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Abstract

of microbiome studies in PD research.

Parkinson'’s disease is characterized by dopaminergic neuron loss and intracellular inclusions composed mainly of
alpha synuclein (a-syn), but the mechanism of pathogenesis is still obscure. In recent years, more attention has
been given to the gut as a key player in the initiation and progression of PD pathology. Several studies
characterizing changes in the microbiome, particularly the gut microbiome, have been conducted. Although many
studies found a decrease in the bacterial family Prevotellaceae and in butyrate-producing bacterial genera such as
Roseburia and Faecalibacteria, and an increase in the genera Akkermansia many of the studies reported
contradictory findings. In this review, we highlight the findings from the different studies and reflect on the future
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Background

Introduction

With diseases where genetic factors and identified envir-
onmental causes account only for a minority of the
cases, unidentified environmental factors are believed to
play a key role in the initiation and progression of the
disease. Such is the case with Parkinson’s disease (PD)
wherein 90% of cases are of idiopathic nature [1]. In PD,
dopaminergic neurons of the substantia nigra pars com-
pacta degenerate and the protein alpha-synuclein (a-syn)
misfolds and aggregates into Lewy bodies (LBs) and
Lewy neurites (LNs). As Braak identified that a-syn in-
clusions appear in the dorsal motor nucleus of the vagus
(DMNV) at very early stages of PD, he postulated that
the pathology could be initiated in the gut or nose [1, 2].
Additionally, direct evidence of a-syn pathology propa-
gating from the GI tract to the DMNYV via the vagal
nerve has been provided by two different studies in ro-
dents [3, 4]. There is also a general consensus that a full
truncal vagotomy decreases the risk of developing PD
later in life [5, 6]. Moreover, up to 80% of PD patients
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experience constipation and delayed gastric emptying,
often many years before motor symptoms appear [7]. To
date, it is still of debate whether PD patients are at a
higher risk of developing IBD [8-11]. A recent study
showed that intestinal infection could trigger PD-like
symptoms in genetically predisposed mice [12]. Other
studies, which identified a-syn inclusions in intestinal bi-
opsies years prior to PD diagnosis [13], have provided
further evidence for this hypothesis. The gut, which har-
bors a large portion of our microbiome, acts as an inter-
mediary between us and the environment and also plays
pivotal roles in the priming and development of our im-
mune system. That the microbiota in the GI system
would play a role in synucleinopathies is supported by
findings of bacterial substances modulating a-syn aggre-
gation: both lipopolysaccharide [14, 15] and the different
subunits of the E. coli amyloid protein Curli [16-18]
have been shown to alter a-syn aggregation kinetics and
produce fibrils with distinct toxicities compared to ‘pure’
fibrils. What concerns the intestinal microbiome, several
studies have shown that germ-free mice display attenu-
ated pathology and behavioral deficits in several models
[19]. In a landmark study, Sampson et al. demonstrated
that the microbiota itself could trigger or delay motor
symptom onset in mice: Thy-1 a-syn mice colonized
with microbiota from PD patients showed enhanced a-
syn pathology load and microglial activation compared
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to mice colonized with microbiota from healthy individ-
uals. Of note is that the study also found short chain
fatty acids (SCFAs), metabolites of certain bacteria, to be
sufficient in inducing a-syn pathology and microglial
activation in the a-syn-overexpressing mice [19]. Of
interest is that inflammation is a central component of
PD pathology. Treatment with immunosuppressants has
been shown to ameliorate PD pathology in mouse
models [20] and mice lacking CD4+ T-cells have an
attenuated response to MPTP with markedly decreased
dopaminergic neuronal loss [21]. As emerging studies
have found links between microbiome alterations,
particularly gut dysbiosis, and a myriad of inflammation-
driven diseases, including but not limited to inflamma-
tory bowel disease (IBD), arthritis, liver disease, and
obesity [22], it should come as no surprise that recent
studies have aimed to identify changes in the micro-
biome of PD patients compared to healthy controls. In
this review, we will summarize the findings from mostly
human studies but also a few studies in animal models,
discuss reasons behind the often contradictory findings,
and relate the findings to studies in other disease
conditions.

