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Abstract

Alzheimer’s disease (AD) is the most common age-dependent disease of dementia, and there is currently no cure
available. This hallmark pathologies of AD are the presence of amyloid plaques and neurofibrillary tangles. Although
the exact etiology of AD remains a mystery, studies over the past 30 have shown that abnormal generation or
accumulation of β-amyloid peptides (Aβ) is likely to be a predominant early event in AD pathological development.
Aβ is generated from amyloid precursor protein (APP) via proteolytic cleavage by β-site APP cleaving enzyme 1
(BACE1). Chemical inhibition of BACE1 has been shown to reduce Aβ in animal studies and in human trials. While
BACE1 inhibitors are currently being tested in clinical trials to treat AD patients, it is highly important to understand
whether BACE1 inhibition will significantly impact cognitive functions in AD patients. This review summarizes the
recent studies on BACE1 synaptic functions. This knowledge will help to guide the proper use of BACE1 inhibitors
in AD therapy.
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Background
Alzheimer’s disease (AD) is an age-dependent chronic
neurodegenerative disease that is characterized by the
presence of amyloid deposition, neurofibrillary tangles,
synaptic dysfunction, and neuronal cell death [1, 2]. The
common effector of this neurodegenerative process is
the excessive production or accumulation of β-amyloid
(Aβ), which has several deleterious effects on synaptic
activity [3, 4]. For over 30 years, amyloid precursor pro-
tein (APP) has been a main target for investigating the
progression of AD. Aβ is generated from APP through
proteolysis in a two-step process: β-secretase, known as
β-site APP cleaving enzyme 1 (BACE1), initiates the
cleavage of APP to release the membrane-anchored C-
terminal fragment, and then γ-secretase subsequently
cleaves this fragment to excise Aβ in 40–43 amino acid
sequences [5]. These sequences form hydrophobic aggre-
gates, which constitute the senile plaques in AD. Risk
factors associated with development of AD pathology in-
volve genetic predisposition (familial early-onset forms),
allele forms of apolipoprotein E (i.e, ApoE-4 has the
strongest impact), age, lifestyle, and converging evidence

which suggests that many newly identified mutations are
linked to altered APP processing leading to amyloido-
genic pathogenesis [6, 7].
BACE1 has been an important target for therapeutic

intervention because of its indispensable role in the gen-
eration of Aβ [8–12]. However, BACE1 also functions as
a housekeeping enzyme and is involved in the processing
of many other proteins that are responsible for proper
functioning of neuronal tissue [Fig. 1]. Hence, complete
removal of BACE1 enzymatic activity could potentially
cause unwanted side effects. The most relevant of these
is the effect of BACE1 on synaptic functions, which are
related to AD pathology. To this end, this review aims
to summarize our knowledge associated with the benefi-
cial and detrimental effects of BACE1 in synaptic func-
tions so that we can have a clearer understanding of the
synaptic regulation by BACE1. This understanding will
ultimately be beneficial for finding an optimally effective
strategy to provide BACE1 drugs to AD patients.

Pathophysiology of AD and synaptic deficiencies
AD, along with stroke, is the third most common disease
affecting the US population, afflicting ~7% of individuals
ages 65–74, 53% at ages 75–84, and 40% at ages 85 and
older, respectively [13]. Worldwide, it affects nearly 44
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million people and is one of major causes of age-
dependent disability [14]. With no definitive cure or
treatment course in sight, the global cost of Alzheimer’s
and dementia is estimated to be $605 billion. The patho-
logical characteristics of AD present as cortical atrophy,
neuro-inflammation, neuronal cell death, loss of synaptic
connections, and the accumulation of neurofibrillary
tangles and senile plaques [15].
The exact cause of AD is still unknown; however, gen-

etic mutations in APP, presenilin 1 (PS1), or presenilin 2
(PS2) have been shown to promote the formation of
amyloid plaques, which are a hallmark of AD pathology
[16, 17]. The apolipoprotein E (ApoE) gene encodes
three isoforms: ApoE2, ApoE3, and ApoE4. The ApoE4
isoform is identified as a genetic risk factor for late-
onset AD because of its impact on the clearance of Aβ
and amyloid deposition [18–21]. ApoE can also impact
Aβ accumulation through its receptor, as ApoE receptor
knockout mice have shown to increase Aß accumulation
due to reduced clearance [22].
On the other hand, some AD risk genes are also in-

