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Abstract

Background: Progressive accumulation of a-synuclein is a key step in the pathological development of Parkinson'’s
disease. Impaired protein degradation and increased levels of a-synuclein may trigger a pathological aggregation in
vitro and in vivo. The chaperone-mediated autophagy (CMA) pathway is involved in the intracellular degradation

processes of a-synuclein. Dysfunction of the CMA pathway impairs a-synuclein degradation and causes cytotoxicity.

Results: In the present study, we investigated the effects on the CMA pathway and a-synuclein aggregation using
bioactive ingredients (Dihydromyricetin (DHM) and Salvianolic acid B (Sal B)) extracted from natural medicinal
plants. In both cell-free and cellular models of a-synuclein aggregation, after administration of DHM and Sal B, we
observed significant inhibition of a-synuclein accumulation and aggregation. Cells were co-transfected with a C-
terminal modified a-synuclein (SynT) and synphilin-1, and then treated with DHM (10 uM) and Sal B (50 uM) 16
hours after transfection; levels of a-synuclein aggregation decreased significantly (68% for DHM and 75% for Sal B).
Concomitantly, we detected increased levels of LAMP-1 (a marker of lysosomal homeostasis) and LAMP-2A (a key
marker of CMA). Immunofluorescence analyses showed increased colocalization between LAMP-1 and LAMP-2A
with a-synuclein inclusions after treatment with DHM and Sal B. We also found increased levels of LAMP-1 and
LAMP-2A both in vitro and in vivo, along with decreased levels of a-synuclein. Moreover, DHM and Sal B treatments
exhibited anti-inflammatory activities, preventing astroglia- and microglia-mediated neuroinflammation in BAC-a-
syn-GFP transgenic mice.

Conclusions: Our data indicate that DHM and Sal B are effective in modulating a-synuclein accumulation and
aggregate formation and augmenting activation of CMA, holding potential for the treatment of Parkinson’s disease.

Keywords: chaperone-mediated autophagy, macroautophagy, alpha-synuclein, protein aggregation, Parkinson
disease, lysosomal-associated membrane protein

Background

Aberrant degradation of alpha-synuclein (a-syn) has
been implicated in the pathogenesis of Parkinson’s dis-
ease (PD) which leads to accumulation of a-syn in Lewy
bodies [1, 2]. a-Syn can be selectively translocated into
lysosomes for degradation via chaperone-mediated
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autophagy (CMA), a highly regulated cellular process
that mediates the degradation of cytosolic proteins in ly-
sosomes [3—6]. The protein contains a CMA target motif
and is degraded by CMA in neural cells [7, 8]. CMA is
controlled by two key CMA regulators: the chaperone
HSC70 and the receptor lysosomal-associated mem-
brane protein 2A (LAMP 2A). LAMP-1 is highly struc-
turally homologous to LAMP-2A suggesting that there
may be an overlapping function of these two proteins [9,
10]. HSC70 binds to protein substrates containing a
KFERQ peptide motif [8, 11]. The substrate—HSC com-
plex interacts with LAMP-1/2A for targeting of
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identified protein translocation to the lysosome [12-15].
In addition, the ubiquitin-proteasome system (UPS) and
macroautophagy are also involved in «-syn degradation
[16-18].

Several studies have been conducted on the develop-
ment of small molecular inhibitors of a-syn aggregation
for the prevention and treatment of PD [19-23]. Several
important compounds in the daily diet and medicinal
plants have been found to be protective against a-syn
fibrillation [21, 24]. Dihydromyricetin (DHM), a major
active ingredient of flavonoid compounds extracted from
the stems and leaves of Ampelopsis grossedentata, has
anti-tumor, oxidation resistance and free radical scaven-
ging capabilities [25-28]. Evidence indicates that DHM
has neuroprotective effects by enhancing the formation
of autophagosomes and inducing autophagy [29-31].
Salvianolic acid B (Sal B) is one of the bioactive com-
pounds of Salvia miltiorrhiza Bunge extracted from the
root of Salvia miltiorrhiza and has been shown to exert
various anti-oxidative and anti-inflammatory effects in
both in vitro and in vivo studies [23, 32, 33]. Sal B has
recently been associated with preventing fibril aggrega-
tion of amyloid proteins and inhibiting neuroinflamma-
tion, thereby improving neurological function in animal
models of neurodegenerative diseases [23, 24]. However,
it is not clear whether DHM and Sal B have any effects
on a-syn accumulation and aggregation in synucleinopa-
thies, such as PD.

To further explore the role of CMA mediated degrad-
ation of aggregated a-syn and the potential function of
autophagy regulated by DHM and Sal B, in the present
study, we have investigated the effects of DHM and Sal B
on a-syn accumulation and aggregation using both in
vitro and in vivo models. We observed that DHM and Sal
B upregulated the CMA associated protein LAMP-2A and
its homologous protein, LAMP-1, decreased levels of a-
syn, reduced cytotoxicity and inhibited inflammatory re-
sponses when administered in cell and animal models.
Our findings indicate that DHM and Sal B are potential
therapeutic compounds that can intervene and halt patho-
logical developments in synucleinopathies.