The microbiome

Even though most studies have centered on the gut, the
microbiome is not limited to the gastrointestinal (GI)
system but rather also includes the microbiota in the
nose epithelium, the skin, genitals, all mucosal surfaces
and any other number of tissues naturally inhabited by
microorganisms. Distinct body parts show distinct
microbiomes. The development of the microbiome be-
gins in utero although the actual birth marks the first
major colonization of the child with studies showing
marked differences in the gut microbiome in children
born vaginally compared to those born via caesarean
section (C-section) [23]. The microbiome of children
born vaginally is characterized by Prevotella and Lactoba-
cillus taxa whereas that of children born via C-section is
dominated by Staphylococcus and Streptococcus species
[24]. Children born via C-section more often carry Klieb-
sella and Enterobacter [25]. Additionally, colonization
with Bifidobacteria and Bacteroides is delayed in children
born via C-section [25-27]. These differences seem to
have effects persisting into adulthood with children born
vaginally being at lower risk of developing allergies,
asthma, IBD and obesity compared to those born via C-
section [23]. During the first 3 years of life, the micro-
biome is constantly changing but stabilizes afterwards and
has been shown to be relatively constant throughout life.
A study of monozygotic and dizygotic twins reported her-
itability of members of the Ruminococcaceae and Lach-
nospiraceae families and also of methanogens from the
archaeal domain. Contrarily, Bacteroidetes were found to
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be mostly environmentally determined [28]. Factors such
as lifestyle, diet and antibiotic use play considerable roles
in shaping the microbiome [22]. Antibiotic usage has been
shown in several studies, to both acutely and permanently
perturb the gut microbiome, with a loss of diversity and a
shift in community composition [29-31]. Long-lasting
perturbations to the gut microbiome are also caused by
infections with the pathogen Clostridium difficile [32]. It
seems that ageing, too, affects gut microbial composition.
Several studies have now shown that ageing in healthy
adults is correlated with an increase in the diversity of mi-
crobial species, known as alpha-diversity [33]. Although
there have been differences in the microbial species exam-
ined and the results reported, most studies have found
Bifidobacteria and certain Firmicutes to be decreased in
stool from healthy aged adults compared with younger
subjects [33—35]. Finally, although it is difficult to assess
whether the differences reported reflect the true situation
within the intestines or is an artifact from sample collec-
tion, a fast transmission time has been correlated with a
decrease in microbial diversity and an abundance of fast
growing species and mucosal renewal [36-38].

Main text

The microbiome in PD

Several studies have now aimed at identifying microbiota
differences in PD patients compared to healthy controls.
While most of these have used fecal samples as a proxy
for the microbiota composition in the distal colon, some
have examined mucosal biopsies or even salivary and
nasal mucosa samples [39-41]. A summary of the find-
ings from stool microbiome studies in PD patients can
be found in Table 1 and a more comprehensive compil-
ation of the findings in Additional file 1: Table S1. While
only a few of the studies found significant differences in
the alpha-diversity, that is the community richness and
evenness within a sample, of the fecal microbiota from
PD patients and controls [39, 42, 43, 45], most did find
statistically significant differences in the beta-diversity,
the community differences between the study groups
[39, 41-44, 46, 47, 55]. Unsurprisingly, many of the
studies found bacteria from the phyla Firmicutes and
Bacteroidetes to dominate in the feces of both PD pa-
tients and controls [39, 46, 52]. From the phylum Bac-
teroidetes, the family Prevotellaceae, which has been
implicated in the pathogenesis of IBD [56] was found to
be altered in most of the studies: six studies found a dra-
matic decrease of Prevotellaceae in the feces of PD pa-
tients [43-48, 51, 55] with Scheperjans et al. even
finding such a strong correlation between low abundance
of Prevotellacea and PD phenotype that it could be used as
a classifier with over 90% specificity [46]. Minato et al.
found Prevotellacea to decrease in the feces of PD patients
two years after the first sample collection [57]. Keshavarzian