volved in synaptic plasticity; loss of synaptic function in
AD is evident long before any substantial loss of neurons
[23]. PS1 is a component in the synaptic junction [24]
and has been shown to regulate calcium homeostasis
and the release of certain neurotransmitters [25–28]. An
AD mouse model with a PS1 mutation also exhibits dis-
ruption in homeostatic scaling, a mechanism for prevent-
ing groups of neurons from altering their firing patterns
too drastically in response to changes in the environment
[29]. ApoE may also regulate synaptic functions through
its receptor, ApoE receptor 2 (ApoER2), which is known
to promote synaptic plasticity and memory formation in

mice [30]. Toxic soluble Aß can also be directly cleared
from the synapse via ApoE receptors [31]. In mouse
models, ApoER2 increases the number of dendritic spines
and synapses and stabilizes them by regulating the assem-
bly of a complex of proteins involved in synaptic terminals
across neurons, a process which is important for learning
and memory [32]. In spite of the association of these pro-
teins with synaptic functions, the effect of these genetic
mutations on AD cognitive dysfunction remains to be fully
established.
Growing numbers of studies suggest that Aβ is likely

to be the early effector molecule in AD cognitive dys-
function [see reviews [4, 33, 34]. Although the precise
biochemical mechanisms underlying how variously as-
sembled forms of Aβ cause synaptic dysfunction remain
to be determined, biochemical and morphological studies
have shown accumulation of Aβ at the synaptic terminals
[35, 36]. This local accumulation is likely attributable to
the fact that BACE1 initiates the generation of Aβ at the
synaptic terminals [37]. Elevated levels of BCE1 have been
directly correlated with Aβ-induced pathology in AD
brains [38–40]. Increased amyloidogenic processing at the
expense of nonamyloidogenic processing promotes Aβ ac-
cumulation at synapses in AD.
On the other hand, many scaffolding proteins like

mGluR proteins, Shank, Homer, and postsynaptic dens-
ity 95 (PSD95) are known to form complexes at synaptic
terminals, and Aβ accumulation at synaptic terminals
leads to disruption of these scaffolding protein interactions,
resulting in morphological and physiological alterations
such as thinning of the synaptic terminals, alteration in
the molecular composition of the PSD, and disruption of
synaptic signaling pathways [41–45]. Hence, abnormal

Fig. 1 APP and non-APP BACE1 substrates and their effects on synaptic transmisssion
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accumulation of Aβ is largely considered to be toxic to
synaptic functions at multiple levels.

Effects of BACE1 on synaptic functions
BACE1 is indispensable for the generation of Aβ, as
germline deletion of the BACE1 gene abolishes the gen-
eration of Aβ [46–48]. BACE1 is therefore a molecule
that is directly linked to synaptic functions, at least
through its effects on Aβ accumulation in cells and
synapses. BACE1 is predominantly expressed in brain
and is richly expressed by neurons [37, 49, 50]. Accumu-
lation of BACE1 is observed in normal and dystrophic
presynaptic terminals surrounding amyloid plaques in
brains of AD mouse models and patients, likely causing
a vicious cycle by increasing Aβ production near synap-
ses. Because of this, inhibition of BACE1 is logically
viewed to reduce Aβ-mediated synaptic dysfunctions
and to be potentially beneficial to AD patients. Hence,
BACE1 inhibitors are being developed and tested for
treating AD patients [51, 52].
However, whether BACE1 inhibition causes any un-

wanted effects on synaptic function has also attracted
significant attention. This knowledge is critical for un-
derstanding the efficacy of BACE1 inhibitors in AD
patients. It has been shown that BACE1 is normally
expressed in broad brain regions, with rich expression
by hippocampal granule cells. BACE1 has been shown to
play a critical role in synaptic development and plasticity
through cleavage of its various substrates [51, 53, 54]. The
effects of BACE1 on synaptic functions are likely to be
through multiple mechanisms, as discussed below.