Methods

Fibril preparation

a-Syn monomers were ordered from Proteos (RP-003)
and prepared following the Michael ] Fox Foundations
guidelines for fibril formation. Briefly, monomeric pro-
tein was thawed and spun at 15.000xg for 10 min at 4
°C, to pellet any aggregated materials. The supernatant
was then assessed by BCA to determine the a-syn con-
centration. The monomer sample was diluted to 5 mg/
ml in PBS without calcium and magnesium, and trans-
ferred to a 1.5 ml Eppendorf tube, then incubated for 7
days in a shaking incubator at 1000 rpm and 37 °C. Final
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fibril solution was stored at -80 °C in single use aliquots
until use.

Inhibitor modulation of a-synuclein aggregation kinetics
Aggregation kinetics were assessed in Corning NBS half-
area micro plates(#3881) plates using 70 pM a-syn
monomers, 20 uM thioflavin T (Sigma, T3516) and Sal B
(Sigma, SML0048, >94% (HPLC) ) or DHM (Sigma,
SML0295, 298% (HPLC) ) at either 15 or 30 uM. Vehicle
control wells were set up using a volume equal to that of
the highest inhibitor concentration (0,015 pl per well).
To initiate the experiment, sonicated a-syn seeds were
added to each well at 0.1% of the monomer concentra-
tion (70 nM). Kinetics were observed using a BMG
FLUOstar Omega plate reader, allowing continual mea-
surements for 7 days at 37 °C. Baseline acquisition was
performed for 3 hours before addition of the a-syn
seeds, and recordings were continued for 12 hours.

Cell culture and transfection

H4 neuroglioma cells from human (origin) were cultured
in Opti-MEM + GlutaMAX (Invitrogen, 51985-034)
supplemented with 10% fetal bovine serum (FBS; Gibco,
10100-147) at 37°C, passaged, and plated on chamber
slides (Labted-II, Nalgen-Nunc, 154526) or glass cover
slips. For intracellular o-syn aggregation experiments,
H4 cells were seeded in 24-well plate (5 x 10* cells/well)
24 h prior to transient transfection with SynT (C-ter-
minal tagged form of WT a-syn) and synphilin-1 (Fig.
S1). Equi-molar ratios of plasmids were mixed with
FuGENE® 6 (Promega, E2691) at a 1:2 mass volume ra-
tio, and incubated for 15 min before the complex of
transfection reagent and plasmids was transfected into
cells according to the manufacturer’s protocol (2 h
transfection and 6 h recovery time). ALP modifiers were
incubated during the last 24 h before fixation and pro-
cessing for immunocytochemistry and toxicity assess-
ments. Co-transfection with an empty backbone-vector
[PPAGFP-C1, Addgene, 11910] and mock transfection
was used as control. Rapamycin (200 ng/ml, Sigma Al-
drich, R0395) was prepared in DMSO, chloroquine di-
phosphate salt (50 mM, CQ, Sigma Aldrich, C6628) and
3-methyladenine (10 mM, 3-MA, Sigma Aldrich,
M9281) in water.

Immunocytochemistry

For drug treatment, 24 h post first transfection with
SynT and synphilin-1, cells were further incubated with
DHM, Sal B, Rapamycin or Chloroquine. Twenty-four
hours later, cells were fixed with 4% PFA for 10 min at
room temperature (RT), washed two times with PBS and
subjected to immunocytochemistry analysis. Briefly, cells
were permeabilized with 0.5% Triton X-100 in PBS for
20 min at RT, blocked for 1 h at RT with 5% normal
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donkey serum in 0.1% Triton X-100 in PBS, incubated
with primary antibody (mouse anti-a-syn 1:1000; BD
Biosciences) at 4°C overnight followed by secondary
antibody incubation (1:1000, donkey anti-mouse IgG-
Alexa568, Jackson ImmunoResearch) for 2 h at RT, then
incubated for 10 min with DAPI 1:1000 in PBS
(SIGMA-ALDRICH). Specimen analyses were performed
with a conventional epifluorescence microscope (Nikon
Ni-E). Cells were subjected to microscopy analysis for
LAMP-1/-2A and a-syn colocalization using laser-
confocal microscope (Leica TCS SP8), followed by ana-
lysis using Image] software. Sequential multi-track
frames were acquired to avoid any potential crosstalk
from adjacent fluorophore. For ThS labeling, transfected
H4 cells were fixed and incubated prior to IF labeling
for 10 min in 0.5 mg/ml thioflavin-S (Sigma, T1892),
and washed in 85% absolute ethanol. At least 300 cells
from three independent wells were assessed for each ex-
periment and the number of cells containing a-syn posi-
tive aggregates were quantified in the transfection
conditions by a random sampling survey. The percent-
age of the transfected cells containing a-syn positive ag-
gregates compared with the total number was then
recorded.

