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Current progress of mitochondrial
transplantation that promotes neuronal
regeneration
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Abstract

Background: Mitochondria are the major source of intracellular adenosine triphosphate (ATP) and play an essential
role in a plethora of physiological functions, including the regulation of metabolism and the maintenance of
cellular homeostasis. Mutations of mitochondrial DNA, proteins and impaired mitochondrial function have been
implicated in the neurodegenerative diseases, stroke and injury of the central nervous system (CNS). The dynamic
feature of mitochondrial fusion, fission, trafficking and turnover have also been documented in these diseases.

Perspectives: A major bottleneck of traditional approach to correct mitochondria-related disorders is the difficulty
of drugs or gene targeting agents to arrive at specific sub-compartments of mitochondria. Moreover, the diverse
nature of mitochondrial mutations among patients makes it impossible to develop one drug for one disease. To
this end, mitochondrial transplantation presents a new paradigm of therapeutic intervention that benefits neuronal
survival and regeneration for neurodegenerative diseases, stroke, and CNS injury. Supplement of healthy
mitochondria to damaged neurons has been reported to promote neuronal viability, activity and neurite re-growth.
In this review, we provide an overview of the recent advance and development on mitochondrial therapy.

Conclusion: Key parameters for the success of mitochondrial transplantation depend on the source and quality of
isolated mitochondria, delivery protocol, and cellular uptake of supplemented mitochondria. To expedite clinical
application of the mitochondrial transplantation, current isolation protocol needs optimization to obtain high
percentage of functional mitochondria, isolated mitochondria may be packaged by biomaterials for successful
delivery to brain allowing for efficient neuronal uptake.

Keywords: Mitochondrial dynamics, Mitochondrial therapy, Neurodegenerative diseases, Stroke, Neuronal
regeneration

Background
Mitochondria are double-membraned cytoplasmic or-
ganelles that generate the majority of adenosine triphos-
phate (ATP) via oxidative phosphorylation. In addition
to energy production, mitochondria also function in the
biosynthesis of fatty acids, cellular calcium buffering,
and act as a platform to integrate cell signalling circuitry
that modulates cell survival, immune response, and au-
tophagy [1, 2]. It has been hypothesized that mitochon-
dria evolved from engulfed prokaryotic bacteria so that

they possess their own circular DNA (mitochondrial
DNA, mtDNA) encoding 37 genes and 13 mitochondrial
proteins. Together with nuclear encoded mitochondrial
proteins, they maintain mitochondrial integrity [2–4].
Research in the past decade has unveiled that mitochon-
dria are dynamic bioenergetic organelles undergoing
controlled fusion, fission, transport, and targeted turn-
over. Mitochondrial population and quality are con-
trolled in part by dynamic morphogenesis. Initiation of
mitochondrial fission starts with recruiting cytosolic
dynamin-related protein 1 (Drp1) to mitochondrial outer
membrane and forming Drp1 oligomers at candidate fis-
sion site, which is marked by ER-mitochondria contact
region. Drp1 oligomers then constrict mitochondrial
membrane upon GTP hydrolysis to divide mitochondria
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[5–7]. Fusion, on the other hand, is initiated by
mitofusin-1 and -2 (Mfn1 and Mfn2), which are an-
chored to the outer mitochondrial membrane (OMM)
and mediate fusion of OMM. Fusion of inner membrane
(IMM) depends on inner membrane GTPase optic atro-
phy protein 1 (OPA1), which is spliced into long iso-
form, L-OPA1, and short isoform, S-OPA1. L-OPA1 is
required for IMM fusion while S-OPA1 is associated
with mitochondrial fission [5, 6].
The dynamic feature of mitochondria serves to adjust