1. BACE1 deficiency alters synaptic plasticity in relation
to APP cleavage: Long-term changes in the strength
of synaptic transmission are the basis of memory
formation. Any correlated activity in the pre- and
postsynaptic compartments of a synapse in a repeated
pattern either strengthens synaptic connections (long
term potentiation; LTP) or conversely weakens them
(long term depression; LTD) [55]. High levels of Aβ
disturbs the balance of reactive oxygen species (ROS)
in synaptic boutons and can interfere with pre- and
postsynaptic function, presumably by affecting
NMDARs, presynaptic P/Q type Ca2+ channels, and/
or α7-nAChRs, and thus interrupting subsequent Ca2+

signaling and leading to altered synaptic function [56].
Mice lacking the BACE1 gene show no β-secretase
activity and thus have nearly abolished Aβ (Aβ40
and Aβ42) production in the brain compared to
wild-type controls. A deletion of the BACE1 gene
in mouse models of AD was able to rescue
hippocampal-dependent memory deficits resulting
from Aβ accumulation [49] and to ameliorate
impaired hippocampal cholinergic regulation of

neuronal excitability [57]. Alternatively, BACE1
cleavage of APP will also produce a 99-amino acid
C-terminal fragment, referred to as βAPPc or
APP-C99. This βAPPc has been shown to impair
synaptic functions [58]. BACE1 deficiency benefits
AD patients likely through reducing this toxic
fragment. These findings implicate that BACE1 may
be a good therapeutic target for treating AD [59, 60].
However, recent research progress may suggest
otherwise. Since BACE1 has normal physiological
functions in synaptic transmission and plasticity in
CA1 region of hippocampus, BACE1-null mice
displays deficits in both synaptic transmission and
plasticity at the hippocampal Schaffer collateral to
CA1 synapses [49, 61]. There is a significant
increase in the pair pulse ratio (PPF) in BACE1-null
mice when compared to wild-type [49]. Because
changes in PPF ratio have been attributed to
alterations in presynaptic release probability [62],
the increased PPF ratio seen in BACE1-null mice
may indicate a deficit in presynaptic release [49].
Consistently, BACE1-null mice display altered
synaptic plasticity in CA1 and CA3 regions [49, 63].
In addition to presynaptic alterations, changes in
PPF ratio can also be attributed to postsynaptic
modifications, such as in the subunit composition
of AMPA receptors (AMPARs) [64]. Physiological
concentrations of Aβ (in pM range) have been shown
to facilitate synaptic plasticity [65] and BACE1
deficiency will cause a remarkable reduction in Aβ.
Such a loss of physiological levels of Aβ may also
lead to synaptic deficits.

2. BACE1 deficiency alters synaptic plasticity in
relation to neuregulin-1 cleavage: An alternative
possibility is that the synaptic dysfunctions in
BACE1-null mice may arise from abnormal
processing of substrates other than APP, i.e.,
neuregulin-1 (Nrg1) [66–68]. Nrg1 has a plethora
of functions in the central and peripheral nervous
systems, which include regulation of myelination,
radial and tangential neuronal migration of
glutamatergic and GABAergic neurons, and synaptic
plasticity [69]. To exert these functions, Nrg1 is
required to be cleaved by membrane-anchored
proteases, and BACE1 is one such protease. BACE1
deficiency reduces Nrg1 signaling activity and causes
defects in these functions as manifested in
BACE1-null mice [70, 71].
Many behaviors in animals with Nrg1 mutations
exhibit a close resemblance to putative characteristics
of schizophrenia, such as impaired pre-pulse
inhibition, and spontaneous hyperactivity, which
can be reversed by clozapine [72]. Nrg1 and its
signaling receptor, the ErbB4 receptor, have been
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identified as leading candidates for schizophrenia
susceptibility genes [73]. It has also been shown
that Nrg1-ErbB4 signaling enhances excitatory
synapse formation on interneurons and inhibitory
synapse formation on pyramidal neurons [74, 75].
Specifically, deletion of ErbB4 from fast-spiking
interneurons, such as chandelier and basket cells,
has been shown to cause relatively subtle but
consistent synaptic defects [74]. Deletion of ErbB4
in interneurons increases miniature excitatory
postsynaptic current (mEPSC) frequency and
amplitude, but increases miniature inhibitory
postsynaptic current frequency in pyramidal
neurons [75, 76]. In addition, Nrg1 increases both
the number and size of PSD-95 puncta, indicating
that Nrg1 stimulates the formation of new synapses
and strengthens existing synapses. Nrg1 could also
stimulate the stability of PSD-95 in a manner that
requires tyrosine kinase activity of ErbB4 [77].
Together, these results suggest that Nrg1 plays a
significant role in excitatory synapse development,
possibly via stabilizing PSD-95 [76]. By abolishing
Nrg1 cleavage to reduce Nrg1-ErbB4 signaling in
synapses, BACE1 deficiency likely contributes to
synaptic dysfunctions as reported in BACE1-null
mice discussed above.

