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The associations between Parkinson’s
disease and cancer: the plot thickens
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Abstract

Epidemiological studies support a general inverse association between the risk of cancer development and Parkinson’s
disease (PD). In recent years however, increasing amount of eclectic evidence points to a positive association between
PD and cancers through different temporal analyses and ethnic groups. This positive association has been supported
by several common genetic mutations in SNCA, PARK2, PARK8, ATM, p53, PTEN, and MC1R resulting in cellular changes
such as mitochondrial dysfunction, aberrant protein aggregation, and cell cycle dysregulation. Here, we review the
epidemiological and biological advances of the past decade in the association between PD and cancers to offer insight
on the recent and sometimes contradictory findings.

Introduction
Parkinson’s disease (PD) is one of the most common and
rigorously studied age-related neurodegenerative disor-
ders, occurring in 0.3 % of the whole population and
nearly 2 % in those over 65 years of age in industrialized
countries [1]. Resting tremor, rigidity, hypokinesia, and
postural instability are the four cardinal motor symptoms
of PD resulting from the loss of dopaminergic neurons in
the substantia nigra pars compacta. While the prevalence
of this slowly debilitating disease is increasing, it remains
incurable and irreversible due to its elusive mechanisms.
Another chronic disease devastating human health and of
substantial research focus is cancer. Many epidemiological
studies have reported associations between PD and can-
cers, supporting a general inverse and more recently, posi-
tive association in certain cancers including skin, breast,
and brain. This positive association is corroborated by
advances in molecular genetics and cell biology revealing
several genetic mutations that alter cell cycle control, pro-
tein turnover, and mitochondrial functions. This intriguing
association between PD and cancers provides a new per-
spective to the well-known opposing cell fates of degener-
ation and death of post-mitotic neurons, and the
uncontrolled division and enhanced resistance to death of

cancer cells. The convergence of these processes provides
new avenues to study both of the age-related conditions
and address an urgent need for therapeutic options.

Epidemiological associations between PD and
cancer
General trends between PD and common cancers
Many epidemiological studies have indicated an inverse
association between the risk of developing cancers and
PD. In a meta-analysis of 29 studies by Bajaj et al. that
included 107598 PD patients, the diagnosis of PD was
associated with an overall 27 % decreased risk of all can-
cers included in the studies, and 31 % decreased risk
after exclusion of melanoma and other skin tumors [2].
Similarly, a recent 2014 meta-analysis by Catala-Lopez
et al. found 17 % decreased risk of cancer in PD patients
[3]. The most widely reported reduced risks in PD
patients are cancers of the prostate, lung, bladder, stom-
ach, colorectal, blood, and uterus (Table 1). While the
lower risks of lung, bladder, and colorectal cancer, all
smoking-related cancers, in PD patients are generally un-
disputed, stomach, leukemia, and uterine cancers fail to
achieve significance in some studies for a clear inverse
association.
Evidence also links PD to an increased prevalence of a

few cancers (Table 1), in particular non-melanoma skin
cancer. Associations of breast and brain cancers with PD
are suspected but conflicting, as is the temporal associ-
ation between cancers and PD occurrence. For instance,
Olsen et al. found that individuals before PD diagnosis
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Table 1 Representative epidemiological studies of PD-cancer from 1995-2015

Study Reported positive association Reported negative association

Breast Non-melanoma
skin

Brain Prostate Lung Bladder Stomach Colorectal Leukemia Uterus

Lin et al.,
2015 [7]

1.11 (0.90–1.37)c 1.81 (1.46–2.23)c 3.42 (1.84–6.38)c 1.80 (1.52–2.13)
c

1.56 (1.38–1.76)c 1.59 (1.25–2.01)c 1.59 (1.30–1.94)c 1.47 (1.31–1.65)c 1.62 (1.31–2.01)ce 1.83 (1.12–3.01)c

Ong et al.,
2014 [6]

1.16 (1.1 0–1.22)c 0.89 (0.86–0.92)c 1.50 (1.34–1.68)c 0.98 (0.94–1.01)c 0.75 (0.71–0.78)c 0.86 (0.82–0.91)c 0.87 (0.80–0.95)c Colon: 0.87
(0.83–0.91)c

Lymphatic: 1.11
(1.00–1.23)c

Corpus: 1.17
(1.03–1.32)c

Rectum:
0.89 (0.83–0.97)c

Myeloid: 0.82
(0.72–0.94)c

Cervix: 1.09
(0.83–1.40)c

Wirdefeldt
et al., 2014 [5]

1.02 (0.86, 1.21)a 1.05 (0.82, 1.36)a 1.43 (0.95, 2.14)a 1.12 (0.96– 1.31)a 1.11 (0.60–2.04)a 1.15 (0.89-1.48)a 0.61 (0.24–1.54)a Colon: 0.75
(0.54–1.04)a

