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Abstract

Background: Alzheimer’s disease (AD) is a fatal disease that threatens the quality of life of an aging population at a
global scale. Various hypotheses on the etiology of AD have been developed over the years to guide efforts in
search of therapeutic strategies.

Main body: In this review, we focus on four AD hypotheses currently relevant to AD onset: the prevailing amyloid
cascade hypothesis, the well-recognized tau hypothesis, the increasingly popular pathogen (viral infection) hypothesis,
and the infection-related antimicrobial protection hypothesis. In briefly reviewing the main evidence supporting each
hypothesis and discussing the questions that need to be addressed, we hope to gain a better understanding of the
complicated multi-layered interactions in potential causal and/or risk factors in AD pathogenesis. As a defining feature
of AD, the existence of amyloid deposits is likely fundamental to AD onset but is insufficient to wholly reproduce many
complexities of the disorder. A similar belief is currently also applied to hyperphosphorylated tau aggregates within
neurons, where tau has been postulated to drive neurodegeneration in the presence of pre-existing Aβ plaques in the
brain. Although infection of the central nerve system by pathogens such as viruses may increase AD risk, it is yet to be
determined whether this phenomenon is applicable to all cases of sporadic AD and whether it is a primary
trigger for AD onset. Lastly, the antimicrobial protection hypothesis provides insight into a potential physiological
role for Aβ peptides, but how Aβ/microbial interactions affect AD pathogenesis during aging awaits further
validation. Nevertheless, this hypothesis cautions potential adverse effects in Aβ-targeting therapies by hindering
potential roles for Aβ in anti-viral protection.

Conclusion: AD is a multi-factor complex disorder, which likely requires a combinatorial therapeutic approach to
successfully slow or reduce symptomatic memory decline. A better understanding of how various causal and/or
risk factors affecting disease onset and progression will enhance the likelihood of conceiving effective treatment
paradigms, which may involve personalized treatment strategies for individual patients at varying stages of
disease progression.
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Background
Alzheimer’s disease (AD) is the number one cause of
age-related dementia, currently with no effective
therapy. It represents an imminent threat to the
health-span of the senior population. With unprece-
dented growth of a globally aging population, AD will
become an increasing burden to society if left un-
checked [1–6]. The clinical manifestations of AD ap-
pear with incidental forgetfulness at initial stages,
eventually progressing to mild cognitive impairment to
full-blown AD with noticeable difficulties in cognitive
functions such as memory, planning and organizing.
Patients at later stages of AD not only suffer severe de-
cline in cognitive functions, but also may experience
drastic personality and behavioral changes, with an
eventual incapacity to independently carry out daily
functions [7–10]. Although these clinical symptoms
may be indicative of AD onset, definitive diagnosis re-
quires the detection of three pathological hallmarks in
the brain, namely, extracellular amyloid (plaques) com-
posed of Aβ peptides (graded by Thal phases [11, 12]),
intracellular neurofibrillary tangles (NFTs) formed by
hyperphosphorylated tau (categorized through Braak
staging [13–15]), and degeneration in brain regions
such as the entorhinal cortex, hippocampus, and cere-
bral cortex during late stages of onset [7, 16]. Previ-
ously, these pathological features associated with AD
could only be confirmed by postmortem analysis. With
rapidly evolving developments in the brain imaging
field, it is currently possible to observe amyloid and tau
aggregates and degeneration within the central nervous
system (CNS) during ante-mortem stages [17–22].
Given the current advances in neuroimaging, together
with the identification of diagnostic biomarkers in cere-
brospinal fluid (CSF) and/or blood [23–31], the possi-
bility of diagnosing and monitoring AD from early
onset to terminal stages of AD progression, and charac-
terizing the efficacy of various therapeutic treatments
has become more promising.
It has been debated whether pathological hallmarks,

such as plaques and NFTs have an active role in driving
disease progression, or whether they merely reflect pro-
gression and severity of the disease. Postmortem studies
and neuroimaging results indicate the appearance of
pathological features associated with AD in the brain de-
cades before the onset of cognitive symptoms [7, 19, 32].
Should the pathologies function as drivers of the disease,
removal or reduction of these pathological features will
naturally be beneficial in preventing, slowing down or
even reversing the disease progression. In the case where
the pathological hallmarks are merely byproducts of dis-
ease onset, then targeting these markers would have lit-
tle or no beneficial effect, necessitating the search for
the primary trigger for AD onset.