3. BACE1 deficiency alters synaptic plasticity in
relation to Sez6 cleavage: Another family of proteins,
the seizure-related gene 6 (Sez6) and its family
member Sez6L, were identified as BACE1 substrates
through an unbiased proteomic approach and were
recently validated as strong substrates of BACE1 [78].
Sez6 and Sez6-like (Sez6L) are nearly exclusively
cleaved by BACE1 and not by other proteases in the
brain and are guided by their sub-cellular location and
their function. They share an NPxY motif and a
phosphotyrosine-binding domain (PTB) with another
BACE1 substrate, amyloid precursor protein (APP). In
BACE1-null and BACE1/2-double-null mice, a
marked reduction in the shedding of Sez6 and Sez6L
proteins has been confirmed. Their levels in
BACE1-null cerebrospinal fluid (CSF) are significantly
reduced to ~10% of the wild-type condition. Although
the exact molecular functions of Sez6 and Sez6L
are not yet fully understood, homology in their
protein-binding domains to other cell surface
receptors suggests that they may act as receptors at
the cell surface [79], as they were originally identified
as membrane proteins with five copies of short
consensus repeat with a complement C3b/C4b
binding site and were seen to be elevated after bursts
of neuronal activity [80]. The interaction domains
suggest adhesive and/or receptor trafficking functions
of these proteins; however, their binding partners are

not yet known. Sez-6 is required for normal dendritic
arborization of cortical neurons, which is critical for
neuronal transfer of information. Its localization along
developing and mature dendritic branches and in
dendritic spines modulates branch stability. In the
absence of Sez-6, mice exhibit short dendrites while
cultured cortical neurons display excessive neurite
branching. Despite the noticeable effect on branching
of dendrites, no obvious effect on an overall growth
of the dendritic arbor is reported [81]. Excessive
dendritic branching does not always mean a better
condition for synapse formation, as studies have
found that postsynaptic specializations on these
branches (labeled with PSD-95) were dramatically
reduced [82]. In the absence of Sez-6, spine
numbers are reduced, with reduced excitatory
synaptic connectivity between layers II/III and
layer V pyramidal neurons in Sez-6-null mice. As
spontaneous miniature EPSCs (mEPSCs) or EPSCs
with minimal stimulation were not altered, the
reduction might be because of uncoupling of pre-
and postsynaptic ends of synapses due to altered
branching patterns. There is also evidence for
reduced synaptic density, punctate staining of
PSD-95, and LTP in the frontal cortex of Sez6-null
mice. Sez-6 proteins are therefore important for
specifying proper dendritic arborization and for
development of excitatory synapses on cortical
neurons [81]. There is an activity-driven up-
regulation of Sez-6 expression after 2 h post-high
frequency stimulation [83]. Sez-6 expression levels
are highly enriched in brain regions associated with
ongoing morphological plasticity, such as the
hippocampus and cerebellum in postnatal brain. In
Sez-6 deficiency, animals exhibit poor motor
coordination and balance, suppressed activity in
the open field, reduced anxiety, as well as cognitive
deficits. Thus Sez6 protein signaling is critical for
excitatory synapse development and function [81]
and synaptic circuit refinement [84]. Besides syn-
apse formation and maintenance, Sez6 family mem-
bers are also expressed and cleaved in lungs and
pancreas [79, 85]. Since Sez6 and Sez6L are exclusive
substrates of BACE1, they can be used as a direct
readout for BACE1 activity in CSF and as a control
condition where BACE1 inhibitors can be devel-
oped in a substrate-specific manner (for APP) with-
out hampering the physiological actions of BACE1
on other essential proteins like Sez6 that are critical
for proper synchronous synaptic transmission.

