs BDNF-containing saline with 
BSA (1%)

Enhanced survival of spiral 
ganglion cells

[450]
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two days for a total of seven doses over 14  days) sig-
nificantly improves the memory performance [419]. In 
contrast, a higher BDNF dosage (10 μM) does not lead 
to further improvements, indicating this method has a 
ceiling effect.

Although several reviews and meta-analyses have 
revealed that the intranasal delivery route is safe and 
effective [420, 421], there are still some limitations to a 
carrier-free delivery of BDNF. First, intranasal BDNF 
delivery can also enter nasal-associated lymphatics and 
deep cervical lymph nodes [422]. Thus, the effects of 
intranasal BDNF on the nasal mucosa and the unde-
sired immune response should be examined. Second, 
simply delivering BDNF in solution is challenging to 
retain in the nasal cavity due to the fast diffusion from 
the administered sites and rapid clearance by the muco-
ciliary clearance system [423]. Third, compared with the 
amount of BDNF applied in the nasal cavity, the amount 
of BDNF reaching the CNS is small (generally below 1%) 
[424]. Fourth, some nasal cytochrome P450/proteases 
may degrade BDNF. Finally, the pharmacokinetic profile 
of intranasal BDNF must be characterized. Thus, many 
other carrier-based approaches have been studied for 
effective nose-to-brain administration of BDNF.

Nanoencapsulation technologies have been widely 
utilized to solve the limitations of carrier-free delivery 
of macromolecular drugs. Table  2 summarizes some 
polymeric nanoparticles used for BDNF delivery. The 
polymeric nanoparticles are solid colloidal particles in 
which BDNF can be dissolved, entrapped, encapsulated, 
or chemically bound to the polymer matrix [425, 426]. 
PEGylation of BDNF can enhance the diffusion of BDNF 
in the brain tissue and spinal cord [427, 428]. PEG-based 
BDNF nano-system, mediated by electrostatic coupling 
and hydrogen bonding, is beneficial for stabilizing BDNF, 
protecting against the nonspecific binding with serum 
proteins, and activating TrkB as well as other downstream 
signaling pathways [429–431]. Compared with native 
BDNF, intranasal administration of the nano-BDNF com-
plex can enhance BDNF levels in the hippocampus and 
brainstem regions by regulating the viscosity and perme-
ability of nasal mucosa [429]. PLGA nanoparticles help 
to protect drugs from enzymatic degradation and pro-
long the half-life [432, 433]. To enable sustained local 
release of BDNF, PLGA microparticles are further pat-
terned with hydrogels [434, 435]. The short-range elec-
trostatic interactions between PLGA and BDNF protein 
make BDNF adsorb to the surface of nanoparticles rather 
than encapsulate within the nanoparticles. Meanwhile, 
the amphiphilic hydrogel polymers enhance the interac-
tion between BDNF and PLGA nanoparticles, resulting 
in a sustained release for at least 28 days. Therefore, the 

release profile of BDNF can be regulated by modifying 
the components of nano-formulations [436].

As derivatives of extracellular matrix (ECM) com-
ponents, natural biopolymers are advocated to deliver 
macromolecular drugs and can be adjusted for intrana-
sal drug administration [437]. Collagens are the most 
abundant proteins to maintain the structural integrity 
of ECM. BDNF fused with a collagen-binding domain 
(CBD-BDNF) can specifically bind to collagen [438–440]. 
Chitosan has similar structural characteristics as glycosa-
minoglycan, which is the main component of the ECM 
[441]. As shown in Table  3, collagen and chitosan scaf-
folds used for BDNF delivery are generally produced on a 
macroscopic scale. However, native ECM is located in the 
nanofibrous network structure. To develop biomimetic 
scaffolds, a collagen-chitosan complex has been made to 
prepare nanoscale scaffolds [442]. However, no nanopar-
ticles based on collagen or chitosan have been reported 
for BDNF delivery. Alginate, naturally occurring linear 
unbranched polysaccharides extracted from brown algae 
cell walls, has been considered as an ideal biodegradable 
polymer for continuous delivery of proteins [443]. This 
is because alginate can be crosslinked by adding diva-
lent cation to the aqueous solution. During the gelation 
process, proteins can then be incorporated into alginate 
matrices [444]. As a bioadhesive polymer, alginate can 
specifically facilitate the delivery to mucosal tissues [445]. 
Another natural polysaccharide, agarose, is derived from 
red algae [446]. Upon cooling hot agarose solution in 
water, a physical crosslinked three-dimensional gel net-
work can be obtained via H-bonding and hydrophobic 
interactions [447]. Interestingly, proteins such as BDNF 
exhibit various degrees of H-bonding and hydrophobic 
interactions [448]. Therefore, agarose has been used as a 
good coupling partner for loading and delivering BDNF 
without inflammatory or immunological responses. As 
shown in Table 3, the alginate- and agarose-based hydro-
gel system used for BDNF delivery is characterized by 
sustained release of BDNF, protects neuronal functions 
and minimizes inflammatory damage. Thus, alginate and 
agarose hydrogel scaffolds have been used for BDNF-
producing cell transplants [362, 366, 449]. In vivo, these 
encapsulated BDNF-producing cells can release bioactive 
BDNF, which persists in the injured site over one month 
and promotes host axon growth. Accordingly, the intra-
nasal delivery and biodegradable nanocarriers may help 
the development of AD therapy by targeting BDNF. To 
improve the availability of exogenous BDNF therapy, 
important questions should be answered concerning the 
noninvasive transport routes, the therapeutic doses of 
BDNF, and the safety and clinical efficacy of administer-
ing BDNF to AD patients.
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Conclusion
BDNF is a key neurotrophic molecule that has been 
shown to enhance synaptic plasticity and improve 
learning and memory. Disruption of BDNF has been 
found in different stages of AD. In this review, we dis-
cuss the effect of BDNF on AD-related pathologies, 
including Aβ accumulation, tau phosphorylation, neu-
roinflammation, neuronal apoptosis, and cognitive 
decline. BDNF/TrkB and the downstream cell signaling 
pathways, including PI3K/Akt, ERK/CREB, and  PKC/
GSK3, are further discussed for their effects on AD. 
Although some data reported that BDNF did not affect 
AD, higher BDNF levels indeed reduced the risk of AD. 
Most AD drugs currently used in clinical (e.g. done-
pezil, galantamine, rivastigmine and tacrine) and many 
therapeutic agents under development increase BDNF 
biosynthesis. Therefore, even though BDNF is not the 
primary molecular target of these drugs, we should 
not lose sight that BDNF is implicated in the mecha-
nism of cognitive improvement. Many strategies have 
also been reported to support the possibility that exog-
enous BDNF supplementation would be an alternative 
option to improve cognitive function in AD. Biodegrad-
able nanocarriers combined with intranasal delivery of 
BDNF to avoid invasive administration and improve 
brain-targeted distribution may provide novel promis-
ing approaches for AD therapy.

BDNF plays several vital roles in most neural cells 
and peripheral systems. In addition to AD, it is also 
involved in several metabolic syndromes, including 
atherosclerosis, hypertension, hyperglycemia, type 2 
diabetes mellitus, and many other neuropsychiatric dis-
eases such as depression, Parkinson’s disease and Hun-
tington’s disease. More in-depth studies are needed to 
understand the role of different isoforms of BDNF, and 
the relationship between peripheral and brain BDNF 
under pathological conditions.
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