cellular metabolism according to physiological states [8,
9]. During early development, stochastic mitochondrial
segregation leads to genetic drift effect, raising the risk
of pathogenic homoplasmy and the subsequent mito-
chondrial dysfunction. Given the maternal inheritance of
mtDNA, accumulated mtDNA mutations are very likely
to be transmitted to the offspring during fertilization
whilst paternal mtDNA is targeted to be destroyed. Con-
sequently, the highly dynamic nature of mitochondria
evolves as a compensation to retain mitochondrial het-
eroplasmy in cells [10]. Mitochondrial fusion requires
the fusion of outer and inner mitochondrial membranes
to form tubular or elongated interconnecting mitochon-
drial networks within cells and allows the communica-
tion of mitochondrial materials between organelles. As
mutated mtDNA accumulates, mitochondrial fusion
buffers defective mtDNA by mixing wild-type and mu-
tant mtDNA to compensate mitochondrial function or
undergoing mtDNA recombination to prevent homo-
plasmic inheritance of mutated mtDNA into daughter
cells [10]. Mitochondrial fission, in contrast, has mainly
been implicated in mitochondrial replication, transport,
turnover, and cell survival. During cell division, mito-
chondria are replicated and split into daughter cells. As
part of mitochondrial quality control machinery, mito-
chondrial fission antagonizes fusion events and prompts
segregation of damaged mitochondria for further de-
struction via mitophagy. Divided smaller mitochondria
facilitate mitochondrial transport through interaction
with motor proteins along cytoskeletal networks to meet
energy demand at distal region. For example, mitochon-
drial fission and recruitment are prominent in primary
cortical neurons during development and in vicinity of
dendritic protrusions of hippocampal neurons to benefit
the plasticity of spines and synapses [11, 12]. Drp1-
dependent mitochondrial fission has been reported to
modulate programmed cell death following the recruit-
ment of pro-apoptotic proteins, such as Bcl-2-associated
X protein (Bax) and Bcl-2 antagonist. Findings from our
laboratory also reveal enhanced mitochondrial fission in
response to injury and during regeneration of hippocam-
pal neurons [13].
Brain is highly energy-demanding, consuming about 20%

of body’s energy. Thus, mitochondrial localization within

dendrites and axons supply energy as well as to maintain
calcium homeostasis [14]. It is thus not surprising to find
that mitochondrial distribution and transport are essential
for synaptogenesis and dendritic spine formation during de-
velopment as well as for regulating neuronal activity and
behaviour [11, 14]. The dependency of neuronal function
and structure on mitochondrial integrity and dynamics is
echoed by increasing studies that demonstrate mitochon-
drial dynamic abnormalities in the well documented neuro-
degenerative diseases, such as Alzheimer’s disease (AD),
Parkinson’s disease (PD), Huntington’s disease (HD), ische-
mic stroke and traumatic brain injury (TBI) [15–17] . To
this end, better understanding the mechanism underlying
defective mitochondrial dynamics and function in these dis-
eases would provide insights into the improvement of clin-
ical treatment. In this review, we summarize and discuss
recent reports that lead to the emerging mitochondrial
therapy.

Mitochondrial dynamics and diseases
Neurodegenerative diseases
Due to the complexity and therapeutic setbacks of current
treatment for neurodegenerative diseases, increasing at-
tention points to the mitochondria-related pathogenesis
[15, 18]. Reduced utilization of glucose in the brain mea-
sured by flurodeoxyglucose positron emission tomography
(FDG PET) suggests metabolic defect in AD brain and
prompts the exploration of the role of mitochondria in
AD pathogenesis [19]. In AD, increased S-nitrosylation at
Cys644 and phosphorylation at Ser616 of Drp1 protein
enhance the GTPase activity and lead to mitochondrial
fragmentation [20, 21]. Inhibition of Drp1 in AD models
restores amyloid beta (Aβ)-mediated mitochondrial dys-
function, synapse damage, and cognitive impairment. In-
crease of mitochondrial fragmentation in AD subjects
could also result from up-regulated fission proteins (Drp1,
Fis1) and down-regulated fusion proteins (Mfn1, Mfn2,
OPA1) that partially contribute to gradual neuronal loss
and synapse impairment [22–26]. In addition, the absence
of an autophagy/mitophagy regulator PTEN-induced pu-
tative kinase protein 1 (PINK1) on OMM within neurofib-
rillary tangles of AD brain fails to recruit Parkin protein
upon membrane depolarization and thus underlies the ac-
cumulation of damaged mitochondria in AD patients [27].
Intra-hippocampal injection of PINK1-expressing con-
struct to transgenic mice that overexpress human form of
mutant amyloid precursor protein effectively alleviates
Aβ-mediated mitochondrial dysfunction and rescues the
mitophagy defect via recruiting autophagy receptors
(nuclear dot protein 52 kDa, optineurin) to damaged mito-
chondria to activate mitophagy signalling [26, 28]. PD-
associated leucine-rich repeat kinase 2 (LRRK2) mutant
and HD-associated mutant huntingtin protein (mHtt) were
found interacting with Drp1 to enhance mitochondrial
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fission, accompanied by defective anterograde mitochon-
drial transport and synapse degeneration [29, 30]. The tox-
icity of mutant PD-associated proteins, including PINK1,
Parkin, LRRK2, protein deglycase DJ-1,vacuolar protein
sorting-associated protein 35, and α-synuclein, accounts for
mitochondrial fission, impaired mitophagy, and neuronal
death in the PD genetic models [15, 31]. Loss of synapses
concurred with deficiency of mitochondrial complexes I
and IV in PD neurons within substantia nigra (SN) were
also observed [32]. For HD patients, mHtt protein directly
or indirectly alters mitochondrial morphology, functions,
bioenergetics status, and dynamics, mainly in the striatum
and cortical cerebrum [33, 34]. In addition to mHtt-Drp1-
interaction-mediated mitochondrial fission [35], mHtt in-
teracts with OMM and leads to defect of calcium homeo-
stasis. High sensitivity of mitochondria to calcium-induced
permeability transition pore in mHtt-expressing clonal stri-
atal cells (conditionally immortalized cells of striatal origin)
and striatal neurons results in increased calcium release in
the presence of ROS stress [36–38]. However, the clearance
of defective mitochondria via mitophagy is inhibited due to
the binding of mHtt aggregates to the adaptor proteins,
such as p62 and huntingtin-associated protein-1, during
formation and transport of autophagosomes [39–41]. Not-
ably, it was demonstrated in HD mice that decreased activ-
ity of mitochondrial complex IV and reduced ATP
production in striatal cells precede neuronal death [42].
Inhibiting mitochondrial citric acid cycle by administrating
3-nitropropionic acid in the animal models resembles the
pathology and symptomatology in HD [43, 44].

