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Abstract 

Background:  Interventional trials in amyotrophic lateral sclerosis (ALS) suffer from the heterogeneity of the disease 
as it considerably reduces statistical power. We asked if blood neurofilament light chains (NfL) could be used to antici‑
pate disease progression and increase trial power.

Methods:  In 125 patients with ALS from three independent prospective studies—one observational study and two 
interventional trials—we developed and externally validated a multivariate linear model for predicting disease pro‑
gression, measured by the monthly decrease of the ALS Functional Rating Scale Revised (ALSFRS-R) score. We trained 
the prediction model in the observational study and tested the predictive value of the following parameters assessed 
at diagnosis: NfL levels, sex, age, site of onset, body mass index, disease duration, ALSFRS-R score, and monthly 
ALSFRS-R score decrease since disease onset. We then applied the resulting model in the other two study cohorts 
to assess the actual utility for interventional trials. We analyzed the impact on trial power in mixed-effects models 
and compared the performance of the NfL model with two currently used predictive approaches, which anticipate 
disease progression using the ALSFRS-R decrease during a three-month observational period (lead-in) or since disease 
onset (ΔFRS).

Results:  Among the parameters provided, the NfL levels (P < 0.001) and the interaction with site of onset (P < 0.01) 
contributed significantly to the prediction, forming a robust NfL prediction model (R = 0.67). Model application in the 
trial cohorts confirmed its applicability and revealed superiority over lead-in and ΔFRS-based approaches. The NfL 
model improved statistical power by 61% and 22% (95% confidence intervals: 54%–66%, 7%–29%).

Conclusion:  The use of the NfL-based prediction model to compensate for clinical heterogeneity in ALS could signifi‑
cantly increase the trial power.
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Introduction
The Amyotrophic Lateral Sclerosis Functional Rating 
Scale Revised (ALSFRS-R) score has become the pre-
dominantly used primary outcome parameter in ALS 
trials [1, 2]. The ALSFRS-R assesses the functional capa-
bility of ALS patients in daily life, and the score points 
lost per month are an established parameter for disease 
progression rate [3]. Interventional trials use the score 
to investigate if a treatment slows down the functional 
decline.

Due to the heterogeneity of the disease, the progres-
sion rates vary greatly between patients [4–7]. Figure 1a 
shows the variability of progression rates in an example 
of our trial participants. The interindividual differences 
hamper the ability to recognize a treatment effect and 
thereby reduce the statistical power. Therefore, the dis-
ease heterogeneity is a major challenge in the design 
of ALSFRS-R-based trials [8–10]. The power issues 
have been discussed in some positive ALSFRS-R-based 
phase 2 trials, of which the positive results could not 
be reproduced in phase 3, as well as in the context of 
many negative trials in ALS [8, 11–15]. Due to the low 
prevalence of ALS, the heterogeneity cannot easily be 
compensated by increasing the number of trial partici-
pants [16]. Using prediction models to anticipate the 

patients’ disease progression rates throughout a trial is 
considered a promising strategy to meet this challenge 
[17–21] (see also Fig. 1b).

However, there is still a lack of sufficiently vali-
dated prediction models for the ALSFRS-R course, 
and thus no implementation of such models in ran-
domized controlled trials to date. Instead of using 
prediction models, current clinical trials have meas-
ured the ALSFRS-R decrease during an observational 
phase of several months in the enrolment process or 
used the monthly decrease of ALSFRS-R score since 
disease onset (ΔFRS) to estimate a patient’s disease 
progression.

Neurofilaments are increasingly recognized as a 
prognostic biomarker for ALS [22, 23]. For blood levels 
of neurofilament light chains (NfLs), a moderate corre-
lation with disease progression rate has repeatedly been 
reported [24–28]. The good accessibility, objectivity, 
and prognostic value have made NfL a promising can-
didate biomarker to improve prediction models.

In this study, we set out to study if NfL levels could 
be used to improve prognostic models, and evaluate the 
transferability of the prediction models to new datasets 
to test their practical applications and to quantify the 
potential impact on trial power.

NCT00868166, registered March23, 2009; NCT02306590, registered December 2, 2014.