Page 3 of 9

(2019) 8:38

Haikal et al. Translational Neurodegeneration

500 > d = , ‘syuaned gd 01 pasedwod sjos3uod ul 1ybiy = - ‘sjosjuod 0} pasedwod syuaned gd ul 1Bybiy = +

o o + s «F wF e eISUBULLIYYY SeIDRISUBULLINY
o o e = + s s s e 9B328|GOJDIWODNIIBA
+ = - % «+ <+ aeadeydLofadiski3
. - - - = - - winls1oeq||edse
o+ - - + + - 9235P20020UIWNY
. - W - - - - seadeJidsouyoe
= «F + - «t SN22020J31U3 9230P20020J31U3
- *t ¥t *+ - «t * snj1eqoioen
<t « + «t wt - ¥t * 2e30P||10eq01eT]
R + + s et ELEREIEVENY
- R - = = = x e||210A31d
- - = - - = - = 98308310/ d
o o - + - o+ 2eadepeuowoIfydiod
- - s - - saploJaloeg
- - + s - 2e30EPI0JS10RY
o o = - s - wnLaeqopylg
o o + + - - 98308 1I91ORCOPYIG
- o . - - EIEREIEY e SN
ot ¥t + = + - 9P30R1I81DRPCOIIUT
snuan Awey
* * * * * * * * * * * Aisianp e1ag
= = = = = o . = ot ot Aussonip eydly
[or] e 10
sl e1e [es]e1e [gg] @19 meydsng [1g]e3e [0S] 1R 19 lev] [8v]e10 [L¥] 7R 10 (ov] e 10 (6€] 1210 [Syle1e [py]e1e [ev] eI [zy] e 19
v ‘U 1PoNIRld 41 -ZUBH 196un suing-|iH e 19 17 emebasey JuaujdoH suefiadayds  UBIZIPABYSD)Y AOIIRd Jepag un ueip

$]011u0d Ay3esy 01 pasedwlod swusied dd Ul S9IPNIS SWOIGOIDIU [001S WOy sbulpuly Asy Buizuewwns s|ge] L ajqeL



Haikal et al. Translational Neurodegeneration (2019) 8:38

et al.,, however, found no such difference in the feces of PD
patients and controls but did see a reduction by approxi-
mately 50% of Prevotellacea in the sigmoid mucosa of PD
patients, although this did not reach statistical significance
[39]. Additionally, Pereira et al. found a decrease of Prevo-
tellaceae in the oral cavity of PD patients compared to
healthy controls [41]. Interestingly, Qian et al. found a
higher abundance of Paraprevotella, a member of the Pre-
votellaceae family, in PD patients compared to controls
[42]. A study has found a five-fold decrease of Paraprevo-
tella in the feces of multiple system atrophy (MSA) patients
compared to healthy subjects [58]. Additionally, chronic ex-
posure to rotenone resulted in a decrease of Paraprevotella
in the feces of mice already one week post initiation of
treatment [59]. In the case of Bifidobacteriaceae, the find-
ings in different studies have been contradictory: Bedarf
et al. reported a lower abundance of Bifidobacteriaceae in
PD patients [44], Keshavarzian et al. found a lower abun-
dance of Bifidobacteriaceae in both the mucosa and feces of
PD patients compared to controls [39] whereas Hopfner
et al,, Li et al. and Lin et al. described the opposite [47, 49,
54]. Hill-Burns et al. also found an increased abundance of
Bifidobacteriaceae in the feces of PD patients compared to
controls but this difference disappeared once they
accounted for medication, specifically the use of COMT in-
hibitors, as a confounding factor [50]. Minato et al, how-
ever, found that patients with lower counts of
Bifidobacteriaceae had a more severe worsening of symp-
toms 2 years later compared to those with originally higher
counts [57]. Mihaila et al. found an increased abundance of
Bifidobacteriaceae in the saliva of PD patients compared to
controls [60]. In a rotenone-induced mouse model of PD,
Bifidobacteriaceae from the ceacal content and mucosa was
reduced compared to control mice [61]. Enterobacteriacea
were found to be more abundant in PD patients by four
studies [39, 49, 51, 53], decreased in one [44] and un-
changed in one [48]. Lactobacillaceae were found to be
more abundant in PD patients’ stool in six studies [43, 46,
47, 49, 50, 53] and lower in two [42, 44]. Mihaila et al.
found an increased abundance of Lactobacillaceae in the
saliva of PD patients compared to controls [60]. Erysipelo-
trichaceae is another bacterial family which 3 studies found
to be increased in PD stools [40, 42, 43] but 3 others found
to be decreased or unchanged compared to healthy controls
[39, 44, 49]. The butyrate producing Roseburia [39, 44, 50],
Blautia [39, 44, 49, 50], and Faecalibacterium [39, [43-45],
49, 51] and Dorea [39, 44, 45] have been reported to be less
abundant in PD patients’ stool. Interestingly, a study has
shown that infection with Clostridium difficile results in
dysbiosis characterized by an over-abundance of Lactobacil-
laceae and a decrease of Roseburia, Blautia, Faecalibacter-
jum, and Dorea [32]. Akkermansia was consistently found
to be more abundant in PD stool samples [39, 40, 43, 44,
50-52]. Akkermansia muciniphila is a recently identified
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mucin-dwelling species of the genus Akkermansia. A. muci-
niphila has been shown to mediate glucose tolerance via an
IFNy dependent mechanism and protect against obesity in
mice [62]. Additionally, reduced levels of A. muciniphila in
gut microbiota were reported for children with asthma
[63]. A recent study showed that A. mucniphila can induce
different T-cell responses based on the other species
present in a given microbiota [64]. This can then ex-
plain why A. muciniphila, generally thought to medi-
ate anti-inflammatory effects, has surprisingly been
shown to be over-abundant in PD feces compared to
controls. Finally, although most studies focused
mainly on bacteria, a few studies reported an in-
crease in methanogens of the archaeal domain in PD
stools compared to controls [42, 44, 50, 51] and
Bedarf et al. reported a decrease in virus counts in
PD patients’ stools [44].