Stroke
Mitochondrial fission was regarded as an early patho-
logical event in ischemic stroke mice and accompanied
by morphological change of mitochondria, high level of
free radicals, and ATP depletion [45]. In the middle
cerebral artery occlusion (MCAO) mice model, mito-
chondrial fission occurred in penumbra region 3 h after
reperfusion [45]. Another study showed that oxygen–
glucose deprivation (OGD)-induced mitochondrial fis-
sion resulted in neuronal cell death and inhibition of
Drp1 by siRNA or pharmacological inhibitors prevented
mitochondrial fission, reduced death of cortical neurons
and reduced the infarct volume in ischemic stroke mice
[46]. PINK1 was reported to prevent subcellular trans-
location of Drp1 and reversed mitochondrial fission in-
duced by OGD. Knockdown of PINK1 caused an
increase in fragmented mitochondria and worsened the
collapse of mitochondrial membrane potential [47]. The
MCAO mice and hypoxic/ischemic condition in hippo-
campal neurons suppressed the expression of Mfn2.
Overexpression of Mfn2 increased the ratio of Bcl-2/Bax
and reduced the cleaved caspase 3 and cytochrome c re-
lease after hypoxia [48]. These studies indicate that the

excess of mitochondrial fission induced by stroke leads
to mitochondrial damage and cell death. Thus, restor-
ation of the imbalanced mitochondrial dynamics may
potentially be a way to attenuate stroke-induced neur-
onal death.

Traumatic brain injury
Studies dated back in 1960s revealed increased number
of mitochondria following neuro-axotomy of motor neu-
rons [49, 50]. Mitochondrial swelling were observed in
isolated sensory ganglions from limb-amputated newt
[51] and in dorsal root ganglions after sciatic nerve
crush in rat [52]. Dimova et al. performed axonal section
on rat hypoglossal neurons and noted the increased
clustering of hypertrophic mitochondria around axon
hillock along with strong respiration activity (Fig. 1a and
b) [53]. Our previous study reported that fragmented
mitochondria were increased 24–48 h after injury in pri-
mary hippocampal neurons [13]. Another study showed
reduced length of mitochondria in hippocampal neurons
after TBI in a controlled cortical impact (CCI) mouse
model. The aberrant mitochondrial fission was caused
by the increase in Drp1 translocation but not total Drp1
level. Excessive Drp1-mediated mitochondrial fission in
TBI animals impairs mitochondrial respiration, leads to
reactive oxygen species (ROS) overproduction, and neur-
onal loss [16]. Mitochondrial division inhibitor 1 (Mdivi-
1) treatment attenuated the reduction of mitochondrial
length and protected new-born neurons in the hippo-
campus post injury [16]. A recent study reported that
Mdivi-1 blocked the induction of mitochondrial fission
and mitophagy in a CCI model of moderate TBI [54]. It
appears that TBI induces mitochondrial fission and inhi-
biting fission can reduce the damage caused by TBI.
However, another study on TBI model of rats suggests
that the change of mitochondrial fission/fusion dynamics
depends on injury severity. The expression level of the
genes involved in fission and fusion were down-
regulated and up-regulated, respectively, following a
mild TBI. In contrast, mitochondrial fission was in-
creased following a severe TBI [55]. Due to the complex-
ity of TBI, it remains debatable whether mitochondrial
fission enables higher mobility of mitochondria to the
injury site for regeneration or is a result of tissue dam-
age. Nevertheless, these two conclusions do not neces-
sarily conflict with each other.