Immunohistochemistry of transgenic mice

Six- and nine-month old mice were housed (3-4 ani-
mals/cage) with food and water available ad libitum
under a 12-h light/dark cycle. All animal experiments
followed the Institutional Animal Care and all proce-
dures were performed under the specifications set by the
Ethical Committee for Use of laboratory animals at Lund
University, Sweden and at Northeastern University,
China. Homozygous transgenic mice expressing WT hu-
man a-syn fused to green fluorescent protein (GFP),
under control of the mouse a-syn promoter show an
overexpression of a-syn-GFP in the CS and the dopa-
minergic neurons of the SNpc. The formation of a-syn
aggregates in the brain of transgenic mice has been
shown to rise with increasing age [34]. DHM and Sal B
(10mg/kg/day for two weeks) were utilized for intra-
peritoneal administration of nine-month old mice (n=8
mice per group). Mice were then euthanized 6 weeks
later. Brains were removed, post-fixed in 4% PFA and a
gradient sucrose sedimentation (10% - 30%) was per-
formed. For mouse brains, 30 micrometer-thick free-
floating coronal sections were cut on a freezing micro-
tome (Leica, SM2010R), blocked in solution comprising
PBS + 5% horse serum + 0.25% Triton-X 100, and incu-
bated with primary antibodies (mouse-anti-a-syn anti-
body 1:1000, Santa Cruz Biotechnology, sc-12767;
mouse-anti-GFAP antibody 1:1000, MERCK MILLI-
PORE, MAB360; mouse-anti-Ibal/AIF1 antibody 1:1000,
MERCK MILLIPORE, MABN92) overnight in a humid
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chamber at 4°C. Sections (incubated with anti-a-syn,
anti-GFAP and anti-Ibal/AIF1) were then subsequently
incubated with secondary biotinylated anti-mouse anti-
body (Vector Biolabs) followed by DAB staining using
the ABC kit (Vector Biolabs) and DAB peroxidase sub-
strate (Vector Biolabs) according to the manufacturer’s
protocol. For each animal, 3 sections were analyzed and
all sections were processed under the same standardized
conditions. a-Syn”, GFAP" and Ibal” cells in the CS and
SNpc were counted on a Nikon microscope using the
NIS-Elements BR imaging system.

Western blot analysis

Cytosolic  fractions were obtained by manual
homogenization and incubation in ice-cold lysis buffer
containing 25 mM TRIS-HCI pH 7.4, EDTA 1 mM, pro-
tease inhibitor + 0.1% SDS for 2 h, followed by centrifu-
gation at 12000 rpm for 10 min. In the supernatant,
equivalent amounts of LAMP-1/-2A protein sample
were loaded and separated by 8% SDS-PAGE gels, and
transferred to polyvinylidene difluoride (PVDF) mem-
branes (Millipore) for 2 h at 4°C or overnight at 4°C.
Membranes were blocked with 2.5% nonfat milk solution
in Tris-buffered saline with 0.1% Triton X-100 (TBST)
for 1 h, and then incubated overnight at 4°C with mouse
anti-LAMP-1 (Abcam, ab25630, 1:1000), rabbit anti-
LAMP-2A (Abcam, ab18528, 1:1000) or mouse anti-p-
actin (Sigma, A1978, 1:5000,), followed by HRP-linked
secondary antibodies (CST, 7076S for anti-mouse IgG
and 7074S for anti-rabbit IgG, 1:10000,) for 2 h at RT.
Bands were detected using an ECL detection kit (Cell
Signaling Technology) and exposed to X-ray films.
Bands were analyzed and normalized to the correspond-
ing B-actin signal for comparison.

Cytotoxicity assays

Cell viability and a-syn cytotoxicity was evaluated by the
MTT assay and LDH assay. H4 cells were plated on 96-
well plates in complete medium, transfected with SynT
and synphilin-1, then co-transfected with a plasmid en-
coding for WT a-syn, or with empty plasmid. For the
MTT assay, 10 ul MTT reagent and 100 pl detergent re-
agent were added into each well in sequence after incu-
bation for twenty-four hours. The resulting intracellular
purple formazan can be solubilized and quantified by
spectrophotometric means. For the LDH assay, after
twenty-four hours transfection, culture media were col-
lected and used to determine the levels of released Lac-
tate dehydrogenase (LDH). After treatment, assays were
performed following the manufacturer’s instructions
(Promega, Madison, WI, USA). Results were expressed
as the percentage of cell death.
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Open Field Assay

Exploratory/locomotor activity of the animals (six-month-
old and nine-month-old, n=8 mice per group) was assessed
in an open-field paradigm equipped with a video trajectory
analysis system (42 x 42 x 36 cm [d x w x h] plexiglass
boxes) and analyzed using Smart 3.0 software (Panlab,
Span). The mice were first allowed to explore the confined
arena for 15 min during each session, then their perform-
ance was recorded and ambulatory locomotor activity was
measured by offline analysis. Track paths were subse-
quently analyzed by an automatic system to assess the fol-
lowing parameters: distance traveled (cm), time spent in
the various sections of the arena and number of rears.

Data analysis and statistics

Statistical analyses were performed using Prism 6
(GraphPad Software). All data shown are representative
from a minimum of three independent experiments un-
less otherwise stated. Statistical analysis for comparison
of groups in the in vitro experiments was performed
using the Student’s t-test. For both in vitro and in vivo
experiments, statistical significance of difference be-
tween groups was determined by the 2-tailed unpaired
Student ¢ test of the means. Where values have been
compared with the normalized control, a one-sample ¢
test was used. In cases of multiple-group comparisons, a
one-way ANOVA was used, with Scheffe’s post hoc test
where values have been compared with the control.