Multiple hypotheses have evolved regarding the pri-
mary initiator of AD onset based on clinical observa-
tions, which is supported by results derived from
various experimental model systems. In this review, we
will briefly discuss four influential hypotheses for AD:
the amyloid cascade hypothesis that has dominated the
field for decades, the tau hypothesis that gained much
more attention following repeated clinical failures using
Aβ-centered targeting strategies, the pathogen hypoth-
esis that has gained supporting evidence from recent
publications, and the “antimicrobial protection hypoth-
esis” that revisits the amyloid hypothesis in the context
of microbial pathogen response. Although other import-
ant AD-related hypotheses exist which involve mitochon-
drial/oxidative stress, insulin-resistance, cerebrovascular
dysfunction, and neuroinflammation, etc., we defer our
discussion here to many excellent reviews that compre-
hensively discuss these topics (e.g. [33–49]).
Due to the vast literature related to the topics covered

in this review, we are limited to the number of studies
cited in our discussion below; thus, we apologize to the
authors whose contributions have advanced the field,
but whose work are not referenced herein.

Main text
Amyloid cascade hypothesis
The amyloid cascade hypothesis (referred to as the
“amyloid hypothesis” hereon) has undoubtedly had the
greatest influence on AD research for nearly three de-
cades. The amyloid hypothesis originally proposed a
role for amyloid plaques as a causal initiator for all
downstream pathological events in AD onset, including
NFTs and neurodegeneration in the CNS [50]. The hy-
pothesis has been modified since to propose a primary
role for soluble Aβ oligomers as the critical driver in
AD progression [51–56]. The amyloid hypothesis lends
strong support from genetic evidence in familial AD
(fAD) comprising a small percentage of hereditary AD
cases and countless experimental model systems. How-
ever, the key question remains whether familial AD is
equivalent to sporadic AD (sAD), representing over
95% of all AD cases. Several recent reviews have sum-
marized arguments supporting and contradicting the
amyloid hypothesis [57–60].
Amyloid plaques are pathological aggregates compris-

ing amyloid-β (Aβ) peptides, derived from sequential
proteolysis of amyloid precursor protein (APP) by β-
and γ-secretases. Autosomal dominant mutations all
reside in three genes, APP, PSEN1 and PSEN2, with the
latter two encoding the catalytic subunit of the
γ-secretase complex [2, 61–63]. These mutations are
invariably linked to increased generation/accumulation
of the aggregation-prone Aβ42 peptide. While sporadic
AD manifests usually at the age of seventy to eighty or
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older, fAD mutations may trigger early AD onset (be-
fore the age of 65 years old) [64], and sometimes can be
as early as age 30 in the mutation carriers (https://
www.alzheimers.net/10-13-14-early-onset-alzheimers/).
Although fAD patients represent less than 5% of the
AD population, their pathological and clinical charac-
teristics provide critical genetic evidence that increased
Aβ42 levels in the CNS can almost invariably aggravate
AD onset. Aβ accumulation in sporadic AD has been
thought to be primarily derived from reduced Aβ clear-
ance rather than enhanced Aβ generation from clinical
analyses in human CSF [65]. In support of the notion that
sAD is associated with impaired Aβ efflux in the CNS, ex-
pression of human apolipoprotein E4 (apoE4), the most
potent risk factor for sAD characterized to date, is seen to
potently reduce Aβ clearance and increases Aβ plaque
load [37, 66–68]. Thus, an imbalance between Aβ produc-
tion and clearance potentially leads to Aβ accumulation in
both familial and sporadic cases of AD, where different
mechanisms drive elevations in Aβ levels in the CNS.
With respect to how Aβ accumulation can trigger AD