A new paradigm of therapeutic strategy: mitochondrial
therapy
Mitochondrial dynamics and neuronal regeneration
As accumulating data demonstrate the interplay between
defective mitochondrial biogenesis and diseases, several
lines of evidence reveal dynamic morphogenesis during
neuronal regeneration. Our laboratory previously reported
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that increased mitochondrial fusion promoted survival of
hippocampal neurons in response to low-dose ionizing ra-
diation (Fig. 1b) [56]. Interestingly, in response to TBI,
mitochondrial fission was increased in hippocampal neu-
rons allowing faster mobilization of smaller/fragmented
mitochondria to the injury site, likely to facilitate regener-
ation process [13]. Along this line, live cell imaging of re-
generating neurons after laser axotomy of γ-aminobutyric
acid motor neurons of C. elegans and Mauthner axons of
zebra fish suggests that increased number of mitochondria
translocated in injured axons and that mitochondrial mo-
bility is positively correlated with axonal regeneration [57,
58]. Furthermore, genetic knockout of Snph, a gene en-
coding mitochondria-anchoring protein syntaphilin, im-
proved mitochondrial motility in axons after in vivo
sciatic nerve injury and enhanced axonal regeneration
[59]. Similarly, overexpression of mammalian-specific
mitochondrial protein Armcx1in adult retinal ganglion
cells mobilized mitochondria in axons and promoted
neuronal survival as well as axonal re-growth [60].
These studies raise a possibility that higher mitochon-

dria number and motility in injured neurons may pro-
vide better regenerative capacity both in the peripheral
nervous system and the central nervous system (CNS)
(Fig. 1c) [61–63].

Mitochondrial therapy
The concept of “mitochondrial medicine”, which refers
to medical intervention targeting mitochondria, boots a
new line of biomedical endeavor. Mitochondrial therapy
aims to restore mitochondrial functions, such as mildly
inducing mitochondrial uncoupling, boosting energy
production, and antagonizing the release of ROS. New
drugs in forms of mitochondrial membrane uncoupling
agents (eg. 2,4-dinitrophenel, uncoupling protein-2, un-
coupling protein-3), electron transfer chain-boosting
substrates (eg. dichloroacetate, thiamine), metabolism
modulators (eg. Metforin) and antioxidants (eg. coen-
zyme Q10, MitoQ, RP103) have been developed or pre-
clinically tested [2, 64, 65]. By the end of July 2018, there
were more than 400 completed or ongoing clinical trials for
mitochondria-targeted medical intervention registered at
ClinicalTrials.gov. However, there is currently no medicine
to cure mitochondria-related diseases caused by inefficient
energy production, and the loss of normal physiological
ROS function. Therefore, a new paradigm of mitochondrial
therapy based on organelle delivery strategy was estab-
lished. Supplement of healthy mitochondria into cells con-
taining damaged mitochondria was beneficial to improve
energy generation, reverse excessive ROS production, and
restore mitochondrial function. Findings in recent years

Fig. 1 Injury-induced morphogenesis and distribution of mitochondria in neurons. a Healthy neurons. b (upper panel) In response to neuronal
injury, the size and number of mitochondria are increased around the axon hillock. (bottom panel) Stimuli, such as low-dose ionizing radiation
stress, induces mitochondrial fusion [56]. c During neuronal regeneration, density of mitochondria and their transport are increased in the
regenerating axon. Moreover, knockout of Snph or overexpressing Armcx1 have been shown to improve mitochondrial motility and promote
axonal regeneration [59, 60]
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have demonstrated the promising outcome upon receiving
mitochondrial delivery using in vitro and in vivo models
(Table 1) and in several completed or on-going clinical tri-
als (Table 2) [2, 66]. In the following section, we will re-
view recent application of mitochondrial delivery
techniques in experimental animals modelling human
diseases and highlight the therapeutic potential of de-
livering isolated mitochondria for the management of
neurodegenerative diseases, cerebral stroke, and TBI.