Results

Aggregation kinetics of a-synuclein in the presence of Sal
B and DHM

We first studied the aggregation kinetics of a-syn in the
presence of Sal B and DHM in increasing concentrations
using the thioflavin T (ThT) fluorescence assay. ThT can
bind to the B-sheet structure of a-syn and changes in the
fluorescence signal of this dye are used to monitor the for-
mation of a-syn fibrils. The inhibiting effects of Sal B or
DHM on the aggregation kinetics of a-syn were moni-
tored by starting the fibrillation process in the absence
and presence of Sal B or DHM while continually measur-
ing the ThT fluorescence from the fibrillation process
using the plate-based assays with ThT dye (Fig. 1). Follow-
ing addition of pre-formed fibrils (PFF) of a-syn, an in-
crease in the ThT fluorescence indicates a-syn conversion
from monomer to B-sheet rich aggregates (Fig. 1a, b). The
results suggest that Sal B and DHM can effectively inhibit
a-syn aggregation in a concentration-dependent manner
(10pM and 50 uM for both Sal B and DHM).

Alterations of CMA markers in an in vitro model of a-
synuclein aggregation.

In order to study alterations in o-syn aggregation
in vitro, we performed a co-transfection of SynT and
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synphilin-1 in human neuroglioma cells (H4 cells) for at
least 48 h, leading to a-syn aggregation [35] (Additional
file 1). As we reported previously, in this aggregation
model we detected many large a-syn aggregates in
contrast to wild-type (WT) a-syn transfected cells,
where diffuse a-syn was present in the cytoplasm
(Additional file 1Bi, Ci). In addition, the cells trans-
fected with SynT exhibited large ThS positive aggre-
gates, implying that a-syn aggregates consist of a
typical B-sheet conformation in the cells (Additional
file 1Bii). Small and diffused a-syn positive structures
were also found in each model but were not ThS
positive (Additional file 1Cii), in agreement with our
previous findings [36].

To further study the effects of DHM and Sal B on a-
syn aggregate-degradation in the cells, we used an H4
cell model expressing SynT-aggregation. First, we per-
formed an MTT assay in a dose-dependent manner to
optimize the doses of DHM and Sal B. The optimal
doses were selected as 10 uM and 50 pM for DHM and
Sal B, respectively (Fig. 2a) and the optimal treatment
time for both DHM and Sal B was 16 h (data not
shown). Morphological analysis of immuno-labeled o-
syn-positive structures revealed that larger inclusions (2-
5 um in diameter or larger, Fig.2b) were found in un-
treated cells than that in DHM or Sal B treated cells (1
pm in mean diameter, Fig. 2c, d and e). Quantitative
analysis of CMA marker expression in the SynT-
aggregation model by SDS-PAGE and Western blotting
revealed that LAMP-1 and LAMP-2A were significantly
increased in DHM and Sal B treated cells compared to
the cells with empty vector, SynT and WT a-syn trans-
fection (Fig. 3a, b and c), while the expression levels of
a-syn were significantly reduced by treatment with
DHM and Sal B (Fig. 3a, d). No significant differences
for WT a-syn levels were found in any of the cell models
except for the SynT-aggregation model (Fig. 3a, d and e).
Rapamycin can inhibit the mammalian target of rapamy-
cin (mTOR) pathway and can activate the autophagy-
lysosome pathway (ALP) [37]. Chloroquine (CQ) can re-
duce the fusion of autophagosomes with lysosomes and
inhibit the ALP [38]. Therefore, we treated cells express-
ing SynT with either rapamycin or CQ as positive and
negative controls, respectively. We found that the ex-
pression pattern of WT a-syn, SynT, LAMP-1 and
LAMP-2A were similar in rapamycin treated cells and in
DHM and Sal B treated cells. In CQ treated cells, the
levels of WT a-syn, LAMP-1 and LAMP-2A were sig-
nificantly reduced and the levels of SynT were signifi-
cantly increased as compared to the DHM and Sal B
treated cells (p<0.05, Fig. 3). In order to test the involve-
ment of DHM and Sal B in macroautophagy, we treated
the SynT-transfected cells with 3-MA as an inhibitor of
macroautophagy. The treatment with 3-MA alone
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Fig. 1 Sal B and DHM inhibit seeded aggregation of a-syn in a concentration dependent manner. Chemical structures of Sal B (a) and DHM (b)
as used throughout the study. Seeded a-syn aggregation can be inhibited by addition of either Sal B (a) or DHM (b) in increasing concentrations.
A baseline of ThT fluorescence was captured for both A and B for 3 hours. For both Sal B and DHM, a concentration of 1 uM slows the
aggregation kinetics, while higher concentrations lead to a complete inhibition of aggregation process. Graphs are plotted as median of 3

resulted in a reduction of LC3-II levels, whereas an in-
crease in expression levels of LC3-1I and LAMP-1/2A
was observed after DHM or Sal B treatment (Additional
file 2). These findings suggest that DHM and Sal B lead
to an up-regulation of the LC3-II and LAMP-2A pro-
teins reflecting the involvement of CMA and macroauto-
phagy after treatments with DHM and Sal B.