Shortcomings of microbiome studies in PD research

With more fields recognizing the microbiome as a
key player in diseased and healthy conditions, it
should come as no surprise that the field of PD re-
search too has focused on microbiota research in re-
cent years. Unfortunately, it is still difficult to draw
conclusions from the studies as most of them report
contradictory findings. The wet lab techniques dif-
fered between the studies with most sequencing the
hypervariable regions of the 16S rRNA gene but
some testing for only specific bacterial taxa. Al-
though 16S rRNA sequencing is a powerful tool in
microbiome studies, it does have limitations: limited
resolution, a dependence on databases chosen for
species identification, reporting only on nucleic acid
as compared to viable species, and relative results
rather than absolute quantification of present species
[65, 66]. Additionally, the time from sample collec-
tion to freezing varied greatly and storage of sam-
ples at room temperatures even for short periods of
time are known to distort the relative abundances of
bacterial taxa. The different studies also corrected
for different confounding factors, such as medica-
tion, and were carried out in different geographical
locations, factors known to affect microbiota com-
position. None of the studies provided information
on antibiotic use in early life or previous C. difficle
infections, which are known to have profound and
long-lasting effects on gut microbiota. Additionally,
only one study accounted for transit time as a con-
founding factor [50] although most of the studies
reported PD patients as suffering from constipation
and GI symptoms in higher frequency. Transit time
has a clear effect on fecal consistency, which is
known to have the highest impact on microbiota compos-
ition [36, 38]. Both Akkermansia and methanogens, here
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reported to be altered in PD patients’ stools, have been
correlated to stool consistency [36]. A summary of the
techniques and criteria employed by each study can be
found in Table 2. Unfortunately, not all studies reported
all findings, making it difficult to compare and perform
meta-analytical studies among them. Finally, it is import-
ant to keep in mind that the majority of the studies fo-
cused on fecal composition, yet the GI tract is not
homogenously colonized but rather consist of a multitude
of niches [67, 68].

The microbiome in IBD

A study conducted on mouse models of colitis found
Immunoglobulin A (IgA) coating to selectively iden-
tify pathology-driving bacteria. Genera from the or-
ders Bacteroidales and Lactobacillus and family of
Erysipelotrichaceae were particularly IgA-coated.
Members of Clostridiales, Ruminococcaceae, Rikenel-
laceae, Roseburia, Faecalibacterium, and Blautia were
identified from IBD patients as being selectively IgA-
coated compared to healthy controls. The abundance
of all these bacterial taxa have been shown to be al-
tered in the stools of PD patients. Of interest is
whether these taxa are IgA coated in PD patients
too? In that same study, they also identified bacteria
that were similarly IgA coated in IBD patients and
healthy controls. Fecal transplantation of IgA-coated
bacteria into mice did not result in pathology unless
the mice were genetically susceptible to IBD [56].
This supports the interaction of genetics and envir-
onment in a dual-hit hypothesis, valid for IBD as
well as PD.