Keywords:  Neurofilament light, Prediction model, Disease progression, Amyotrophic lateral sclerosis, Interventional 
trials, Statistical power

Fig. 1  Heterogeneity of disease progression rates and possible application of a prediction model. a The heterogeneity of disease progression rates 
in ALS, as shown by ALSFRS-R slopes of each study participant in the three cohorts of this study during the follow-up time. b The application of a 
prediction model in one patient receiving an efficient treatment. Note that without the use of a prediction model, the treatment effect (difference 
between the red and green lines) can hardly be differentiated from natural heterogeneity. Eventually, the use of the prediction model (yellow lines) 
reveals a significant slowdown of disease progression
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Fig. 2  Flowchart of participant inclusion from three cohorts
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Materials and methods
Study cohorts
This study included three independent ALS cohorts, 
an observational cohort for model development (DC) 
and two trial cohorts for model validation (V1 and V2) 
(Fig. 2).

The DC cohort consists of patients with ALS who par-
ticipated in an observational study at the Department 
of Neurology at Ulm University (German Network for 
Motor Neuron Diseases, MND-NET site Ulm, Ulm, Ger-
many). At the time of analysis, the observational study 
included prospective clinical parameters and biosam-
ples of 1440 patients collected between 07/2012 and 
07/2019, of whom 560 had an available blood sample at 
diagnosis. To ensure a trial-like longitudinal cohort and 
the broadest possible progression spectrum for model 
development, we defined the following eligibility criteria: 
patients at their time of diagnosis with a probable (clini-
cally or laboratory-supported) or definite ALS according 
to the revised version of the El Escorial criteria [29], with 
follow-up blood sampling between 5 and 12 months after 
diagnosis. Also, the patients needed a documented con-
tinuous riluzole treatment since the use of riluzole is an 
inclusion criterion in most interventional trials. Treat-
ments with edaravone, rasagiline, or high-caloric nutri-
tional supplements were defined as exclusion criteria due 
to potential disease-modifying effects [30–32].

The validation cohorts were acquired from the pla-
cebo arms of two completed ALS trials. V1 consisted of 
patients on placebo who participated in LIPCAL ALS, 
a trial investigating a high caloric fatty diet (conducted 
between 02/2015 and 09/2018; n = 201; follow-up time: 
18 months) [32, 33]. In this study, serum was collected on 
a voluntary basis, resulting in blood sample availability 
in 46 patients [33]. V2 consisted of patients who partici-
pated in the MitoTarget ALS trial investigating olesox-
ime, a drug interacting with mitochondrial membrane 
proteins and associated with neuroprotective features 
(conducted between 05/2009 and 09/2011; n = 512; fol-
low-up time: 18 months) [19, 34]. We used EDTA plasma 
samples from a randomly selected subgroup of patients 
who had completed the 18-month follow-up, equivalent 
to 33 patients on placebo [19]. In both trials, the patients 
were continuously treated with riluzole.

Model development
The prediction model was developed in the DC cohort in 
patients at their time of diagnosis using multiple linear 
regression, with the subsequent decrease of ALSFRS-R 
score per month (ALSFRS-R slope; pt/m) as the depend-
ent variable. We investigated the predictive value of 
blood NfL levels at the time of diagnosis and the clinical 

parameters sex, age, site of onset (bulbar or spinal), body 
mass index, disease duration, monthly ALSFRS-R 
decrease since disease onset (ΔFRS), and ALSFRS-R 
score at diagnosis as independent variables. NfL was log-
arithmically transformed to ln(NfL) to achieve a normal 
distribution.

To determine the predictive quality of the candidate 
predictors, we compared all possible combinations of 
candidate predictors using a sequence of F-Tests. To 
identify the variables for the final prediction model, we 
eliminated in a one-by-one manner the non-significant 
variables with the largest P-value in the coefficient analy-
sis until only variables remained that statistically signifi-
cantly contributed to the prediction.

Model validation
For external model validation in the two validation 
cohorts, we used the patients’ baseline data and our 
model to predict each patient’s future ALSFRS-R slope. 
After this, we evaluated the absolute deviation between 
the predicted ALSFRS-R slopes and the ALSFRS-R 
slopes observed during the trial follow-up time, and visu-
ally checked for accuracy and systematic deviations.