Next, we examined the effects of DHM and Sal B
on a-syn aggregation and the interaction with LAMP-
1 and LAMP-2A. Interestingly, we observed that o-
syn inclusions co-localized with LAMP-1 and LAMP-
2A in more defined regions in cells treated with
DHM and Sal B (Fig. 4a, b and d), whereas the un-
treated cells showed much less co-localization be-
tween a-syn and LAMP-1 or LAMP-2A (Fig. 4d),
suggesting a potential relationship between the «-syn
inclusions and the CMA pathway. Quantification of
the signals of a-syn and LAMP-1/-2A revealed that

DHM and Sal B treatments increased the levels of
LAMP-1/-2A and mitigated a-syn aggregation. Quan-
tification of the mean fluorescence intensity revealed
a significant increase of around 60%-70% for LAMP-
1 (+75% + 10.5% SEM for DHM treated group;
+58% + 9.8% SEM for Sal B treated group) and
LAMP-2A (+63% + 10.5% SEM for DHM treated
group; +52% + 8.7% SEM for Sal B treated group)
levels in the lysates of SynT-aggregation H4 cells
compared to the untreated group (Fig. 4c). The ex-
pression level of a-syn was reduced in the DHM and
Sal B treated cells (by 77% + 14.1% SEM for DHM
treated group; 68% + 11.8% SEM for Sal B treated
group) compared to the untreated group. Thus, the
altered levels of the lysosomal membranes (LAMP-
2A) support the association between a-syn aggrega-
tion and CMA pathway activation, particularly in re-
sponse to DHM and Sal B administrations.
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Fig. 2 The effects of small molecule drugs on a-syn aggregation in H4 cells. (@) MTT assay was performed in a dose-dependent manner in SynT
and synphilin 1 co-transfected H4 cells. IF labeling for a-syn (red) showed a greater quantity of large-sized aggregates in untreated cells (b) than
that in DHM or Sal B treated cells (c, d, e). All data shown are representatives of at least three independent experiments (mean + SD, *p<0.05,

CMA modulates a-synuclein aggregation and toxicity in
vitro

The findings above suggest that CMA modulation may
be a potential target for intervention in synucleinopa-
thies. Thus, we investigated whether the effects of a-syn
aggregation and toxicity are regulated by CMA (Fig. 5).
Although a-syn inclusions were present in approxi-
mately 50% of the SynT transfected H4 cells (Fig. 5a, c),
the toxicity was not significantly increased compared
with that observed in cells expressing WT a-syn (Fig.
5b, d). Both DHM and Sal B treatments decreased
the percentage of aggregate-containing cells (SynT
transfected H4 cells) from 52.1% (+ 10.1% SEM) to
18.2% (+ 8.3% SEM, p<0.01, DHM) and 19.6% (*
6.7% SEM, p<0.01, Sal B), respectively, compared with
rapamycin treated cells (to 33.8% * 8.6% SEM, p<
0.01) (Fig. 5e). This was paralleled by significant de-
creases in toxicity by 1.48-fold (+ 0.28 SEM, DHM),
1.65-fold (+ 0.34 SEM, Sal B) and 1.78-fold (+ 0.31
SEM, rapamycin) compared to the SynT transfection
model (2.47 fold (+ 0.32 SEM)) (Fig. 5f). Thus, these
results suggest that DHM and Sal B have ameliorative

effects on «a-syn aggregation and attenuate toxicity for
aggregation-prone a-syn species.

DHM and Sal B treatments activate CMA pathways and
degrade a-syn aggregates in vivo.

To validate the effects of DHM and Sal B treatments in
vivo, we administered them to Bacterial Artificial
Chromosome (BAC) transgenic mice, expressing WT
human a-syn fused to green fluorescent protein (GFP)
under the control of the endogenous a-syn promoter
[34]. We observed a widespread expression of o-syn-
GFP in multiple brain regions, including the corpus stri-
atum (CS) and substantia nigra pars compacta (SNpc).
To study the effects of DHM and Sal B on mouse behav-
ior, we assessed locomotor activity in an open field test
using 6 and 9-month-old mice. Upon administration of
DHM (10 mg/kg/day), Sal B (10 mg/kg/day) or vehicle
for two weeks, we did not observe any significant differ-
ences in ambulatory movements among the groups of
WT vs transgenic mice (treated with DHM, Sal B or ve-
hicle) (Additional file 3). We then examined the expres-
sion of a-syn and LAMP-1/-2A in DHM and Sal B
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Fig. 3 Expression of LAMP-1 and LAMP-2A in a-syn transfected H4 cells. A control group without any transfection was performed as a ‘mock’
while another group with an ordinary wildtype a-syn plasmid transfection was performed as ‘WT a-syn’. SynT and synphilin 1 co-transfected
group was performed as the experimental group with DHM, Sal B, Rapamycin or Chloroquine treatments. The expression levels of LAMP-1/-2A,
SynT or endogenous a-syn were detected by Western blot (a). Quantitative analyses of a-syn (SynT) and LAMP-1/-2A normalized to {3-actin (B-E)
(n = 5). Expression of LAMP-1 (b) and LAMP-2A (c) was significantly increased after treatment with DHM or Sal B, as compared with WT a-syn
transfected cells, rapamycin treated cells or CQ treated cells (after normalization to untreated cells). (d) SynT levels were decreased in both DHM
and Sal B treated cells as compared to the SynT-aggregation model or (CQ) treated cells. (e) WT a-syn expression levels were increased in DHM
(10 uM) or Sal B (50 uM) treated cells as compared with the SynT-aggregation model. All data shown are representative of at least three