onset, thousands of publications have proposed various
mechanisms describing how Aβ can mediate neuronal
dysfunction in vitro and in vivo. A non-exhaustive list
of toxic effects associated with Aβ include impairments
in synaptic plasticity and synaptic loss as observed in
human AD brain [54–56, 69–72], dysregulation of cal-
cium homeostasis which occurs prior to synaptic im-
pairment [73–80], dysfunctional axonal trafficking [81–
85], functional perturbation of cellular organelles such
as lysosomes, endoplasmic reticulum, Golgi and mito-
chondria [86–95], and induction of astrogliosis and
neuroinflammation [96–103]. Although most mouse
models expressing human β-amyloid fail to induce
NFTs comprising mouse tau within the murine lifespan
[104–106], the presence of Aβ oligomers or APP with
fAD mutation(s) is invariably associated with increased
tau pathology in tau transgenic mice [107, 108], tauopa-
thy models in rats [109], non-human primates [110],
and in 3D human iPSC (induced pluripotent stem
cell)-derived neuronal cell culture systems [111–114].
Moreover, neurodegeneration has been observed in hu-
man iPSC-derived neurons grafted into the brain of
5xFAD transgenic mice [115], suggesting that human
neurons may be more susceptible to Aβ toxicity com-
pared to mouse neurons. In short, regardless of
whether Aβ accumulation is caused by amyloidogenic
APP processing or reduced Aβ clearance, a vast sum of
literature supports the role of Aβ elevation in triggering
deleterious events associated with neurodegeneration.
Despite this, the amyloid hypothesis is also unable to

satisfy many observations that counter the significance
or potency of Aβ in sAD [58, 60, 116–118]. Inconsist-
encies with respect to a primary role for Aβ in

triggering AD onset include: [1] poor correlation be-
tween amyloid plaque load and severity of cognitive im-
pairment/degeneration in human brain; further, many
individuals feature an abundant amyloid plaque load in
the brain without manifesting deficits in cognitive func-
tion [119–126], [2] most human β-amyloid mouse
models are not associated with NFT pathology as men-
tioned above, and [3] many Aβ-centered clinical trials
show little or no efficacy (as reviewed in [116, 127,
128]). Alternative explanations may preclude outright
rejection of the amyloid hypothesis [57, 58, 129, 130]; it
may be more favorable to modify or elaborate on the
amyloid hypothesis to accommodate its inability to
comprehensively predict the outcomes mentioned
above. For example, a potential delay in Aβ-mediated
proteotoxicity due to intrinsic neuroprotective mecha-
nisms within the brain would account for cognitively
non-impaired individuals with elevated amyloid loads. A
pathogenic synergy may be apparent between Aβ and tau,
which would also explain a poor correlation between amyl-
oid load and cognition: the formation of neuritic plaques
which feature amyloid filaments that coincide with swollen/
dystrophic neurites correlate with early cognitive impair-
ment more accurately than amyloid or tau pathology alone
[131, 132]. Animal models may fail to fully recapitulate hu-
man AD pathology due to the cross-species differences in
tau, and/or the short life-span of rodents in comparison
with human beings. Failures in Aβ-targeted clinical trials
may result from the disease stages of the participants upon
treatment, or specificity of the Aβ species targeted by cer-
tain drugs in the trial, in addition to many other factors
(e.g. drug potency). With promising results from a Phase II
clinical trial characterizing protective effects of an anti-Aβ
protofibril antibody (BAN2401), targeting the toxic forms
of Aβ may yet be protective: News release from Esai and
Biogen indicates a dose-dependent reduction in plaque
load and reduced clinical decline in drug-treatment groups
compared to placebos in an 856 mild cognitive impairment
(MCI) patient cohort (http://investors.biogen.com/news--
releases/news-release-details/eisai-and-biogen-announce--
detailed-results-phase-ii-clinical).
In summary, it is likely that Aβ and amyloid plaques

are necessary but may not be sufficient to initiate all
the downstream events required for AD pathogenesis,
especially in sporadic AD. However, Aβ pathology is
unlikely to be an inconsequential epiphenomenon in
AD pathogenesis, despite instances where seniors ac-
cumulate plaques in the brain for decades without
showing overt cognitive deficits. In sporadic AD, dys-
regulated Aβ homeostasis may initiate late in life and
gradually precondition the brain to be more susceptible to
other internal and/or external insults during aging, while
in fAD, chronic imbalance in Aβ levels derived from
inherited amyloidogenic dominant mutations may erode
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endogenous defense mechanism and manifest AD path-
ology to an early AD onset. Despite certain inadequacies
with the amyloid hypothesis, strategies underlying thera-
peutic AD drug design will need to consider newly discov-
ered physiological roles for Aβ in microbial infection and
pathogen response as reviewed in the discussion of “the
antimicrobial protection hypothesis” below.