In the second step, we split the follow-up time in the 
validation cohorts and separately computed ALSFRS-
R slopes for the first three months of the study period 
mimicking an observational period (lead-in) and the sub-
sequent time mimicking an interventional period. The 
splitting allowed us to compare the ALSFRS-R slopes 
during the interventional period with ALSFRS-R slopes 
predicted for each patient in three different ways: (1) 
using our prediction model with NfL levels and clinical 
parameters assessed at study baseline, (2) using ΔFRS, 
and (3) using the ALSFRS-R slope during the lead-in 
period.

The predictive quality of each prediction method was 
evaluated using established statistical methods: root-
mean-square error (RMSE), Coefficient of Determination 
(CoefD), and variance change (see Statistical methods).

Finally, we analyzed each method’s impact on statistical 
power using an approach based on mixed-effects models 
introduced by Küffner et  al. [18] (see Statistical meth-
ods). Briefly, it computes the hypothetical reduction in 
trial size that could be compensated by normalizing on 
the disease progression rates derived from a predictive 
model. Using this method, trial size reduction becomes a 
measure for the increase in statistical power.

NfL assay
Blood samples were obtained from peripheral blood 
and stored with strict adherence to standard operating 
procedures [35]. NfL concentrations in serum (DC and 
V1) or EDTA-plasma (V2) were measured in the same 
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laboratory (Department of Neurology, University of Ulm, 
Germany) on a SIMOA HD-1 analyzer, using a com-
mercially available kit (Quanterix, Lexington, MA) with 
an analytical limit of detection of 0.038  pg/ml given by 
the manufacturer, equally usable for serum and EDTA-
plasma. Temporal fluctuations of ln(NfL) levels were 
studied by relative deviations from the patient’s mean 
ln(NfL) value.

Statistical methods
All statistical analyses were done in R version 4.0.0 using 
R packages lme4 (version 1.1.23), tidyverse (version 
1.3.0), and cowplot (version 1.0.0) at a level of signifi-
cance of P < 0.05.

The ALSFRS-R slopes in the DC were computed by lin-
ear regression, using all ALSFRS-R scores of a patient and 
their corresponding times since disease onset. The trial 
ALSFRS-R slopes were computed using linear regres-
sion with a patient’s ALSFRS-R scores assessed through-
out the trial and trial duration. The ΔFRS was computed 
using the formula:

with 48 being the maximum ALSFRS-R score.
Goodness-of-fit for the internal validation was meas-

ured as the adjusted R2 and its square root R. For exter-
nal validation, RMSE, CoefD, and variance change were 
computed with the following formulas:

where p is the predicted ALSFRS-R slope, y the ALS-
FRS-R slope in the interventional period, and m the 
mean of y. Trend lines and standard error in Fig. 5 were 
calculated using ggplot2’s geom_smooth function with 
method = ̀ lm`.

To compute the trial size savings for a randomized, pla-
cebo-controlled clinical trial, we adopted the approach by 
Küffner et al. [18]. We randomly assigned patients from 
the validation cohorts (V1/V2) to treatment and control 
groups with equal sizes, retained only timepoints from 
the interventional period, and centered time to 0 at the 
start of the interventional period for each patient. We 
then fitted the following multivariable mixed-effects 

(1)

�FRS =
48− ALSFRS − R Score at baseline

months between disease onset and baseline

(2)RMSE =

√

(
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)
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model for one cohort at a time and using the predictions 
from the NfL model, the lead-in period and ΔFRS:

where aij is the ALS-FRS-R value of patient i at time 
point j, ai1 is the first time point used as model offset, tij 
is the time since baseline, treatmenti is 0 (control) or 1 
(treatment), and pi is the predicted progression rate. In 
this model, β0 is the global intercept, β1 is the slope over 
time with a random effect per patient bi, β2 is the coef-
ficient measuring the treatment effect and β3 and β4 are 
coefficients for the predicted slope.

The standard error of β2 was used to compare mod-
els for their statistical power to detect treatment effects 
using the formula

where SEalt is the standard error of β2 in the above model, 
and SEnull is the standard error in a reduced model lack-
ing all terms involving predictive information pi. To 
account for each patient’s random assignment to a pla-
cebo or treatment group in the mixed-effects models, we 
applied each model in 10,000 permutations per predic-
tive method and cohort. The reported 95% CIs are Monte 
Carlo CIs, i.e. the 2.5% and 97.5% quantiles across these 
permutations.