treated groups compared to the saline treated group in
the BAC-a-syn-GFP transgenic mice. Morphological
analyses with IF and immunohistochemical (IHC) prepa-
rations revealed that in the CS and SNpc, the levels of
a-syn-GFP (IF) (Fig. 6a-d, g-j) and a-syn (IHC) (Fig. 6e,
f, k, 1) significantly decreased upon administration of
DHM and Sal B, while the levels of LAMP-1 (Fig. 6a, b,

g, h) and LAMP-2A (Fig. 6c, d, i, j) significantly in-
creased, compared with the saline control group (p<
0.05) (Fig. 6a-f, left column), suggesting that DHM (Fig.
6a-f, middle column) and Sal B (Fig. 6A-F, right column)
treatments activated CMA pathways in the brains of
transgenic mice. Furthermore, we found that LAMP-1,
LAMP-2A and o-syn-GFP exhibited a co-localized
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Fig. 4 Drug effects on a-syn aggregates and co-localization of LAMP-1, LAMP-2A in the SynT-aggregation model. H4 cells were co-transfected
with SynT and synphilin-1. (a-b) Cells were fixed 48 h post-transfection and subjected to IF for a-syn (red) and LAMP-1/-2A (green) followed by
confocal microscopic analysis. () LAMP-1 and LAMP-2A showed an increased expression level in SynT transfected H4 cells following treatment
with DHM (10 uM, 48h) and Sal B (50 uM, 48h), compared to untreated cells. The fluorescence density levels of a-syn were decreased in DHM
and Sal B treated cells compared with the control. (d) The co-localization levels of LAMP-1/-2A with a-syn in intracellular aggregates were
increased in DHM and Sal B treated cells. All data shown are representative of at least three independent experiments (mean + SD, *p<0.05, **p<

distribution in some subcellular compartments in the
DHM and Sal B treated mice (Additional file 4), further
indicating increased degradation of a-syn aggregates via
the CMA pathway.

To further explore alterations of a-syn as well as
LAMP-1 and LAMP-2A levels in BAC-a-syn-GFP trans-
genic mice, we performed SDS-PAGE and Western blot-
ting (Fig. 7). We observed that levels of LAMP-1 and
LAMP-2A were significantly up-regulated in DHM (Fig.
7a, c¢) and Sal B treated mice (Fig. 7b, d) in the CS and
SNpc compared to the saline treated group, whereas
levels of a-syn-GFP were significantly down-regulated
following DHM and Sal B treatments. In addition, no
changes were observed in the levels of the endogenous
mouse a-Syn.

DHM and Sal B treatment lead to decreased astrogliosis
and microgliosis in vivo

To investigate the effects of DHM and Sal B on inflam-
matory responses in the CS and SNpc, we examined the
density and quantity of activated Ibal- and GFAP- posi-
tive cells in the substantia nigra and the striatum after
DHM and Sal B treatments in BAC-a-syn-GFP trans-
genic mice. We observed a reduction in astrogliosis and
microgliosis in both the CS and SNpc (Fig. 8a, b) by
quantifying the number of activated astroglial cells and
microglial cells as well as the astroglial and microglial
density of IF staining results in BAC-a-syn-GFP trans-
genic mice (Fig. 8¢, d). Quantification of the Ibal (Fig.
8e, f) and GFAP (Fig. 8g, h) signal intensity of IHC
staining also revealed a deactivation of astroglia and
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Fig. 5 Molecules modulate the cytotoxicity of a-syn aggregation in cells transfected with WT a-syn or co-transfected with SynT and synphilin-1.
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microglia by DHM and Sal B treatments in the CS as
well as in the SNpc. These data suggest that DHM and
Sal B treatments have anti-neuroinflammatory effects in
BAC-a-syn-GFP transgenic mice.

Discussion

In this study, we have shown that DHM and Sal B in-
duce the degradation of a-syn aggregates and we attri-
bute this to the observed activation of the CMA

pathway both in vitro and in vivo. Firstly, low doses of
DHM and Sal B could reduce the expression level of a-
syn aggregates by up-regulating the CMA pathway in
the SynT-aggregation cell model. We then confirmed
that DHM and Sal B up-regulate LAMP-1, an important
marker for the structure and function of lysosomal
membranes and LAMP-2A, a key marker of CMA, in a-
syn transgenic mice and decrease astrogliosis and micro-
gliosis. This data indicates that treatment with DHM or
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Sal B upregulates the CMA pathway, which is known to
play a key role in degrading abnormal a-syn aggregates.
Autophagy has been considered an essential mechan-
ism in neurodegenerative diseases such as PD and Alz-
heimer’s disease [39-41]. Increasing evidence suggests
that aggregated and misfolded a-syn drives the path-
ology of PD. Although it has been reported that Sal B
can inhibit AP aggregation in cultured cells [24, 42], no