Tau hypothesis
Given that Aβ pathology correlates poorly with cogni-
tive decline, a central role for tau in driving AD onset
has also been considered. The tau hypothesis proposes
that tau is a fundamental pathogenic initiator that trig-
gers all the downstream pathological events during AD
onset. Unlike amyloid accumulation, pathological Braak
stages - characterized tau tangles primarily comprising
hyperphosphorylated tau, correlates more tightly with
cognitive impairment and AD severity [13, 14, 120,
133–135]. The progressive onset of tau pathology and
distinctive spatial propagation of tau tangles character-
ized using conventional postmortem pathological ana-
lysis and recent methods in tau PET imaging,
implicates tau as a better prognostic indicator for neu-
rodegeneration and cognitive deficits in AD compared
to amyloid pathology [13, 14, 136–141]. Contrary to
frequently observed instances of high brain amyloid
with no apparent cognitive impairment, the occurrence
of non-symptomatic individuates with advanced Braak
pathology (Braak stages V-VI) is comparatively rare
[142, 143]. Moreover, van Rossum et al reported that
CSF total-tau and phosphorylated-tau (which are
markers of CNS injury) are associated with rapid pro-
gression from MCI to late-stage dementia [144, 145].
These observations indicate that tauopathy can be a key
factor driving AD onset and progression. This notion is
supported by studies demonstrating a critical role for
tau in mediating toxic effects derived from Aβ using
tau deletion models in vitro and in vivo [146–153].
Should tau be an essential driver in AD onset, thera-
peutically targeting tau may effectively attenuate disease
onset and AD pathogenesis.
Tau is a soluble microtubule-binding protein local-

ized primarily to axons in adult neurons under normal
physiological conditions. Tau directly binds microtu-
bules, thereby promoting its assembly and stability. Six
tau isoforms are derived from splice variation, where
tau is also subject to regulation through various post-
translational modifiers (reviewed in [154–159]). Be-
sides its predominant localization to axons, tau has
also been detected at lower levels in dendrites, and at
the plasma membrane, Golgi complex, rough endo-
plasmic reticulum, nucleus and nucleolus, (reviewed
[159–161]). Tau function extends beyond microtubule-
binding, and includes roles in regulating synaptic

function [161], protecting RNA and DNA in early
stress response [162, 163], and affecting nucleocytoplasmic
transport via direct interaction with nucleoporins [164]. A
majority of studies so far have focused on tau hyperpho-
sphorylation, since pathological tau phosphoforms are
prone to aggregation and feature various deficiencies in
physiological functions, in addition to driving dominant
effects in toxicity [165–167]. In addition to hyperpho-
sphorylation, tau acetylation and glycosylation can also ag-
gravate AD-associated tau pathology, whereas tau
O-GlcNAc modification is likely protective and is seen to
attenuate tau pathology in several transgenic models
[168–175]. Additional posttranslational modifications such
as truncation [176–179], ubiquitylation [180, 181],
SUMOylation [182], and nitration [183–185] have been
reported for tau, with aberrant modifications found to be
associated with either hyperphosphorylation, increased tau
aggregation or mis-localization of tau in vivo or in vitro
(recently reviewed [159, 186, 187]).
Pathological tau dysfunction is primarily thought to

be derived from a loss in microtubule binding, thereby
leading to many downstream events in cellular dysreg-
ulation such as impairment in mitochondrial transport
and functions [188–192], synaptic deficits [170, 193–
196], defective axonal transportation [197–200], and
enhanced stress granule formation [201–208]. Tau dys-
function can also alter neurogenesis in various mouse
models; a transgenic line expressing human tau fea-
tures reduced adult neurogenesis prior to the forma-
tion of pathological tau aggregates [209]. Conversely,
models expressing human tau constructs that are re-
fractory to aggregation exhibit increased neurogenesis
[210]. Interestingly, tau deletion confers resistance to
impairments in neurogenesis induced by chronic stress
compared to wild type littermates, implicating a role
for tau in suppressing neurogenesis [211]. A role for
tau in AD-associated neuroinflammation has also been
proposed, where inflammation can either be protective
or deleterious to CNS function depending on the dur-
ation and extent of the inflammatory response (e.g. re-
cently reviewed in [212–215]). In addition to driving
neuroinflammation, the formation and distribution of
pathological tau aggregates may be consequently mod-
ulated through pro-inflammatory triggers [216–219].
Although tau aggregates have been proposed to spread
through prion-like mechanisms [220], these models fail
to explain certain spatiotemporal aspects of NFTs in
human postmortem brain [221]. How tau aggregates
propagate in the brain is still actively under investiga-
tion. As an intracellular protein component, tau
spreading requires extrusion and uptake from the
extracellular environment via exome-dependent or in-
dependent mechanisms as indicated by various assays
in vitro and in vivo [222–226]. AD is also associated
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with insulin resistance in the brain, which can both
manifest in or occur independently of diabetes [227–
230]; tau protein and insulin signaling pathways in the
brain can also interact to exacerbate disease onset in
aging and AD [231–233]. Future study will further de-
fine pathways and mechanisms by which tau can po-
tentially modulate AD onset.
Although mounting evidence indicates an indispensable