Lymphatic: 0.78
(0.35–1.76)a

Corpus: 1.66
(1.21–2.28)a

1.24 (0.81–1.92) b 1.54 (0.96–2.49)b 4.78 (2.24–10.2)b 0.99 (0.76–1.29)b 1.59 (0.92–2.77)b 1.54 (0.95-2.50)b 1.43 (0.66–3.08)b Colon: 1.66
(1.09–2.53)b

Lymphatic: 1.78
(0.83–3.8)c

Corpus: 2.55
(1.17–5.58)b

0.80 (0.57, 1.12)c 1.40 (1.04, 1.88)c 1.52 (0.86, 2.69)c 0.77 (0.63–0.92)c 0.4 (0.24–0.66)c 0.40 (0.24-0.66)c Colon: 0.74
(0.52, 1.05)c

Myeloid: 2.95
(1.02–8.59)b

Corpus: 0.51
(0.23–1.13)c

Rugbjerg
et al., 2012
[15]

1.17 (1.02–1.34)c 1.29 (1.18–1.39)c 0.99 (0.67–1.40)c 0.74 (0.64–0.86)c 0.40 (0.33–0.48)c 0.48 (0.38–0.60)c 0.82 (0.73–0.92)c Lymphatic: 0.66
(0.42–0.99)c

Corpus: 0.82
(0.58–1.13)c

Kareus et al.,
2012 [11]

1.71 (1.49–1.96) 0.22 (0.09–0.43) 0.22 (0.03–0.78) 0.55 (0.37–0.79)

Fois et al.,
2010 [13]

0.9 (0.7 to 1.0)a 1.0 (0.8 to 1.1)a 1.0 (0.4 to 2.1)a 0.9 (0.7 to 1.1)a 0.5 (0.4 to 0.7)a 0.7 (0.6 to 0.9)a 0.8 (0.5 to 1.1)a Colon: 0.7
(0.6 to 0.9)a

0.7 (0.4 to 1.2)a 0.9 (0.6 to 1.3)a

0.7 (0.4 to 1.0)c 0.6 (0.3 to 0.9)c 0.8 (0.1–2.8)c 0.7 (0.5 to 1.0)c 0.5 (0.4 to 0.8)c 0.5 (0.3 to 0.9)c 0.6 (0.3 to 0.9)c 0.5 (0.4 to 0.8)c 0.9 (0.4 to 1.6)c 0.8 (0.2 to 2.0)c

Lo et al.,
2010 [166]

0.72 (0.27–1.9)ad

0.95 (0.38–2.4)c
1.01 (0.47–2.2)ad 0.45 (0.05–4.5)ad 1.03 (0.26–4.2)ad 0.61 (0.11–3.4)ad

0.80 (0.41–1.6) c 0.35 (0.10–1.2)c 0.73 (0.24–2.2)c 0.66 (0.27–1.6)c

Becker et al.,
2010 [167]

0.98 (0.53–1.80)c 0.86 (0.56–1.32)c 0.47 (0.25–0.86)c 0.88 (0.48–1.63)c 0.33 (0.18–0.61)ce

Driver et al.,
2007 [12]

0.83 (0.14-4.96)c 0.74 (0.44–1.2)c 0.32 (0.07–1.53)c 0.68 (0.16–2.84)c 0.54 (0.14–2.16)c 0.81 (0.22-2.90)c

Olsen et al.,
2006 [4]

1.09 (0.90–1.33)ad 1.26 (1.11–1.43)ad 0.97 (0.55–1.70)ad 0.99 (0.75–1.31)ad 0.42 (0.22–0.80)ad 0.71 (0.55–0.91)ad 1.03 (0.50–2.14)ad Colon: 1.29
(1.02–1.63)ad

0.43 (0.19–1.01)ad Cervix: 0.93
(0.66–1.31)ad

Rectum: 0.98
(0.70–1.36)ad

Olsen et al.,
2005 [9]

1.24 (1.0–1.5)c 1.25 (1.1–1.4)c 1.32 (0.9–1.9)c 0.74 (0.6–0.9)c 0.38 (0.3–0.5) c 0.52 (0.4–0.7)c 0.83 (0.6–1.1) c Colon: 0.84
(0.7–1.0)c

Myeloid: 0.69
(0.4–1.2)c

Cervix: 0.76
(0.4–1.4)c

Rectum: 0.89
(0.7–1.1)c
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Table 1 Representative epidemiological studies of PD-cancer from 1995-2015 (Continued)

Elbaz et al.,
2005 [168]

1.76 (1.07–2.89)c

Minami
et al., 2000
[169]

5.49 (1.10–16.03)

Moller et al.,
1995 [10]

1.20 (0.9– 1.5)c 1.24 (1.0–1.5)c 1.61 (0.9–2.7)c 0.79 (0.6–1.1)c 0.29 (0.2–0.4)c 0.42 (0.2–0.7)c 0.91 (0.6– 1.4)c Colon: 0.96
(0.7– 1.2)c