evidence exists to indicate whether DHM or SalB have a
regulatory effect on o-syn aggregation. Here, we ob-
served decreased a-syn expression in cell models after
DHM and Sal B treatments, as well as decreased levels
of the a-syn protein in «a-syn transgenic mice. Therefore,
it is possible that the degradation pathway of aggregated
a-syn may be directly targeted by DHM and Sal B. From
a structural chemistry point of view, several studies have
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provided evidence that compounds which have three ad-
jacent dihydroxy groups (e.g. DHM) or vicinal dihydroxy
groups (e.g. Sal B) are effective inhibitors of a-syn
oligomerization and fibrilization [43-45]. Thus, the spe-
cial structures of DHM and Sal B may have a direct in-
hibitory effect on the aggregation of a-syn.

Lysosomes are the primary compartment for the deg-
radation of intracellular proteins via autophagy [46]. The
existence of abnormal intracellular a-syn-positive aggre-
gates in PD indicates that the degradation capability of
lysosomes may be impaired [3, 47]. CMA exerts a pro-
tective function by selectively targeting damaged or mis-
folded proteins for lysosomal degradation. Dysfunction
of CMA in PD is characterized by reduced expression of
the membrane receptor of CMA, lysosomal-associated
membrane protein (LAMP) [4, 48, 49]. Several studies
using different cell culture models of synucleinopathies
have shown that the CMA pathway participates in a-syn
degradation and its alteration may support a-syn medi-
ated neurodegeneration [3, 7, 50]. Most of the previous

studies report increased accumulation of a-syn by inhi-
biting CMA pathway, or reduced a-syn levels by activat-
ing CMA pathway [39, 51]. LAMP-2A plays an
important role in the CMA pathway of a-syn degrad-
ation and an increased expression of LAMP-2A can acti-
vate the CMA pathway [4, 13, 52]. Here, we observed a
reduction of a-syn aggregation by DHM and Sal B in
vitro. The aggregation cell model is characterized by
ThS-positive a-syn aggregates, because the dye can spe-
cifically bind to amyloid-like structures to indicate the
formation of large inclusions [36, 53]. Smaller a-syn
positive aggregates generated by untagged a-syn are also
found in cell models, but are not positive for ThS. Thus,
our data suggest that DHM and Sal B not only enhance
a-syn degradation by the CMA pathway, but also modu-
late a-syn aggregation. Rapamycin has been widely used
to inhibit the mTOR pathway and thereby induce au-
tophagy [54]. Chloroquine blocks lysosomal function by
raising lysosomal pH, thereby inhibiting lysosomal func-
tion [55]. Here, blocking autophagy with CQ resulted in
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SynT aggregation and increased toxicity. However, ALP
modulation by rapamycin did not increase the toxicity of
SynT and o-syn aggregation was reduced. We can see a
clear effect of DHM and Sal B treatment on LAMP-1
and LAMP-2A levels, and a similar effect on aggregation

induced by rapamycin. Notably, we observed that both
LAMP-1 and LAMP-2A clearly co-localized with a-syn
in transgenic mice after administration of DHM and Sal
B, which is in agreement with previous findings [48, 56].
Recent studies showed that DHM and Sal B can enhance
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the level of autophagy by regulating the mTOR pathway
[31, 57]. Sal B can stabilize the lysosome membrane by
increasing the LAMP-1 protein level by reducing lyso-
somal enzyme translocation to the cytosol [58]. Levels of
LAMP-1 can be increased through the regulation of the
nuclear localization of Transcription factor EB (TFEB)
via the mTOR signaling pathway [59]. LAMP-2A and
the mTOR complex were highly relevant in vivo [60].
Thus, we reasoned that DHM and Sal B may enhance
the degradation of a-syn by up-regulating the level of
CMA and enhancing the expression of LAMP-1 and
LAMP-2A via the mTOR signaling pathway.

As previously reported, DHM exerts a more rapid ef-
fect in association with enhancement of brain-derived
neurotrophic factor expression and inhibition of neuro-
inflammation [61]. Administration of Sal B significantly
decreased microglial activation in the central nervous
system [62], promoted autophagy and induced the clear-
ance of inflammasome, resulting in neuroprotective ac-
tions [63]. In our study, we demonstrated that both
DHM and Sal B treatments effectively inhibited astro-
glia- and microglia-mediated neuroinflammation. It ap-
pears that DHM and Sal B can penetrate the blood-
brain barrier and display multiple pharmacological activ-
ities, including oxidation resistance, anti-tumor proper-
ties and neuroprotection [23, 64], indicating potential
for clinical application [65]. Both DHM and Sal B dis-
played a protective role towards dopaminergic neurons
by exerting neuroprotective effects [66, 67].