role for tau in AD, the tau hypothesis is still subject to
criticism. Importantly, while tau mutations have been
found to be associated with human tauopathy disorders
such as frontotemporal lobar degeneration with tau inclu-
sions (FTLD-tau), Pick’s disease, progressive supranuclear
palsy (PSP), corticobasal degeneration (CBD), argyrophilic
grain disease (AGD), and chronic traumatic encephalop-
athy, without amyloid accumulation [154, 234–237], these
mutations are not linked to AD. This suggests that tau
pathology may be induced as a downstream consequence
of AD onset. However, hyperphosphorylated tau can be
detected in the absence of tangles in young human brain
as early as 14 years of age [14, 238, 239], where intraneur-
onal tau aggregates can be found across a large age group,
indicating that tau pathogenesis is not necessarily
dependent on age and AD-related toxicity. This also sug-
gests that tau alone may not be a sufficient driver for AD
onset. To complicate matters, the protective APOE variant
in AD, APOE ε2, is associated with increased risk for
tauopathy disorders such as PSP, CBD, and AGD [240–
242]. Should tau be an upstream trigger for AD onset, it
will be difficult to reconcile how protective APOE variants
(APOE2) can be a risk factor for tauopathy. Several bio-
marker studies using human CSF demonstrate that ratios
comprising Aβ42/total-tau and Aβ42/phospho-tau may
accurately indicate transition from normal to mild cogni-
tive impairment, and full AD onset [243–245], reiterating
the importance of both markers in AD diagnosis. It is still
currently unclear how Aβ and tau interact, and how these
interactions lead to terminal cognitive phenotypes associ-
ated with AD. In the face of failures from amyloid-focused
clinical trials, tau-targeting strategies have recently
received growing attention. Although selective tau-aggre-
gation blockers [246] or tau-reactive antibodies (https://
clinicaltrials.gov/ct2/show/NCT00818662) have yet to
succeed in meeting primary endpoints, additional efforts
to develop active or passive vaccines and alternative strat-
egies to modulate tau post-translational modification are
being pursued [247] (recently reviewed in [59, 248]). Con-
tinued efforts are also currently being pursued with tau as
an immune target; additional anti-tau antibodies are cur-
rently being developed and tested in preclinical stages (e.
g [249–254]).
Similar to the role for Aβ in the context of the amyl-

oid hypothesis, tau appears to also be necessary but in-
sufficient as a primary initiator for AD. This is

complicated by the observation that cognitively normal
individuals can manifest brain amyloid or tau patholo-
gies, or a combination of both [255, 256], which neces-
sitates the identification of other mediators and
modulators of AD.

The “pathogen hypothesis” and “Antimicrobial Protection
Hypothesis”
The “pathogen hypothesis”, or “infection hypothesis” in
AD, suggests that chronic infection by viral, bacterial,
and/or fungal pathogens may be a trigger for sporadic AD
onset during aging. Candidate pathogens have been pro-
posed in the literature over the years, including oral her-
pes - herpes simplex virus type 1 (HSV-1), genital herpes
HSV-2, human herpesvirus 6A (HHV-6A) and HHV-7,
Epstein Barr virus (EBV), cytomegalovirus, human im-
munodeficiency virus (HIV), gut bacteria, liver bacteria
Helicobacter pylori, periodontal pathogens (bacteria linked
to gingivitis), bacteria Chlamydophila pneumoniae that
causes pneumonia, and others (recently reviewed in [257–
261]). These pathogens may invade the CNS directly by
translocating across the blood-brain-barrier and/or the
brain-CSF barrier, through the trigeminal nervous system
and oral-nasal pathway, or by penetrating the gastro-
intestinal tract [258, 262–267]. Moreover, pathogens
may also secrete toxins circulating to the brain to
dysregulate neurological functions associated with
AD [260, 261, 268–277].
This concept that AD may be derived from infection