0.82 (0.4–1.4)c Cervix: 0.86
(0.3– 1.9)c

Rectum: 0.98
(0.7–1.4)c

Corpus: 0.89
(0.4– 1.6)c

Statistically significant values of relative risks (hazard and incidence rate ratios) according to authors’ thresholds are bolded. Associations that do not follow the general trend are highlighted in italics.
aBefore PD diagnosis
bWithin one year of PD diagnosis
cAfter PD diagnosis
dOdds ratios
eLymphoma or leukemia
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have significant risk of non-melanoma skin cancer [4], but
is countered by a recent study by Wirdefeldt et al. show-
ing increased risk of 40 % only after 1 year following PD
diagnosis [5]. Likewise, other studies that investigate the
risk of cancer before and after PD diagnosis reveal associa-
tions that differ in direction and statistical significance.
Trends differ across ethnicities and between Eastern

and Western populations. In two Taiwanese and British
cohort studies, brain, kidney, and uterine cancers were
positively associated with PD after diagnosis, but stom-
ach and lung cancer were negatively associated with PD
in the British study [6], while they were positive in the Tai-
wanese study [7]. In fact, the authors of the Taiwanese
study did not report negative risks for any cancer in PD
patients. The validity of these differences, whether due to
differential genetic, environmental factors, or technic vari-
ations, should be closely examined, as a previously pub-
lished Taiwanese matched cohort study of the same
database found that lung cancer had lower hazard ratio in
PD versus non-PD patients [8], corroborating the negative
association of studies in Danish [9, 10], American [11, 12],
Swedish [5], and British [13] populations. Further investi-
gations of cancer in Asian PD patients are warranted.

PD and melanoma
Melanoma has an established and consistently positive as-
sociation with PD (Table 2). However, individual studies

show relative risk with considerable variation from 0.5 to
20.9. Although the studies controlled for similar factors,
including age, race, and sex, differences invariably arise
from biases due to selection and inclusion criteria, diag-
nostic practices and confirmation of pathology, sample
sizes, and unadjusted covariates. Smoking history and
family history of melanoma or PD should be accounted
for as confounders in the statistical models if possible.
Smoking has long been associated with PD, and melan-
oma could introduce survival bias due to unrelated dis-
eases and comorbidity. Similarly, there is an apparent
genetic basis for the PD-melanoma association: individ-
uals with first-degree family history of melanoma have
85 % higher relative risk of PD [14], and the association
extends to third-degree relatives [11]. Melanoma is fairly
uncommon amongst PD patients, as evidenced by 9 ob-
served cases in a cohort of 806 PD patients of the PRE-
CEPT study and 19 melanoma versus 1718 non-
melanoma subjects of the NET-PD study, thereby allowing
more room for variability in calculated risks and requiring
greater statistical sensitivity in analyses. Furthermore, a
temporal association seems to exist: melanoma risk in-
creases closer to the index date of PD [4, 9, 15]. To
consolidate some of these factors across studies, a meta-
analysis of 12 studies report that the overall odds ratio for
melanoma in people with PD versus no PD was 2.11 [16].
The authors also highlight that the odds ratio after PD

Table 2 Studies of melanoma risk in PD patients and vice versa

Melanoma risk in PD patients

Relative risk Measure of association, 95 %
confidence interval

Study/Subjects

3.6 (2.2–5.6)b [170] National Institutes of Health Exploratory Trials in PD Long-term Study 1 (NET-PD)

2.24 (1.21–4.17)b [171] North American PD patients vs. US Surveillance Epidemiology and End Results cancer database,
American Academy of Dermatology skin cancer screening programs

20.9 (9.6–39.7)b [172] Parkinson Research Examination of CEP-1347 Trial (PRECEPT)

1.95 (1.4–2.6)b [9] Danish National Hospital Register, Danish Cancer Registry

1.70 (0.62–4.67)b [167] UK General Practice Research Database

0.5 (0.2–0.9)a [13] Oxford Record Linkage Study

1.96 (1.1–3.2)b [10] Danish National Hospital Register, Danish Cancer Registry, Danish Register of Deaths

1.95 (1.44–2.59) [11] Utah Population Database, US Surveillance, Epidemiology and End Results

1.41 (1.09–1.80)b [15] Danish National Hospital Register, Danish Cancer Registry

6.15 (1.77–21.37)b [12] US Physicians Health Study

Odds ratio 1.44 (1.03–2.01)a [4] Danish National Hospital Register, Danish Cancer Registry

1.5 (0.40–5.2)a

1.6 (0.71–3.6)b [166]
Parkinsonism Epidemiology at Kaiser (PEAK)

PD risk in melanoma patients

Mortality ratio 266.3 (222–317) [173] Australian National Cancer Statistics Clearing House