Mechanism of mitochondrial uptake by cells
Mechanisms underlying mitochondrial internalization
have been reported (Table 1 and Fig. 2) [67]. Organelle
transfer through cell-to-cell fusion or via mitochondria-
containing vesicles was observed in bone-marrow-derived
stroma cell-to-lung epithelium mitochondrial transfer to
mitigate acute lung injury [68]. Tunneling nanotubes
(TNTs)-dependent mitochondrial transfer has been well-
characterized [68–70]. This actin-based structure was
found to mediate mitochondrial exchange between
healthy and UV stress-damaged PC12 cells to prevent
damaged cells from apoptosis. Nanotube-mediated mito-
chondrial transfer from co-cultured mesenchymal stem
cells to epithelium was reported to rescue cigarette
smoke-induced lung damage [71]. Notably, recent study
discovered an intriguing mechanism by which stroke-
induced activated astrocytes released mitochondria-
containing particles and these particles entered damaged
neurons through actin-dependent endocytosis to prevent
neuronal death [72, 73].

Mitochondrial delivery for neurodegenerative diseases,
cerebral stroke and TBI
As in vivo mitochondrial supplementation in cardiac
ischemia models set a milestone for organelle delivery-
based therapy, this approach was also applied to
neurodegenerative diseases, cerebral stroke, and TBI.
Hereinafter, we review the approach of mitochondrial
delivery in degenerating, hypoxemic, or injured ner-
vous system.

Neurodegenerative diseases
Due to limited understanding of molecular basis underlying
AD pathogenesis, available drugs approved by the Food
and Drug Administration of the United States for AD, such
as acetylcholinesterase inhibitors galantamine, donepezil,
and rivastigmine, can simply relieve the symptoms [74, 75].
Since the 1980s, many studies have revealed mitochondrial
abnormalities in the AD subjects, including structural
change, deficiency of Kreb cycles enzymes, reduced cyto-
chrome oxidase activity, and the disturbance of calcium
homeostasis [76–79]. Mitochondrial delivery in AD model
was originally conducted in the in vitro cybrid cell system.
Cybrids were generated by fusing mtDNA-depleted human
neuroblastoma cell line, SH-SY5Y, or teratocarcinoma cells
Ntera2/D1 (NT2), with mitochondria from platelets of AD
patients [80, 81]. Reduced activity of mitochondrial com-
plex IV, elevated ROS production, higher cytosolic calcium
concentration, and defective cytochrome c oxidase, were
found in the AD cybrids compared to non-AD control
cybrids. Based on these discoveries, mitochondrial cascade
hypothesis in the pathogenesis of sporadic AD was then
proposed by Khan et al, suggesting that baseline mitochon-
drial function and durability determine aging-related mito-
chondrial changes and would progress to AD [82, 83].
Although pre-clinical studies on many anti-oxidants, such
as α-tocopherol, for treating AD were found effective in ex-
perimental AD animal models, few clinical trials have suc-
ceeded. Given the complexity of AD pathophysiology as
well as limited efficiency of drug delivery, improved thera-
peutic strategy of mitochondrial therapy is needed.
Mitochondrial dysfunction aggravates the progression

of PD, manifested by increased oxidative stress, dysregu-
lated bioenergetic homeostasis, and reduced viability of
affected SN dopaminergic neurons. While mitochondria-
targeting antioxidant was considered of great potential
for treating PD, existing agents have limited effect on
preventing PD from deterioration even if there was
promising outcome in animal models and pre-clinical
tests [84, 85]. For example, antioxidant drugs, coenzyme
Q10 and creatine monohydrate, failed to significantly al-
leviate the progression in patients with PD in the clinical

Table 2 Registered interventional studies for mitochondrial transplantation on ClinicalTrials.gov

Conditions/Diseases Status Phase Intervention Mitochondria donor NCT number

Age-related deterioration of
oocyte quality

Withdrawn 1&2 Injection of autologous mitochondria to the oocytes Autologous granulosa
cells

NCT01631578

Infertility Completed NA Autologous micro-injection of mitochondria into the
oocytes during ICSI