Host-microbiome interactions

The interactions between the host and microbiome
are manifold, complex and bidirectional. It is now
well established that gut bacteria can modulate the
host immune response: polysaccharides produced by
B. fragilis and Bifidobacterium breve can induce regu-
latory T-cells (Tregs) and stimulate the secretion of
the anti-inflammatory cytokine IL-10 [68, 69]. Other
bacteria induce inflammation, as has been well de-
scribed in IBD [56, 70, 71]. The systemic effect of gut
inflammation and its potential role in neurodegenera-
tion has recently become an area of great interest.
Some bacteria in the intestine also produce SCFAs,
which serve as a main energy source for colonic epi-
thelial cells and can also induce the generation of
Tregs [71]. Butyrate, a SCFA, has been shown to
exert regulatory functions on dendritic cell differenti-
ation [72]. Although some of the studies found a re-
duction in butyrate-producing bacteria, generally
thought of as anti-inflammatory strains, the exact ef-
fect of SCFAs is still under debate with some studies
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even reporting exacerbation of inflammation related
to SCFAs [19]. In an MPTP-induced mouse model of
Parkinsonism, fecal transplant resulted in a reduction
of SCFAs accompanied by an amelioration of path-
ology [73]. On the other hand, miRNA produced by
intestinal epithelial cells can enter bacteria and regu-
late gene transcription and growth [74]. The fecal
miRNA patterns in PD patients have been shown to
differ from healthy controls [75]. Bacterial lipopoly-
saccharide, in turn, has been shown to alter miRNA
expression in macrophages leading to a cascade of in-
flammatory responses [76].

Microbe-microbe interactions

Besides the effects mediated by the host on the
microbiome, the constituents of the microbiome affect
its composition too. Many bacteria, including com-
mensals in our gut, possess quorum-sensing abilities:
they can regulate and inhibit growth of other bacteria
by secreting anti-microbials. Examples of quorum-
sensing-capable bacteria are E. coli, B. subtilis, and
species of Streptococcus, Streptomyces and Lactobacil-
lus. Bacteria can also modulate the growth of other
bacteria by competition for the same resources. The
microbiome consists not only of bacteria though, and
fungi, such as Candida albicans can also modulate
the bacterial composition of the gut. C. albicans can
co-aggregate and form mixed biofilms with for in-
stance Streptococci and can compete with species such
as Pseudomonas aeruginosa [77-79]. Additionally, al-
though underreported, bacteriophages are among the
most abundant microbes in our gut. In an experimen-
tal mouse model, infection with lytic bacteriophages
had direct effects on susceptible bacterial populations,
such as E. coli, and indirect effects on non-targeted
bacteria through bacteria-bacteria interactions. The
expansion of A. muciniphila was one of the indirect
effects reported in that study [80].

Conclusion and future perspectives

Microbiome studies generate a wealth of information
that is difficult to interpret. Host-microbiome interac-
tions will surely continue to hold interest in many
research fields including that of neurodegenerative dis-
eases. Establishing a causal relationship between micro-
biome dysbiosis and disease initiation or progression
could open the door for biomarker and identify possible
intervention targets. Although all of the patients in-
cluded had idiopathic PD, it would be interesting to
compare microbiota from PD patients with different fa-
milial mutations: do different forms of a-syn and
phenotypic presentations of PD result in specific
changes to the gut environment? Additionally, do dif-
ferent synucleinopathies share similar changes to the
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microbiota? There is no doubt that the field of micro-
biome studies holds great promise, however, as of now,
fecal microbiota cannot be used as a biomarker for PD
but perhaps inspiration could be drawn from the fields
of obesity and IBD studies where machine learning has
successfully been employed to aid in the identification
of classifiers [22, 81, 82].
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