Relative risk 1.65 (1.22–2.19) [11] Utah Population Database, US Surveillance, Epidemiology and End Results

Statistically significant values of relative risks according to authors’ thresholds are bolded. Associations that do not follow the general trend are in italics.
a Before PD diagnosis
b After PD diagnosis
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diagnosis is 3.61 versus statistically insignificant 1.07
before PD diagnosis [16].
L-3,4-dihydroxyphenylalanine (L-DOPA), the main

drug used to treat PD, was initially proposed to be re-
sponsible for the association with melanoma [17] al-
though it has now been widely discredited [18, 19].
Several pigmentation interrelated proteins, including
tyrosinase, tyrosine hydroxylase, melanin, and sphingoli-
pids [20–22], and possible common risk factors includ-
ing pesticide exposure [23] and lack of smoking,
caffeine, and alcohol intake [24–29] have emerged to
help explain the association. Tyrosine hydroxylase con-
verts tyrosine to the dopamine precursor L-DOPA in
both melanocytes and neurons while tyrosinase converts
tyrosine to L-DOPA and dopaquinone, the precursor to
pheomelanins and eumelanins [30]. Sorting of tyrosinase
to melanosomes from the Golgi seems to require glyco-
sphingolipids [31]. Dysregulation of glycosphingolipid
metabolism, storage, and interaction with α-synuclein, as
well as mutations of the phospholipase A2, group VI
(PLA2G6) gene regulating synthesis of glycosphingoli-
pids’ core component ceramide, are associated with both
melanoma and PD [32–36]. Adding to the complexity,
melanin, the end product of this pathway, could be a
doubled-edged sword. Melanin serves to dissipate UV
radiation and protect against DNA damage in skin cells,
and neuromelanin binds to 1-methyl-4-phenylpyridi-
nium ion (MPP+) and metal ions to reduce their toxicity
[37]. Hence, a hypothesis put forward for the negative
link between smoking and melanoma and PD is the
stimulated production of melanin and neuromelanin by
nicotine [38], although whether or not nicotine is truly
beneficial is debatable as neuromelanin also activates
microglia and stimulates their secretion of proinflamma-
tory cytokines tumor-necrosis factor α, interleukin 6,
and nitric oxide in a degenerate cycle [37].

Genetic determinants and associated cellular
processes shared in PD and cancer
A growing body of evidence supports common genetic
mechanisms in cancer and neurodegenerative diseases.
Mutations in a variety of genes involved in the dysregu-
lation of the cell cycle and protein turnover have been
implicated in both PD and cancer.

SNCA
SNCA is perhaps the best known causal gene for PD,
with several missense mutations (A53T, E46K, H50Q,
G51D, A30T), gene duplications, or posttranslational
modifications of α-synuclein that ultimately lead to its
misfolding and aggregation of insoluble fibrils [39]. The
function of α-synuclein has been postulated to facilitate
the release of neurotransmitters at synapses, and recent
evidence has shown support for this hypothesis. In

mutated α-synuclein E57K mouse lines that accumulate
oligomers, there were loss of synaptic terminals and den-
drites and impairment of vesicle transport [40]. They exist
in the unfolded monomeric form in the cytosol, but act as
chaperones in the multimeric state when bound to plasma
membrane or docked synaptic vesicles in the process
of forming SNARE complexes, which are crucial for
neurotransmitter release from the presynaptic membrane
[41–43]. The soluble monomeric form, rather than the
membrane bound α helical multimeric form, is the basis
of aggregates and associated neurotoxicity [44]. The inter-
action with membranes is possibly stabilized through the
positively charged N-terminus of α-synuclein binding to
the negatively charged lipid membrane of vesicles through
a lipid ordering effect [45, 46]. Interestingly, α-synuclein is
now also implicated in reducing Aβ deposition and plaque
formation in Alzheimer’s disease, although the interaction
between α-synuclein and Aβ does not seem to attenuate,
but rather exacerbate, synapse and dendritic loss [47].
α-synuclein is also linked to various cancers although

the biological consequences are relatively unknown.
Immunohistological studies revealed its expression in
ependymoma, astrocytoma, breast and ovarian cancerous
tissues, and these cancers co-occur with PD in epidemio-
logical studies discussed previously [48, 49]. The methyl-
ated state of SNCA and the presence of α-synuclein in
melanocytic lesions may be used as biomarkers for some
lymphomas and melanoma [50, 51]. Although α-synuclein
is a hallmark of PD, its propagation mechanism may help
explain its appearance in cancers outside the brain and in
human plasma and cerebrospinal fluid [52–54]. In melan-
oma, S129-phosphorylated form of α-synuclein, the
pathological form in Lewy bodies of PD, but not the
unphosphorylated form, is localized to the surface of mel-
anoma cells and their released microvesicles’ membranes
[55]. The exosomal secretion pathway, implicated in prion
diseases, could also play a role. Neurons and astrocytes
can secrete exosomes containing α-synuclein oligomers
inside and on the surface of their membranes, conferring
the oligomers greater chance of reuptake by another cell
than when exosome-free [56, 57]. Strikingly, α-synuclein
has recently been shown to cross the blood–brain barrier,
which has increased permeability in PD, after intravenous
injection in mice [58, 59]. Taken together, an emerging
hypothesis for the aggregation and prion-like propagation
of toxic α-synuclein present in PD and its co-appearance
in brain and other cancers could be through its release
and uptake via various mechanisms between neurons and
cells outside of the central nervous system (CNS).