Autologous ovarian stem
cells

NCT02586298

Mitochondrial diseases:
Pearson Syndrome

Not yet
recruiting

Early
1

Mitochondria augmentation therapy: transplantation of
autologous stem cell enriched with MNV-BLDa

Autologous peripheral
hematopoietic stem cells

NCT03384420

Extracorporeal membrane
oxygenation complication

Recruiting NA Autologous mitochondria injected or infused into the
ischemic myocardium

Autologous skeletal
muscle cells

NCT02851758

NA not applicable, ICSI intracytoplasmic sperm injection, a MNV-BLD refers to blood-derived mitochondria
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trials [86, 87]. Therefore, instead of targeting a single spe-
cific aspect of mitochondrial function, supplementing
healthy mitochondria to damaged regions in PD brain
may potentially be an innovative strategy for improving
clinical outcome. To this end, several studies set out to
examine the efficacy and feasibility of mitochondrial deliv-
ery in inhibiting PD progression. Chang et al. demon-
strated that cell-penetrating peptide-based mitochondrial
delivery in 6-hydroxydopamine (OHDA)-treated PC12
cells rescued mitochondrial respiratory function, improved
cell viability, and promoted neurite growth when treated
the PC12 cells with nerve growth factor [88]. Xenogeneic/
allogeneic injection of mitochondria into medical fore-
brain bundle (MFB) of 6-OHDA-unilaterally infused PD
rats enhanced the survival of dopaminergic neurons as
well as effectively sustained mitochondrial functions by re-
storing the normal level of mitochondrial complex I-IV
and relieving mitochondrial oxidative stress in vivo. Upon
receiving supplemented mitochondria, protein levels in-
volved in mitochondrial fusion (Mfn2, OPA1), fission
(Drp1), and deterioration (Parkin) in dopaminergic neu-
rons within SN were restored. In addition, mitochondrial
transplantation in MFB improved locomotive activity of 6-
OHDA-induced PD rat. In the other study conducted by
Shi et al., MPP (1-methyl-4-phenyl-pyridinium)-treated

SH-SY5Y cells incubated with intact isolated mitochondria
improved cell viability in a dose-dependent manner [89].
ATP production, mitochondrial complex I activity and cell
survival were rescued after mitochondrial supplementa-
tion while the level of ROS significantly lowered, com-
pared to MPP+ control cells. The initial report by Shi et al.
showed that systemic intravenous mitochondrial adminis-
tration to respiratory chain inhibitor MPTP (1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine)-induced PD mouse
model prevented PD progression [89]. In vivo distribution
of intravenously-injected mitochondria was found in mul-
tiple organs, including brain, 2 h after intravenous injec-
tion. As a result, striatal mitochondria in MPTP-induced
PD mice showed increased ATP content, restored mito-
chondrial complex I activity, and decreased ROS produc-
tion with improved locomotor activity.

Stroke
Current intervention for stroke is limited owing to narrow
therapeutic time window after the occurrence of ischemic
stroke. Ischemia-induced OGD in affected regions leads
to low ATP production, excessive ROS release from mito-
chondria, ionic disequilibrium across mitochondrial mem-
branes, and eventually programmed cell death [17, 90]. As
accumulating evidence links mitochondrial deficit to brain