was initially postulated by Dr. Oskar Fischer, who was
regarded as Dr. Alzheimer’s rival when he independ-
ently reported the observation of pathological hall-
marks associated with 12 dementia cases in 1907 [278–
280]. Evidence in support of the pathogen hypothesis
first appeared in 1991 from a group led by Dr. Ruth Itz-
haiki, who has become one of the strongest advocates
of the pathogen hypothesis in recent decades. This
hypothesis was not well-accepted in the AD field until
recent multi-omic studies surveying large populations
have provided additional support to the infection
hypothesis [281, 282].
The pathogen hypothesis has gained support from a

recent study using large datasets across multiple inde-
pendent clinical cohorts [282]. Combining multi-omic
analyses on genomic, transcriptomic, and proteomic
datasets, the study observed frequent viral infection in
normal human brains. Interestingly, viral DNA and
RNA from certain viral strains, namely human herpes-
virus 6 (HHV-6) and herpesvirus 7 (HHV-7), were
more abundant in AD samples, where viral DNA and
RNA abundance were found to correlate with aggra-
vated AD pathology [282]. AD risk has also been re-
ported in association with chronic periodontitis in a
ten-year retrospective, population-based study from
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Taiwan in 9291 patients diagnosed with chronic peri-
odontitis in comparison with 18,672 non-infected pa-
tient controls [283]. Another recent study tracking
HSV infection in 8362 infected individuals vs 25,086
sex- and age-matched controls in a Taiwan population
observed that HSV infection significantly correlated
with a higher risk of dementia later in life, where
anti-herpetic treatment can greatly reduce risk of de-
mentia onset [281]. Although no definitive conclusions
can be made with respect to a causal role for HSV in-
fection in AD, since APOE status and clinical AD
characterization is lacking in the study, dramatic reduc-
tion in dementia risk with anti-herpetic treatment sug-
gests that viral infection may be a serious risk factor
that increases likelihood of dementia onset if left un-
treated. These recently discoveries have drawn in-
creased attention to the pathogen hypothesis in AD
which has been viewed skeptically for past two decades.
Although these recent findings do not sufficiently

provide evidence as to whether viral infection is defini-
tively causal to AD onset, these results provide compel-
ling indication that viral infection may be a prevalent
risk factor in dementia, and implicate a potential role
for anti-viral strategies in AD therapy. The anti-viral
agent valacyclovir (Valtrex) has been approved for testing
in clinical trials by the FDA earlier this year for patients
testing positive for herpes simplex virus-1 (HSV-1) or
HSV-2 with mild dementia potentially due to AD (https://
clinicaltrials.gov/ct2/show/NCT03282916).
Skepticism towards the pathogen hypothesis in the AD

field likely stems from early published studies that de-
rived data from small cohorts and sample sizes, and con-
tradicting results from different groups; in addition,
some studies fail to account for APOE status in AD and
control groups. For example, the first study characteriz-
ing the presence of HSV-1 DNA in human postmortem
brain samples was based on postmortem tissues from 8
AD patients and 6 normal controls, where HSV-1 DNA
was detected in both AD and control samples [284]. Al-
though, Dr. Itzhaiki’s group [284–290] together with
others [291–296] have since confirmed the presence of
viral DNA in human brain from different cohorts, con-
flicting results have been reported as to whether viral in-
fection positively correlates with AD. For instance, while
results from Dr. Itzhaiki’s group indicates a positive cor-
relation between viral infection and AD onset, other re-
ports failed to determine any correlation between viruses
and AD [295–297]. HSV1 viral DNA is also found to be
prevalent in human trigeminal ganglia, a sensory gan-
glion extending into the human brain; HSV1 infection
has been reported across all age groups (from 0~10-year
old up to over 90 age groups) and appears to be inde-
pendent of gender [298]. Since studies have shown that
women are more prone to AD and given that HSV1

infection appears to be gender independent, this may
suggest that viral infection may not be a primary trigger
for AD onset.
The validity of the pathogen hypothesis is further con-