PARK2
PARK2 encodes parkin, which is a component of a multi-
protein E3 ubiquitin ligase complex, a part of the ubiquitin-
proteasome system (UPS) that mediates the targeting of
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proteins for degradation [60, 61]. Genetically, PARK2 is
the most commonly mutated gene in autosomal reces-
sive PD, accounting for nearly 50 % of cases [62, 63]. In
one study of early onset PD, mutations were detected
in 77 % of patients aged 20 or younger [64]. Heterozygous
mutations of PARK2 in exon 7, the first RING finger
(C253W, R256C, R275W, and D280N) act as susceptibility
alleles for late onset PD [63, 65, 66]. In cancer, although
the association between the exact alterations of PARK2
and cancer susceptibility is not well understood, the muta-
tions, deletion, copy number alterations, promoter hyper-
methylation, and aberrant mRNA and protein expression
of PARK2 have all been found to be prevalent across
human malignancies, especially glioma, lung, breast,
colon, and ovarian cancer [7, 67–70].
The precise mechanism by which mutations in PARK2

lead to PD and cancer remains unclear. However, accu-
mulation of cyclin E, a substrate of PARK2, seems to be
a central event [71]. Cyclin E is the primary cyclin that
drives S-phase progression [72]. Loss of function of
PARK2 mutations results in the deficiency of E3 ligase,
leading to dysfunctional UPS, buildup of cyclin E and β-
catenin, and upregulation of Wnt and EGFR-AKT path-
ways [60, 61, 73]. CDK2/cyclin E phosphorylates the
tumor suppressor retinoblastoma, releasing the transcrip-
tion factor E2F-1 from inhibition. In cycling cells, E2F-1
upregulates proteins facilitating progression through S
phase, but in post-mitotic neurons, E2F-1 triggers apop-
tosis through p53 and Bax [74, 75]. Conversely, the over-
expression of β-catenin, a protein overexpressed in many
cancers, may partially explain why some cancers are
inversely associated with PD, as signaling of Wnt/β-ca-
tenin promotes repairing mechanisms in dopaminergic
neurons [76]. On the other hand, EGFR-AKT signaling is
likely tissue specific and context dependent, as loss of
PARK2 have been found to increase or decrease the activ-
ity of EGFR-AKT, and subsequently, promote or hinder
neuronal survival, adding a complex layer to the conflict-
ing association between PD and different cancers [73, 77].

PARK8
The PARK8 gene encodes the leucine-rich repeat kinase
2 (LRRK2) protein, with the G2019S, R1441G/C/H,
Y1699C, G2385R, R1628P, I2020T mutations appears to in-
crease the risk of PD [78–80]. LRRK2 has been reported to
have complex and extensive roles related its well-known
functions as a GTPase and kinase, including regulation of
synaptogenesis, axon and dendritic growth, and synaptic
vesicle release and interaction with tau, 14-3-3 proteins,
and the presynaptic proteins syntaxin 1A, synapsin I, dyna-
min I, and VAMP2 [81–86]. One of the most notable causal
autosomal dominant mutations for PD, G2019S, was first
discovered in Ashkenazi Jewish and North African Arabian
populations and since has been the focus of many genetic

and translational studies in PD [87, 88]. Consequences of
the G2019S mutation include gain-of-function increase in
LRRK2 protein kinase activity and ubiquitination [89], in-
creased glutamatergic synapse activity and synaptic vesicle
release [90], decreased levels of neurotrophic protein pro-
granulin in microglia and fibroblasts [91], a protein linked
to neurite growth and neuronal survival [92], lysosomal
aggregation [93], and inhibition of autophagic function in
dopaminergic neurons [94, 95]. As a whole, G2019S
related dysfunction affects synaptic transmission, autoph-
agy, and neurite health in the pathological LRRK2-PD
association.
The G2019S-cancer link is disputed by epidemiological

studies [96–100] but is starting to be elucidated in the
laboratory. In cultured neuroblastoma cells, the G2019S
mutant protein initiated the formation of α-synuclein ag-
gregates, propagation into neighboring cells, and subse-
quent cellular toxicity [101]. G2019S also activates the
oncogenic MET/ERK pathway, which was demonstrated
to increase basal autophagy and α-synuclein aggregation
[102, 103]. These preliminary findings demonstrate poten-
tial in finding site-specific targets on LRRK2 as thera-
peutic options for PD and suspected positively associated
cancers, such as breast and prostate.