Results
Patient characteristics
In the observational study, 46 patients were eligible for 
model development. ALS was diagnosed at median 
10.1  months (interquartile range [IQR] 6.51–19.4) after 
symptom onset at an ALSFRS-R score of 42 points 
(IQR 39.8–44.0). During a median follow-up time of 
13.1 months (IQR 6.8–19.5) we observed a median ALS-
FRS-R slope of -0.73 pt/month (IQR -0.34 to -1.16). The 
composition of the validation cohorts was predefined by 
the eligibility criteria of the corresponding studies and 
the availability of blood samples for NfL measurement 
(flow chart, see Fig. 2). Table 1 displays the patient char-
acteristics of the three cohorts.

NfL and its interaction with site of disease onset enable 
robust predictions
Multivariate regression, including all candidate predic-
tors in the development cohort, showed that the ALSFRS-
R slopes were significantly correlated with the ln(NfL) 
values (P < 0.001) and their interaction with site of onset 
(P < 0.01). Higher ln(NfL) levels were indicative of faster 
disease progression, and the interaction with site of onset 

(5)

aij =ai1 + β0 + bitij + β1tij + β2tijtreatmenti

+ β3pi + β4pitij

(6)100×
(

1− (SEalt/SEnull)
2
)
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resulted in a greater change of the ALSFRS-R slope per 
change of one NfL log unit in bulbar-onset patients com-
pared to spinal-onset patients (Fig.  3). The candidate 

predictors sex, age, body mass index, disease duration, 
ΔFRS, and ALSFRS-R score at diagnosis did not add sig-
nificantly to the prediction and hence were not included 
in the final model. By testing all possible compositions of 
predictors in multivariate linear regression models, we 
found that the models including ln(NfL) always outper-
formed corresponding models without ln(NfL).

The final NfL model had the following form, where S is 
the site of onset (S = 1 for spinal, S = 0 for bulbar):

Applying this formula, an NfL value of 100  pg/ml 
results in an ALSFRS-R slope of − 0.75 pt/m  —  at this 
value, patients with a spinal disease onset and those with 
a bulbar disease onset would have an identical ALSFRS-
R slope. The model predicts a ± 0.5 pt/m change of pro-
gression rate by an NfL level change of ± 1.67 logarithmic 
units for patients with spinal onset and ± 0.44 logarith-
mic units for patients with bulbar onset, respectively.

Internal validation of the model showed a correlation 
of R = 0.67 between predicted and measured ALSFRS-R 
slopes. We verified the model, applying the same develop-
ment process in the validation cohorts; this led us to the 
same significant predictors showing similarly high cor-
relations (R = 0.65 and 0.62). Including the site of onset 
significantly improved model performance compared to 
using ln(NfL) as the only predictor in each cohort.

NfL levels are stable over time
To assess the temporal stability of ln(NfL) measure-
ments for each patient, we visualized the trajectories 

(7)
ALSFRS-R slope = 4.45− 1.13 ln(NfL)− 3.82 S

+ 0.83 S ln(NfL)

Table 1  Patient characteristics

The table shows the patient characteristics of the three cohorts used for model development and validation. No ALSFRS-R slope in interventional period is specified 
for the development cohort, as this is not an interventional trial cohort

Cohort Development cohort 
(n = 46)

Validation 1 (n = 46) Validation 2 (n = 33)

Male/Female sex, n (%) 27 (59)/19 (41) 32 (65)/14 (35) 23 (70)/10 (30)

Spinal/Bulbar onset, n (%) 36 (78)/10 (22) 35 (71)/14 (29) 26 (79)/7 (21)

Age at disease onset, mean (SD), years 60.1 (11.3) 61.9 (10.4) 49.5 (11.7)

Age at baseline, mean (SD), years 61.3 (11.6) 63.4 (10.2) 51.3 (11.7)

Disease duration at baseline, median (IQR), months 10.1 (6.51–19.4) 14.8 (9.4–28.4) 20 (13.0–29.5)

ALSFRS-R Score at baseline, median (IQR), points 42 (39.8–44.0) 37 (30.5–42.0) 39 (34.0–43.0)

ΔFRS, median (IQR), -pt/m 0.56 (0.26–0.98) 0.60 (0.34–1.15) 0.44 (0.28–0.76)