Fig. 2 Mechanisms underlying mitochondria internalization. Three uptake routes for mitochondrial therapy: a Mitochondria-containing vesicles
are released from healthy neurons (or donor cells) and then internalized into injured neurons. b Healthy mitochondria are transported via the
actin-based tunneling nanotubes between donor cells and injured neurons. c Extracellular healthy mitochondria through focal administration are
internalized into injured neuron
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impairment following ischemic stroke, therapeutic regi-
men was developed aiming to restore mitochondrial
physiology. In light of new concept of intercellular
organelle-transfer, Hayakswa et al. demonstrated that CD38
signalling mediated release of functional mitochondria from
activated astrocyte. These mitochondria then entered dam-
aged cortical neurons, restored ATP level and neuronal via-
bility after OGD injury. Treatment with extracellular
mitochondria-containing particles, released from cultured
astrocytes in a mouse model of focal cerebral ischaemia,
provided neuroprotection. In vitro astrocyte-to-neuron
mitochondrial delivery and in vivo astrocyte-derived mito-
chondrial transfer promoted neuronal survival, plasticity, as
well as improved behavior outcome [72]. Besides, it has
been reported that mitochondria are transferred from mes-
enchymal multipotent stromal cells to co-cultured neurons.
Intravenous administration of mesenchymal multipotent
stromal cells to MCAO rats reduced infarction area and im-
proved post-stroke neurological indexes. Treatment of
“primed” stem cells, which had been previously co-cultured
with neuron cells, caused a more pronounced beneficial
outcome in rats after stroke [73]. Transfer of exogenous
mitochondria via local intracerebral or systemic intra-
arterial injection reduced brain lesion, cell death, and
restored motor function in MCAO rats [91]. In addition,
autologous mitochondrial transplantation has been studied
in rabbit ischemic heart model. After regional ischemia, au-
tologous skeletal muscle-derived mitochondria were
injected into ischemic zone of heart prior to reperfusion.
Mitochondrial transplantation significantly reduced myocyte
necrosis, infarction volume and improved post-ischemic re-
covery of cardiac function without eliciting any immune or
inflammatory response. Moreover, biochemical markers of
myocardial infarction, creatine kinase-muscle/brain isoen-
zyme and cardiac troponin I, were reduced after mitochon-
drial transplantation [92]. Follow-up study using porcine
cardiac ischemia/reperfusion model showed similar results
in that autologous mitochondrial transplantation enhanced
post-ischemic myocardial cell viability, reduced infarction
size and deceased myocardial injury biomarkers [93]. These
successful cases highlight the effective mitochondrial ther-
apy in post-stroke neuroprotection, preserving cell viability
and promoting functional recovery.

Traumatic brain injury
Traumatic injury in the CNS, including spinal cord injury
(SCI) and TBI, has been one of the most pressing medical
issues worldwide according to its high incidence and lack
of effective treatment strategy. The initial study investigat-
ing the feasibility of mitochondrial transplantation in SCI
reported that supplementation of a pool of healthy mito-
chondria into L1/L2 contusion SCI rat model acutely sus-
tained cellular bioenergetics in injured spinal cord and
improved locomotor activity, whereas long-term effect on

neuroprotection and tissue sparing were not observed
[94]. On the other aspect, TBI is highly regarded as a glo-
bal healthcare issue given that it has been the leading
cause of injury death according to Center for Disease
Control and Prevention, USA [95]. By the end of April in
2018, approximately 69 million of individuals annually suf-
fer from TBI [96]. Post-traumatic mitochondrial deficit in-
cludes alternation of membrane structure and calcium
homeostasis, uncoupled electron transfer system, accumu-
lation of ROS and induction of apoptosis [97, 98]. Such
structural damage and metabolic/physiological dysfunc-
tion of mitochondria dampen neuronal viability and plas-
ticity. Disruption of mitochondrial dynamics has also been
implicated in TBI-induced behavior impairment and the
loss of cognitive function [16, 99]. Accumulating data sug-
gest that mitochondrial therapy could be beneficial for
clinical TBI treatment yet the efficacy of mitochondrial
transplantation for treating TBI had not been evaluated. A
recent report by our laboratory revealed increased mito-
chondrial fission hours after injury in hippocampal neu-
rons. While retrograde transportation of mitochondria
from injury site to cell body was observed in the injured
neurites, mitochondria were transported toward newly
formed growth cones in re-growing axons. Supplement of
freshly isolated mitochondria derived from rat cortical
neurons to injured hippocampal neurons promoted neur-
ite re-growth and restored membrane potential of injured
neurons [13]. As these findings point to a pivotal role of
mitochondrial function in modulating TBI pathophysi-
ology, mitochondrial transplantation could well be a novel
strategy for clinical treatment of TBI.

Clinical application of mitochondrial transplantation
Techniques for mitochondrial delivery
The effectiveness of mitochondrial therapy is expected to
be variable among patients due to the heterogeneity of
pathogenesis and efficiency of mitochondrial internaliza-
tion into the affected tissues. Successful uptake of mito-
chondria by target tissues depends on the amount, quality
of mitochondria and proper routes of organelle delivery.
Therefore, better understanding of the mechanisms
underlying mitochondrial delivery and cellular uptake will
facilitate the translation of mitochondrial transplantation
in clinic.
A number of in vivo studies documented feasible ap-