Ataxia telangiectasia mutated (ATM) and p53
ATM provides another close genetic link between neuro-
degeneration and cancer through genome integrity main-
tenance and cell cycle control. Direct evidence is found in
the rare genetic disease ataxia telangiectasia (AT) caused
by mutations of ATM. AT is characterized by both severe
cerebellar degeneration and predisposition for cancer and
radiation sensitivity [104, 105]. The gene ATM encodes a
serine/threonine protein kinase, a member of the
phosphatidylinositol-3 kinase (PI3K) superfamily. ATM is
recruited initially to the sites of DNA lesions, such as
double strand breaks, and phosphorylates several key pro-
teins such as checkpoint kinase CHK2, histone H2AX, the
Rad50–Mre11–Nsb1 complex, tumor suppressors p53
and BRCA1, leading to the activation of DNA damage
checkpoints, cell cycle arrest, DNA repair, or apoptosis
[106–109]. Cells without any functional ATM protein are
hypersensitive to radiation and do not respond normally
to DNA damage; instead of activating DNA repair, the de-
fective ATM protein allows mutations to accumulate in
other genes. ATM-heterozygous germline mutations were
shown to contribute to breast cancer, non-Hodgkin’s
lymphomas and B-cell chronic lymphocytic leukemia,
while ATM-homozygotes develop lymphoma and leukemia
[110, 111]. Because ATM is an essential component of the
DNA damage response and apoptosis, its normal expres-
sion is crucial for post-mitotic neurons. Camins et al.
found that in cells treated with MPP+ as an experimental
model of PD, cell viability was decreased through
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activation of ATM and possibly retinoblastoma protein,
ultimately leading to initiation of apoptosis [112]. In-
hibition of MPP+ induced ATM activation displayed
neuroprotective effects and increased cell survival
[112], although the finding is contradicted by another
study showing reduced ATM activity causes neuronal
death [113]
ATM can activate repair proteins in response to DNA

double-strand breaks, but when the DNA repair ma-
chinery is overwhelmed, ATM can also activate p53 to
induce cell-cycle arrest and apoptosis. p53 has been
recently shown to be involved in aging and neurodegenera-
tive disorders. In PD, p53 levels are increased, possibly
through s-nitrosylation of parkin [114], where it mediates
microglial activation and subsequent pro-inflammatory
phenotypes, leading a p53-driven microglial-evoked
neurotoxicity [115–119]. In addition, interaction of
p53 with α-synuclein is purported to suppress Notch1
signaling, leading to retarded neurogenesis in mature
neurons [120]. Inhibition of p53 prevents cell death
[116, 118, 121, 122].

Phosphatase and tensin homolog (PTEN) and putative
kinase 1 (PINK1)
PTEN was first identified as a tumor suppressor gene lo-
cated on chromosome 10q23. PTEN removes the 3′phos-
phate from phosphatidylinositol 3,4,5-triphosphate (PIP3)
and eventually shuts down PI3K-Akt-mTOR pathway
leading to growth inhibition and apoptosis [123]. Frequent
inactive mutations of PTEN were detected in a variety of
human cancers including glioblastoma, advanced prostate,
and endometrial cancers, and reduced expression is found
in many other tumor types such as lung and breast cancer
[124–129].
While its role as tumor suppressor is established unam-

biguously, emerging evidence shows that the biological
function of PTEN extends to the CNS where it is widely
expressed and localized to the cytoplasm and nucleus
[130, 131]. Several studies indicate that PTEN is a crucial
regulator of neuronal development, neuronal survival,
axonal regeneration, and synaptic plasticity and has been
linked to the pathogenesis of neurodegenerative disorders
at the molecular level [132–137]. The main target of
PTEN, mTOR, plays an essential role in maintaining the
integrity of postmitotic neurons by regulating key cellular
processes such as protein synthesis, autophagy, mitochon-
drial metabolism, and biogenesis [138]. The selective in-
hibitor of mTORC1, rapamycin was shown to be
neuroprotective in experimental models of Alzheimer’s
disease and PD [139, 140].
PTEN regulates the function of PTEN induced puta-

tive kinase 1 (PINK1), located on chromosome 1p36, a
region frequently deleted in human cancers and mutated
in familial forms of PD [141–143]. Similar to another

common PD causal gene PARK2, PINK1 plays a key role
in mitochondrial quality control by identifying damaged
mitochondrial and targeting them for degradation, im-
portant functions dysregulated in neurodegeneration and
cancer [144, 145]. PINK1 is linked with the AKT pathway
through PTEN, which is the main driver for tumorigenesis
and neuronal survival [145, 146]. Expression of PINK1
mRNA and protein ranges from high to low in different
types of cancers, indicating the dual, context dependent
pro and anti-tumorigenic role of PINK1 in cancer biology
[147]. Flanagan et al. showed that PINK1 deletion reduced
several cancer-related phenotypes like cell proliferation,
colony formation and invasiveness through cell cycle con-
trol, demonstrating PINK1 as a potential oncogene [146].