BMI at baseline, median (IQR), kg/m2 25.4 (24.1–28.8) 24.0 (22.6–26.7) 23.8 (22.4–26.6)

Follow-up time, median (IQR), months 13.1 (6.8–19.5) 13.0 (9.0–18.0) 18.0 (18.0–18.0)

ALSFRS-R slope in entire follow-up, median (IQR), -pt/m 0.73 (0.34–1.16) 1.02 (0.48–1.55) 0.61 (0.32–0.86)

ALSFRS-R slope in interventional period, median (IQR), -pt/m 0.83 (0.49–1.49); n = 40 0.50 (0.25–0.87); n = 33

Baseline NfL levels, median (IQR), pg/ml 115 (64–174) 94 (54–141) 54 (33–86)

Baseline ln(NfL) levels, mean (SD), pg/ml 4.63 (0.81) 4.58 (0.83) 3.95 (0.66)

Fig. 3  Scatter plot of disease progression rates (defined as ALSFRS-R 
slopes) and NfL blood levels at diagnosis. The NfL model formulas 
and corresponding regression lines derived from the multivariate 
regression in the development cohort are shown separately for 
patients with spinal (red) and bulbar onset (blue), to visualize the 
correlation between ALSFRS-R slopes and ln(NfL) levels and the 
interaction between ln(NfL) levels and site of onset
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for all three cohorts (Fig. 4). Measurements from differ-
ent patients ranged over multiple orders of magnitude, 
while measurements from the same patient showed com-
paratively small variation. Importantly, these variations 
were small compared to the patient’s average ln(NfL) 
value, with mean relative deviations (± SD) in the DC/
V1/V2 cohorts of 2.5% (± 3.7%), 3.0% (± 3.8%), and 4.8% 
(± 7.2%). The 2.5 and 97.5 percentiles for the absolute 
difference between the baseline ln(NfL) levels and the 
ln(NfL) levels at the first follow-up  for the DC/V1/V2 
cohorts were: [− 0.33, 0.79], [− 0.37, 0.60], [− 0.93, 0.85] 
log units.

The NfL prediction model is transferable to actual clinical 
trials and increases statistical power
As illustrated in Fig. 5a, the model could predict the cor-
rect ALSFRS-R slope with less than 0.5 pt/m error for 
72%, 59%, and 89% of patients in the DC/V1/V2 cohorts, 
respectively. Furthermore, absolute deviations were ran-
domly scattered around zero, indicating that the NfL 
model can be applied equally for patients with low and 
high progression rates. Importantly, we also did not 

observe a systematic pattern of deviation concerning dis-
ease duration (Fig. 5b).

Figure  6 compares the  measured ALSFRS-R slopes to 
the predictions computed with the NfL model, the ΔFRS 
method, and the lead-in period. The NfL model added 
valuable information in both validation cohorts, as indi-
cated by the lowest RMSE, positive CoefD values, and a 
considerable decrease in slope variances. In contrast, we 
observed negative CoefD, high RMSE, and increased var-
iance for the lead-in approach. Using ΔFRS-based pre-
dictions, the CoefD values and variance change remained 
close to zero.

In line with these findings, the mixed-effects models 
showed trial size reductions for the NfL model of 61% in 
V1 (95%CI 54%–66%) and 22% in V2 (95%CI 7%–29%). 
In contrast, we observed only modest savings for ΔFRS 
(V1: 12%, 95%CI 1%–17%; V2: 6%, 95%CI − 11% to 12%) 
and the lead-in period approaches (V1: 6%, 95%CI − 6% 
to 11%; V2: 2%, 95%CI − 15% to 7%).

How to apply the model in clinical trials to improve study 
power
The prediction model could be applied to compensate 
for heterogeneity of disease progression in a clinical trial 
with ALSFRS-R as the outcome parameter, using the fol-
lows steps:

1. Assessment of site of disease onset (bulbar or spinal) 
and measurement of NfL in serum or plasma at study 
baseline (If the measurements are performed with a dif-
ferent assay or if different pre-processing is used, a con-
version factor may have to be established);

2. Insert the parameters into the prediction formula we 
developed:

(S = 1 for spinal, S = 0 for bulbar), to compute the pre-
dicted ALSFRS-R slope for each participant of the study;

3. For each participant, compute the ALSFRS-R slope 
actually observed throughout the study;

4. For each participant, compute the difference between 
the ALSFRS-R slope observed throughout the study and 
the ALSFRS-R slope predicted using the formula;

5. Compare the mean or median difference between 
observed and predicted ALSFRS-R slope in the placebo 
and the active treatment groups.