Conclusions

Through small molecule screening, we have identified
two small molecules, DHM and Sal B that can inhibit «-
synuclein aggregation in cell-free conditions. In a-
synuclein overexpressing cell and animal models, we
have demonstrated that both DHM and Sal B can inhibit
a-synuclein accumulation and aggregation in cells and
mouse brains. Decreasing a-synuclein aggregates con-
comitantly activates CMA pathways by increasing ex-
pression of LAMP-2A and macroautophagy by
increasing LC3-II and LAMP-1, and is accompanied by
the inhibition of microglial activation and neuroinflam-
mation. Our results show that DHM and Sal B are ef-
fective in modulating a-synuclein accumulation and
aggregate formation and augment CMA and macroauto-
phagy. Furthermore, many chemotherapeutic agents
have been reported to induce CMA activation, suggest-
ing that autophagic protein degradation could be a po-
tential approach to prevent and treat synucleinopathies.
Our study strongly suggests that these two compounds
may represent a detoxification and anti-inflammatory
mechanism which could be targeted for clinical inter-
ventions of PD caused by abnormal accumulation and
aggregation of a-syn.
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Additional files

Additional file 1: SynT-aggregation model and WT a-syn control. A 93
aa long C-terminal tag fused to a-syn (SynT) (Ai) and synphilin-1 were
transiently co-transfected to H4 cells and resulted in larger intracellular a-
syn inclusions. Immunostaining for a-syn revealed large inclusions that
were ThS-positive (Bi, Bii). Smaller aggregates were ThS-negative (Bi, Bii).
Transfection with untagged human WT a-syn (WT a-Syn) (Aii) did not
result in larger a-syn immunopositive inclusions (Ci, Cii). (TIF 2251 kb)

Additional file 2: Expression of LC3-Il and LAMP-2A in a-syn transfected
H4 cells in response to treatments with DHM, Sal B and 3-MA. A control group
with wildtype a-syn plasmid transfection was performed as ‘WT a-syn’. SynT
and synphilin 1 co-transfection was performed as the experimental group with
DHM, Sal B, and 3-MA treatments. (A) The levels of SynT, LC3-Il and LAMP-1/-
2A were measured by Western blots. Quantitative analyses of a-syn (SynT),
LC3-l and LAMP-1/-2A normalized to B-actin (B-E) (n = 5). (B) SynT levels were
increased even after treatment with 3-MA in DHM or Sal B treated groups. (C)
3-MA led to a decrease in LC3Al levels in SynT transfected H4 cells and the
level of LC3-Il was recovered after treating with DHM or Sal B. (D-E) LAMP-1
and LAMP-2A expression levels were increased in DHM or Sal B treated cells
as compared to the 3-MA-treated SynT cells.~ shows the comparison between
SynT/P and DHM/3-MA and Sal B/3-MA, while # shows the comparison
between 3-MA and DHM/3-MA and Sal B/3-MA. All data shown are
representative of at least three independent experiments (mean =+ SD,
*p<001, p<001). (TIF 1633 kb)

Additional file 3: Open field tests showing the locomotor function of 6
and 9 month old mice after DHM and Sal B treatments. Ambulatory
movement for (A) 6 month old and (B) 9 month old WT (wt), or
homozygous (tg/tg) mice (8 animals/group, male), recorded for 15 min
each. Two groups of homozygous (tg/tg) mice (8 animals/group, male)
received intraperitoneal administrations of 5 mg/kg DHM/Sal B.

(TIF 1594 kb)

Additional file 4: o-Syn-GFP co-localizes with CMA markers in
transgenic mice. a-Syn was expressed with GFP (green) and subjected to
immunocytochemistry for LAMP-1 and LAMP-2A (red) followed by
confocal microscopic analyses. In the presence of overexpressed a-syn-
GFP, a greater quantity of LAMP-1 and LAMP-2A co-localize with a-syn in
the DHM and Sal B treated group compared to the saline treated group
in the SNpc of BAC-a-syn-GFP transgenic mice (8 animals/group, male).
White arrows point to lysosomes where a-syn-GFP and LAMP-1/-2A are
co-localized. Scale bar = 50 um. (TIF 5592 kb)
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3-methyladenine: 3-MA; ALP: Autophagy-lysosomal pathway; BAC-a-syn-
GFP: Bacterial Artificial Chromosome a-synuclein-green fluorescent protein;
CMA: Chaperone-mediated autophagy; CQ: Chloroquine; CS: Corpus striatum;
DHM: Dihydromyricetin; GFAP: Glial fibrillary acidic protein; HSC/Hsc70: Heat
shock (70kDa) protein; Iba1/AIF1: Allograft inflammatory factor 1;

IF: Immunofluorescence; IHC: Immunohistochemical; LAMP-1: Lysosomal-
associated membrane protein 1; LAMP-2A: Lysosomal-associated membrane
protein 2, isoform A; LDH: Lactate dehydrogenase; mTOR: Mammalian target
of rapamycin; MTT: 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium
bromide; PD: Parkinson’s disease; PVDF: Polyvinylidene difluoride; RT: Room
temperature; Sal B: Salvianolic acid B; SDS-PAGE: Sodium dodecy! sulfate
polyacrylamide gel electrophoresis; SNpc: Substantia nigra pars compacta;
SynT: C-terminal modified a-synuclein; ThS: Thioflavin S; ThT: Thioflavin T;
UPS: Ubiquitin-proteasome system; WT a-syn: Wild-type a-synuclein; a-syn/a-
Syn: Alpha-synuclein
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