Melanocortin 1 receptor (MC1R)
MC1R is the main pigmentation gene that encodes the
MC1R protein. A cyclic AMP-stimulating G-protein-
coupled receptor, MC1R contributes to regulation of skin
physiology though the melanin synthetic pathway. MC1R
is a genetic determinant of hair color and loss-of-function
polymorphisms cause a shift of melanogenesis from the
photoprotective, black-brown pigment eumelanin to red-
yellow pheomelanin, resulting in a phenotypic spectrum
of red hair color, pale skin, and freckles [148]. Epidemio-
logical studies have shown loss-of-function MC1R variants
are associated with higher risk of developing melanoma
[148]. In the laboratory, disruption of MC1R increases
oxidative damage and lowers the threshold for melanoma
induction even in the absence of UV light [149].
In addition to skin melanocytes, MC1R is expressed in

many other cell types including astrocytes [150], Schwann
cells [151], and possibly certain neurons of the periaque-
ductal gray [152] in the brain, suggesting additional func-
tions beyond skin. In two large prospectively followed
cohorts, individuals with two copies of the MC1R gene
loss-of-function variant R151C had a significant three-fold
increased risk of developing PD [14]. Newly published
findings in an independent cohort substantiate the MC1R-
PD link via the R160W variant [153]. Another study did
not replicate a significant MC1R-PD association; however,
it also did not replicate the PD-melanoma association and
was limited by technical/sequencing difficulty [154]. To-
gether these epidemiological and biochemical findings in-
dicate more general protective role of MC1R in both
neurodegeneration and melanoma.

Other neurodegenerative diseases and cancers
Although the epidemiologic evidence of Alzheimer’s dis-
ease (AD)-cancer link is not as intensive as PD-cancer, an
inverse association is indicated by several studies. In a pro-
spective cohort study of individuals aged 65 and older,
there was 69 % reduced risk of all cancers in AD patients
[155]. Romero et al. reported cancer mortality hazard ratio
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of 0.5 in people with AD versus no dementia [156]. In spe-
cific cancers, there is significant 40 % decrease in risk of
epithelial and lung cancers and 57 % decrease in risk of
colorectal cancer in people with AD [157]. In a gender
and age matched case control study, cancer had significant
inverse association with AD only in women and

endocrine-related tumors with odds ratios of 0.5 for both,
although their study suggested overall inverse association
with all types of cancers [158].
The association between AD and cancer is also bidirec-

tional. Driver and et al. found a hazard ratio of 0.67 com-
paring 1278 study participants with and without cancer

Table 3 List of representative neurodegeneration-associated genes and cancer

Gene/Protein Biological functions Changes in neurodegeneration Implicated cancers

SNCA/Alpha-synuclein synaptic vesicle and dopamine
release [174, 175]; excitatory
transmission [176]; endoplasmic
reticulum-Golgi transport [177]

major constituent of Lewy bodies;
impaired neurite growth and long-term
potentiation [178]; increased synaptic
transmission and endoplasmic reticulum
stress [177]; increased gliosis [179];
increased mitophagy [180]

adenocarcinoma, lung [181];
colorectal [182]; brain [183];
melanoma [184]; prostate [185];
non-Hodgkin lymphomas [51]

PARK8/LRRK2 synaptic vesicle release [186];
autophagy [187]; neurite growth
and differentiation [188]; cell
death signaling [189]; mitochondrial
regulation [190, 191]; cytoskeletal
structure maintenance [192]

increased tau phosphorylation [193];
mitochondrial and autophagic dysfunction
[194]; decreased neurite outgrowth and
abnormal neurogenesis [195]

breast, prostate [96, 97]; renal,
thyroid [102]

PARK2/Parkin synaptic transmission and
dopamine release [196];
ubiquitination and protein
degradation [197]; mitochondrial
maintenance [198]; tumor
suppressor [199]

mitophagy, mitochondrial transport and
morphology defects [200]; dysfunctional
UPS [60]; buildup of cyclin E and β-catenin,
upregulation of Wnt and EGFR-AKT
pathways [61, 73]

cervical, lung, colorectal, gastric,
melanoma, endometrioid [70];
glioma [73]

PARK6/PINK1 serine/threonine kinase in
mitochondria; mitochondrial
fusion/fission regulation [201];
mitochondrial damage sensor,
mitophagy and autophagic
control [198]; cell cycle regulation
[146]; synaptic plasticity and
dopamine release [202]

increased tau phosphorylation [203];
mitochondrial dysfunction, fragmentation
[204]; increased mitophagy [205]; impaired
synaptic plasticity [202]

breast [206]; glioma, ovarian [207]