founded by differential effects of APOE ε2, ε3, and ε4 alleles
encoding apolipoprotein E2, E3, and E4 (apoE2, E3 and E4)
variants. Although mechanisms for APOE-dependent AD
onset remain under active investigation, it has been well
established so far that APOE ε4 is the strongest risk factor
for sAD, while ε2 appears to be protective in AD onset (re-
cently reviewed in [37, 299]). Exactly how different apoE
isoforms may affect viral infection in the body and CNS re-
mains unclear, which makes it difficult to delineate contri-
butions from viral infection to AD vs those from different
apoE isoforms. For example, results indicating a positive
correlation between HSV1 infection and AD risk comprises
an imbalance in APOE ε4 carriers in AD and controls;
where the percentage of APOE ε4 alleles was found to be >
10 times higher than controls in a study from 46AD pa-
tients and 77 non-AD donors [300]. With respect to
whether viral DNA correlates with amyloid plaque forma-
tion in AD [290], 5 out 6 AD patients were APOE ε4 car-
riers, where there was none APOE ε4 carrier in the control
cases (the control group was made up of one APOE ε2 car-
rier and four APOE ε3/ε3 individuals). Although results
from these studies indicate a positive association between
HSV1 and AD, these results remain correlative and fail to
establish viral infection as a primary trigger for AD onset.
For instance, viral infection could possibly be a consequent
event rather than instigator of AD onset; given that HSV1
DNA is localized to amyloid plaques, the proportion of
HSV1 DNA in amyloid plaques in control patients was sig-
nificantly reduced compared to AD brain as a consequence
of lower plaque loads [290]. Alternatively, APOE alleles
may modulate viral entry into the brain, whereby viral in-
fection would be a consequence of APOE status rather than
a causal factor for AD onset. Given these limitations, it is
difficult to conclude that viral infection as an independent
risk factor for AD, let alone causing AD.
In addition to the potential association of HSV1,

HHV-6, and/or HHV-7 with AD, the gastrointestinal
microbiome has also been proposed to play a role in AD
pathogenesis by affecting the brain-gut-liver axis. Vogt
et al. describe decreased Firmicutes and Bifidobacterium
and increased Bacteroidetes in fecal samples from AD
patients in comparison with controls (n = 25/group)
[301]. Xu and Wang have identified AD-associated me-
tabolites using an integrated computational approach
utilizing publicly available databases including the hu-
man metabolome database [302]. MahmoudianDehkordi
recently reported reduction of primary bile acid (cholic
acid) and elevated bacterial-derived secondary bile acid
(deoxycholic acid) in serum samples from AD patients
[303]. Dysbiosis of microbiota and viruses can produce
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toxic metabolites that may breach the gut epithelial
barrier, affect brain function, contribute to local and sys-
temic inflammation, and cause dysregulation of trypto-
phan metabolism in the intestine that affect the
production of various neurotransmitters including
acetylcholine, gamma-aminobutyric acid (GABA), and
serotonin (reviewed in [258, 304, 305]). Using a mouse
amyloid model, Minter et al have reduced amyloid
plaque load in APPSWE/PS1ΔE9 transgenic mouse brain
by combinatorial antibiotic treatment [306, 307]. Harach
et al observed that germ-free APP transgenic mice ex-
hibited drastically reduced plaque pathology [308]. These
observational and in vivo experimental studies support
the notion that microbiota (bacteria, viruses, and bacte-
riophages etc) inhabiting within human body can con-
tribute to AD pathology.
Many other lingering questions remain with respect to

the pathogen hypothesis, and we refer readers to several
excellent recent reviews that explore various aspects of
this hypothesis [259, 260, 277, 309].
In parallel with recent progress in support of the patho-

gen hypothesis, a protective physiological role for Aβ as
an antiviral peptide has been discovered [310–314]. It was
initially proposed by Soscia et al when they reported Aβ40
and Aβ42 peptides inhibit the overnight growth of 8 out
of a total of 12 types of bacteria and fungi tested [310].
Later, two groups found that Aβ could also inhibit replica-
tion of H3N2 and H1N1 influenza A virus in vitro [313],
HSV-1 replication in fibroblast, epithelial, and neuronal
cell lines [314]. Initial evidence in vivo indicate that
5xFAD mice and Aβ-expressing transgenic nematodes
(Caenorhabditis elegans) survive longer than the control
groups after exposure to gut pathogens (yeast Candida
albicans or bacteria Salmonella enterica serovar Typhi-
murium) [311]. APP-knockout mice, on the other hand,
have shortened survival after pathogenic challenge [311].
A recent publication from Drs. Tanzi and Moir’s group
provided further evidence to support a protective anti-
microbial role for Aβ. Using 3D human neural cell cul-
tures and 5xFAD mice, these researchers demonstrated
that HSV-1, HHV-6A, or HHV-6B infection accelerated
β-amyloid deposition, where Aβ inhibits HSV-1 infection
in the host cells and prolongs host survival after
HSV-1-induced encephalitis in 5xFAD mice [312]. The
antimicrobial effect of Aβ is mediated via its
heparin-binding domain. These in vitro and in vivo results
strongly support the hypothesis that Aβ peptides play an
important role in brain’s innate immune system by entrap-
ping invading pathogens, thereby protecting the brain
from infection. The “antimicrobial protection hypothesis”
in AD has been discussed extensively in a recent review
article [315], detailing antimicrobial abilities of Aβ and
drawing comparisons of Aβ with other well-known anti-
microbial peptides (AMPs) [315]. Given that dysregulation