As an alternative to steps 4 and 5, the linear mixed 
model as described in the methods can be implemented, 
and coefficient beta2 (interaction of treatment effect and 
time slope) be tested for significance.

In a conventional study, only the mean or median pro-
gression rate of the active treatment and placebo groups 
can be compared, which are strongly dependent on the 

(7)
ALSFRS-R slope = 4.45− 1.13 ln(NfL)− 3.82 S

+ 0.83 S ln(NfL)

Fig. 4  Temporal fluctuations of NfL blood levels in each patient. 
ln(NfL) measurements from each individual patient are connected 
by lines, and patients are colored based on the order of magnitude 
of their average ln(NfL) values. The time points of a given patient are 
ordered by time from left to right and equally spaced
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natural course of the disease—a therapeutic effect must 
first overcome the natural heterogeneity of ALS in order 
to become visible. This reduces the statistical power of a 
conventional study.

Using the prediction model, it is possible to anticipate 
the natural course of the disease and include it in the 
analysis—this significantly increases the study’s statistical 
power.

Discussion
Interventional trials in ALS suffer from  heterogeneity 
of the disease, which considerably reduces the statisti-
cal power of the trials [8–10]. Predictive models that 
take into account disease heterogeneity are considered 
a promising tool to meet this challenge but have hardly 
been established to date [17–21]. In this study, we 
developed an NfL-based prediction model for monthly 
decrease of ALSFRS-R score and demonstrated its appli-
cability and impact on trial power.

We showed that adding NfL levels to multivariate pre-
dictive models significantly and consistently increased 
their predictive performance compared to models 
restricted to clinical parameters. Küffner et al. [18] have 
tested a combination of complex prediction models for 

ALSFRS-R slopes that incorporated hundreds of clini-
cal variables and basic laboratory parameters—but not 
neurochemical biomarkers. The predictive quality of this 
approach is similar to the accuracy provided by blood 
NfL as a standalone marker [24–28]. This, together with 
our findings, highlights the predictive value of NfL, espe-
cially in comparison to clinical parameters. Interest-
ingly, we found that the NfL-based predictions could be 
improved by a logarithmic transformation of NfL levels 
and by including the interaction between NfL levels and 
the site of disease onset. Our results are consistent with 
a recent finding that NfL could be used to increase the 
accuracy of a model predicting progression rates [20]. In 
addition, we further confirmed the finding of previous 
studies that blood NfL levels measured longitudinally are 
steady on a patient level in a timeframe most relevant for 
interventional trials [20, 24–26, 36]. In summary, these 
results show that the Nfl-based predictive models meet 
the basic requirements for application in clinical studies.

Importantly, we demonstrated that the NfL-based pre-
diction model is transferable to new datasets and that the 
predictions do not systematically depend on the progres-
sion rate or disease duration. Using mixed-effects mod-
els to simulate randomization and treatment effects of an 

Fig. 5  NfL Model Transferability. The absolute deviations of the predicted ALSFRS-R slope using the NfL model from the observed ALSFRS-R 
slope are plotted against the predicted value (a) and the time between disease onset and NfL measurement (b). The NfL model predictions use 
coefficients from the developing cohort, as shown in Fig. 3. Triangular arrowheads indicate points outside the coordinate system, and points inside 
the green box represent predictions within 0.5 pt/m from the measured value. Colored lines in panel b show local regression
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actual trial, we observed that the prediction model could 
significantly increase the statistical power by up to 61%. 
As far as we know, only two previous studies had quan-
tified the impact of prediction models for ALS disease 
progression on the statistical power. Küffner et  al. [18] 
reported a 20% increase of trial power using the above-
mentioned combination of complex models without neu-
rochemical biomarkers. In contrast, a recently published 

NfL-based prediction model only yielded a modest 
increase of 8% in the trial power [20]. However, this 
model was developed incorporating a relatively large pro-
portion of patients in later disease stages and thus tended 
to underrepresent patients with faster disease progres-
sion [20]. By developing our NfL model in patients at 
the time of diagnosis, we aimed to base the model on the 
broadest possible progression spectrum and supposed 