4. BACE1 deficiency alters synaptic plasticity in
relation to jagged cleavage: Jagged-1 (Jag1) has been
identified as a BACE1 substrate [86] and is known to
play important roles in neural development and
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synaptic functions. Jag1 regulates astrogenesis/
neurogenesis via the Notch signaling pathway
[87–89]. Because of abrogated Jag1 cleavage,
BACE1-null mice exhibit increased astrogenesis
and reduced neurogenesis due to increased
Jag1-Notch interactions [87]. This is consistent
with a prior report that astrocytes negatively
regulate neurogenesis through the Notch pathway
[90]. Although Notch and its ligands are expressed
at low levels in the adult brain [91, 92], they are
needed for long-term memory, which is dependent
on ultra-structural remodeling of synapses. Hence
Notch has an important role in the neural plasticity
underlying consolidated memory. Loss of Notch
function produces memory deficits in Drosophila
melanogaster [93] and impairs proper morphology
of dendritic spines [91] in the mouse hippocampus.
Thus Jag, as a Notch regulator, is important for
synaptic plasticity that contributes to memory
formation.
On the other hand, a shift in the balance between
neurogenesis and astrogenesis in BACE1-null mice
likely contributes to aberrant synaptic transmission.
Astrocytes regulate synaptic function and plasticity
in close association with synapses [94]. They are
involved in synaptogenesis as well as synapse function
and elimination. This tight structural and functional
partnership between the perisynaptic astrocytic
process and the neuronal pre- and postsynaptic
structures constitutes the “tripartite synapse” [95].
Astrocyte processes enclose synapses and define
functional domains by ensheathing neuronal somas,
axons, dendrites, and synapses occupying non
overlapping territories, and thus establish gradually
independent domains which are also developmentally
regulated [96, 97]. This process of segregation, also
known as astrocyte tiling, is thought to be regulated
by “contact inhibition” between neighboring astrocytes
and is crucial for normal functions of the nervous
system because, in disease and post-injury conditions,
astrocytes lose their tiling ability and display
intermingled process morphology [98]. Astrocytes
have also been known to regulate glutamatergic
postsynaptic strength by increasing the number and
stabilizing of AMPAR and NMDAR at the postsynaptic
end of synapses [99]. Hence, BACE1 inhibition may
impact synaptic functions due to an imbalance in
total astrocytes and neurons.

Conclusion
Since BACE1 is the rate-limiting enzyme in the amyloid
cascade, it is considered to be one of the promising targets
for AD therapy. A rare human mutation at the BACE1
cleavage site of APP has been identified, which results

in a 40% decrease in Aβ production in vitro, a reduced
propensity of Aβ to aggregate, a five- to seven-fold re-
duced risk of developing AD, and improved cognitive
function in elderly subjects without AD [100–102]. Hence,
BACE1 inhibition is likely to be beneficial to AD patients.
However, caution should also be taken considering the
role of BACE1 in synaptic plasticity. For example, the
BACE1 inhibitor verubecestat (MK-8931) showed great
promise in early human and animal trials [103], but a
recent announcement that Merck was stopping one of
its trials suggested cause for concern. By better under-
standing the physiological and pathological functions
of BACE1, anticipation and possible circumvention of
mechanism-based side effects that may arise due to
BACE1 inhibition can be accomplished. Decoding mo-
lecular mechanisms that underlie AD pathogenesis will
help us to develop efficient therapeutic approaches to
combat disease progression.
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