proaches of mitochondrial transplantation, including
microinjection directly to affected sites in SCI, stroke, and
PD models [88, 92–94], and intravenous administration in
PD and fatty liver models [89, 100]. In PD, to improve
functional incorporation of supplemented mitochondria, a
novel strategy of peptide-mediated allogenic mitochon-
drial delivery (PMD) was applied to neurotoxin-induced
PD rats. Direct microinjection of Pep-1-modified allogenic
mitochondria into MFB promoted cellular uptake of
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mitochondria compared to the injection of naïve mito-
chondria or xenogenic PMD. It was clear that PMD suc-
cessfully rescued impaired mitochondrial respiration,
attenuated oxidative damage, sustained neuron survival,
and restored locomotor activity of PD rats [88]. Neverthe-
less, the conjugation ratio of Pep-1 and mitochondria
should be optimized to avoid undesired mitochondrial ag-
gregation. Moreover, the conjugation time and human
manipulation should be minimized before clinical transla-
tion. Another study systemically administered isolated
mitochondria via tail vein improved locomotor activity in
PD mouse model, albeit differential distribution of
injected mitochondria in brain, heart, liver, kidney, and
muscle [89]. The feasibility of intravenous mitochondrial
delivery was achieved by smaller size of the organelle (~
1 μm in diameter) compared to that of red blood cells
(6~8 μm in diameter) and that supplemented mitochon-
dria are not to be incorporated into red blood cells to
interfere oxygen transport.

Clinical trials
The burgeoning of mitochondrial therapy opened a new
era for reversing mitochondria function in human dis-
eases. Thus far, few registered clinical trials for treating
neurodegenerative diseases, stroke, or TBI based on mito-
chondrial delivery technique have been launched. To date,
there is only one completed trial which aimed to treat in-
fertility by autologous mitochondrial injection into oocytes
(Table 2, NCT#02586298). Autologous ovarian mitochon-
dria were isolated prior to in vitro intracytoplasmic sperm
injection (ICSI). The outcome was determined by on-
going rate of pregnancy within 12 weeks after mitochon-
drial therapy, as the improvement in preimplantation gen-
etic screening and embryo quality were also evaluated. An
ongoing trial tries to demonstrate the feasibility of mito-
chondrial transplantation, using autologous mitochondrial
injection (Table 2, NCT#02851758), for rehabilitating
myocardial ischemia/reperfusion injury and is currently
recruiting participants. Mitochondria will be isolated from
autologous skeletal muscle from patients undergoing sur-
gical re-operation or catheterization and directly injected
into affected myocardium or proximal aorta, or via intra-
coronary infusion. The outcome will be measured by the
safety and the improvement of ventricular function after
therapeutic intervention.

Conclusions
Previous proposals for treating mitochondrial dysfunction
have been targeting specific mitochondrial residents and
fusion/fission regulators [64, 65]. The outcome of these
approaches has not been satisfactory. The emerging line
of approach is to supplement freshly isolated mitochon-
dria (mitochondrial transplantation) to injury sites. Alter-
natively, in the case of stroke, to activate astrocyte for

releasing mitochondria-containing particles for inter-
cellular transfer of mitochondria (to neurons). Our previ-
ous work showed that supplement of freshly isolated
mitochondria promoted neurite re-growth and restored
the membrane potential of injured hippocampal neurons
[13]. Nonetheless, it is conceivable that clinical translation
of mitochondrial delivery on TBI would face great chal-
lenge. For instance, checkpoint at the blood brain barrier
should be considered to improve the effectiveness and the
volume used would also be a limiting factor. The thera-
peutic outcome of mitochondrial transplantation largely
depends upon the isolation protocol, quality of isolated
mitochondria, and tissue-specific differential uptake. Bio-
compatible materials for packaging mitochondria may fa-
cilitate the delivery and the subsequent uptake by cells.
For clinical application, it is more feasible to isolate mito-
chondria from peripheral tissues to obtain sufficient
amount of allogenic mitochondria for the treatment of
CNS diseases. Based on our experience, the percentage of
functional mitochondria after isolation and the quality
maintenance over time are crucial measurement for the
success of promoting neuronal regeneration. While pub-
lished data showed that peptide-based allogeneic mito-
chondrial delivery successfully entered target cells and
recovered damaged tissues without triggering significant
immune response in PD model, the efficacy of PMD in
cerebral stroke and TBI patients has yet to be determined
[88]. More importantly, regenerative outcome character-
ized by neurite re-growth, de novo synaptogenesis, and
the restoration of neuronal activity should be inclusively
evaluated in addition to the maintenance of cell survival.
Thus, future efforts on the feasibility and efficacy of allo-
geneic mitochondrial delivery on treating a wide range of
mitochondria-related diseases will expedite the clinical
translation.
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