Fig. 6  Predictive performance of the NfL model in comparison to the ΔFRS and the lead-in approaches. The scatter plots show predicted versus 
measured ALSFRS-R slopes for the interventional period of a simulated clinical trial in the validation cohorts V1 (n = 40) and V2 (n = 33). Trend lines 
with grey areas (standard error) visualize systematic deviation from the perfect prediction (dashed lines). For each method and cohort, the change 
of variance, and RMSE and CoefD values are provided in the upper right corner. Note that the RMSE represents absolute values and can only be 
compared with one another within the same data set; the smaller the RMSE, the more precise the prediction. CoefD can range from − ∞ to 1, with 
the value of 1 meaning perfect prediction, positive values indicating the model adds predictive information, while negative values indicating the 
opposite. A decrease in variance indicates an increase in statistical power in a clinical trial
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that this had a crucial effect, though, at the same time, it 
reduced the number of evaluable patients. In summary, 
our results can serve as a proof of concept for the use of 
NfL-based prediction models to target the challenge of 
disease heterogeneity in interventional trials.

Eventually, the application of the NfL-based model is 
only useful if it is advantageous over the strategies cur-
rently used. By analyzing the predictive value of our NfL 
model in direct comparison to the ΔFRS and a lead-in 
period approaches used in recent trials, we observed 
superiority of the NfL-based approach [30–32, 37–39]. 
Surprisingly, we also found that a lead-in period was 
not a reliable method to anticipate disease progression 
in our cohorts. Although there could be other reasons 
to conduct a lead-in period, predicting the ALSFRS-R 
course seems not to justify the delay in starting the inter-
vention and the costs incurred [40]. Replacing a lead-in 
period by a single NfL measurement would result in a 
shorter interval from disease onset to therapy, potentially 
being favorable to detect a drug’s efficacy because of less 
advanced motorneuron degeneration [9].

Our study has some limitations. Although the model 
shows a reliable test performance at the group level, we 
observed clinically relevant deviations in some patients, 
making the model less suitable for individual predictions. 
The predictive accuracy might be further improved by 
incorporating respiratory parameters and genetic status 
or by adjusting for confounders of NfL levels such as age 
and related morphologic brain changes [41], renal func-
tion, and blood volume [41–43]; however, the data avail-
able for our cohorts did not allow further investigations. 
Methods to reduce the noise of the ALSFRS-R itself dur-
ing assessment might also enhance the development of 
prediction models [1, 44–46]. Here, we restricted our 
analyses to a linear model as it facilitates direct inter-
pretability of the influence of the candidate predictors 
on the accuracy of the prediction. Non-linear and non-
parametric approaches are harder to interpret but might 
outperform linear models in terms of accuracy [7, 47] 
and hence would be an interesting topic for future stud-
ies. An additional topic for future research could be 
predictive models for survival, which could be used for 
studies with survival as the primary endpoint or for rea-
sons of stratified randomization and anticipation of drop-
outs. An exploratory analysis of the utility of NfL for this 
purpose is provided in Additional file 3. A further limi-
tation is the relatively small sample size in each cohort. 
Multicenter evaluation in future studies or incorpora-
tion of the prediction model in actual phase 3 trials could 
help gain more insights into the strengths and limits of 
the model. Due to the limited blood sample availability 
for model validation, the validation cohorts represent 
only an excerpt of the original placebo cohorts. In the 

V2 cohort, this caused a shift to younger patients with a 
rather slow disease progression and revealed that the NfL 
model may perform better in cohorts including a broader 
progression spectrum. Eventually, the blood samples in 
the V2 cohort were EDTA plasma, while the DC and V1 
cohorts provided serum samples. Although the NfL assay 
is equally usable for serum and EDTA-plasma and qual-
ity controls did not reveal deviations exceeding the inter-
assay coefficients of variability, it represents a potential 
confounder.

Conclusions
Blood NfL is a valuable prognostic biomarker. Using the 
NfL-based prediction model to compensate for clini-
cal heterogeneity could considerably improve the trial 
power and help distinguish treatment effects from 
the inter-individual variance of disease progression in 
future randomized controlled trials. The complemen-
tary implementation of NfL-based prediction models in 
ALS trials could provide further insights into the possible 
applications.
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