of the other known AMPs can lead to host cell toxicity,
AD may be triggered by chronic activation of sustained in-
flammation due to elevations in Aβ in response to an ele-
vated microbial burden during aging.
In summary, evidence so far in support of the infec-

tion hypothesis indicates that the presence of viruses
may be a risk for AD; however, due to the prevalence of
pathogen existence within the human body throughout
life, definitive evidence is lacking that infection is causal
to AD. Similar to the amyloid hypothesis, the anti-
microbial hypothesis indicates that Aβ accumulation is
a key to AD pathogenesis. It is likely that sophisticated
protective mechanisms have evolved for human brains
to confer resilience to stress and dysfunction for de-
cades in life. So far, multi-omics human data suggest
HHV-6A and HHV-7 to be prominently associated with
AD across 3 independent cohorts [282]. Defining the
causal or consequential role of pathogen infection re-
mains a challenge. The discovery of Aβ-mediated anti-
microbial activity and pathogen-dependent effects in
inducing Aβ aggregation have connected these two fac-
tors together with neuroinflammation, which represents
a double-edged sword in AD pathogenesis. Human
stem cell- or iPSC-derived 3D culture or organoid cul-
ture systems are possible experimental systems to study
a role for pathogens in AD, in which exposures of dif-
ferent infective agents can be clearly managed. Studying
effects of pathogen in animal models may require ster-
ile animal house facilities to control the effects from
specific bacteria, viruses, or fungi in AD pathogenesis.

Conclusions & Future Prospective
Recent advances of the pathogen and Aβ-antimicrobial
hypotheses have shifted an ever-evolving view of the
etiological origin of AD. It provides novel insights for fu-
ture therapeutic strategies in combining anti-amyloid
strategies with anti-viral approaches to be tested in clin-
ical trials. New discoveries published recently indicate
that APP mRNA in the brain can be reverse-transcribed
into DNA and reinserted into the genome, resulting in
thousands of APP variants with point mutations, inser-
tions, deletions and so on. This phenomenon is much
more pronounced in brains of sporadic AD than those
of non-AD controls [316]. These findings pose add-
itional questions regarding whether viral infection has
any contribution to the substantially high amount of
APP variants in sAD brain. Authors of the paper also
suggest that FDA-approved combined anti-retroviral
therapy for HIV infection may be potentially effective in
treating sAD, Down syndrome and fAD patients.
Many unanswered questions remain for AD pathogen-

esis; for example, do different isoforms of apoE and/or
different apoE aggregation status (monomer, oligomer,
and/or lipidated particles) play any role in modulating
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antimicrobial Aβ activity? What are the physiological
events or mechanisms that link Aβ and tau pathology in
AD? In addition to Aβ, do tau oligomers, α-synuclein
oligomers also confer any antimicrobial effects in in-
fected cell types in the CNS? Should the infection
model/antimicrobial model be valid, will chronic viral
infection in the amyloid mouse models lead to tau path-
ology and neurodegeneration during aging, representing
an improved model system for AD?
Unlike familial AD, sporadic AD may evolve from a

combination of various genetic and environmental fac-
tors. Neuroinflammation, tau pathogenesis, and viral
infection have all been implicated to play important
roles in AD; however, these factors do not appear to be
pathogenic triggers that are specifically relevant to AD.
Thus, specific causal mechanisms that drive AD onset
have yet to be clearly defined, which may lead to the
identification of new therapeutic targets. It is now
widely accepted that sporadic AD is a complicated syn-
drome. Future preventative and therapeutic approaches
very likely require a personalized combination of differ-
ent targeting strategies based on specific genetic pro-
files and preclinical or clinical stages at the time of
diagnosis and treatment.
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