PARK7/DJ-1 oxidative stress protection [208];
redox-sensitive protein chaperone
[209]; transcriptional regulation,
mitochondrial regulation [210–212]

increased oxidative stress sensitivity [213];
reduced complex I activity in mitochondria
[214]; increased tau phosphorylation [215]

breast [216]; lung [217]; pancreatic
[218]; gastric [219]; prostate [220]

MAPT/Tau microtubule-associated protein, tubulin
polymerization, scaffolding protein [221,
222]; growth factor signaling [222];
synaptic regulation [223]

hyperphosphorylated tau, major component
of neurofibrillary tangles; synapse
degeneration [223]

prostate [224]; breast [225];
epithelial ovarian [226]

APP/APP synapse formation and maintenance
[227]; trophic activity, neurite growth,
axon pruning [228, 229]

mutations lead to Aβ peptide and amyloid
plaques [229]

myeloid leukemia [230]; testicular
[231]

Table 4 List of representative genes in cancer implicated in neurodegenerative diseases

Gene/Protein Biological functions Association with Cancers Roles in neurodegeneration

TP53/p53 transcriptional factor, regulates
DNA repair, cell cycle control,
apoptosis [115]

tumor suppressor [232] acts as protective factor by interacting
with PD or AD related proteins via cell
cycle and apoptosis signaling [122]

ATM/ATM serine/threonine protein kinase;
regulates DNA repair, cell cycle
control, apoptosis [108, 233]

tumor suppressor; mutations increase the risk of
breast, stomach, bladder, pancreas, lung, lymphoid
and ovarian cancers [110, 234, 235]

mutations lead to AT, inactivation
causes cerebellar degeneration [104]

PTEN/PTEN protein tyrosine phosphatase [123];
apoptosis regulation, migration,
and adhesion, angiogenesis [129]

tumor suppressor [129]; mutations cause PTEN
hamartoma tumor syndrome and increase the risk
of breast cancer, prostate cancer and endometrial
cancer [124, 127, 132]

promotes axon regeneration [136];
regulates PINK1 and mTOR pathway
[136]

MC1R/MC1R main pigmentation gene [148] loss-of-function variants associated with
melanoma [148, 236]

variants R151C and R160W increase PD
risk [14, 153]
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[159]. In population-based longitudinal study of aging
including 1100 people aged 70 or older, non-melanoma
skin cancer history is associated with about 79 % less AD
risk [160]. Likewise, a study from the Alzheimer’s Disease
Neuroimaging Initiative provides evidence that a history
of non-melanoma skin cancer, but not breast or prostate
cancer, has inverse association with AD diagnosis [161],
contrary to the positive association observed in PD
patients. Intriguingly, although cancer survivors have
lower risk of AD, reduced cognitive function and cerebral
gray matter density were also found in cancer patients pre
and post-treatment, which complicates the apparent re-
verse link [161].
Although the biological evidence is scarce, the infamous

PTEN gene and protein of PD has a role in AD progres-
sion. A significant loss and alteration of PTEN was found
in AD neurons [162] and its downstream targets may
explain its pathological significance. Glycogen synthase
kinase regulates tau phosphorylation [163] while AKT me-
diates neuronal survival against β-amyloid neurotoxicity in
experimental models of AD [164, 165].
We discussed the most researched biological mechanisms

associated with PD genes, but they are not an exhaustive
review. A brief summary of the genes in neurodegenerative
diseases and some of their pathological effects are listed in
Table 3. Table 4 lists genes in cancer that have been impli-
cated PD.

Concluding remarks
Although overlap between PD and cancer is becoming evi-
dent, there are several concerns stemming from some of
the contradictory results on both the epidemiological and
laboratory fronts. One, there are undoubtedly differences
in genetic mutations across ethnicities and races, as seen
in the discrepancies in risk and prevalence of cancers
between Eastern and Western populations, and genetic or
pharmacological models with clinical applications should
note the groups of most likely pertinence. Second, some
studies have noted that cancers that were associated with
PD approached significance depending on the range of
time between the two diagnoses, which was not considered
in the majority of studies, highlighting either complex tem-
poral associations or ascertainment and survival bias that
should be carefully considered. To eliminate spurious asso-
ciations, stringent measures to ascertain the time of PD
and cancer onset should be employed in study design and
selection of available data. Third, more rigorous and cancer
specific epidemiological studies are needed to support
recent biological evidence linking PD and cancer, as many
studies have included highly heterogeneous cancers on all-
cancer risk in PD. For example, mutated PARK2 is
expressed in glioblastoma, colon, and lung cancer, but the
latter two cancers are associated with decreased risk of PD,
contrary to increased risk in glioblastoma [3, 13, 69].

Whether or not the disparities arise from divergent path-
ways in different tissues is still relatively unknown,
although pathological clues from neurodegenerative dis-
eases applied to linked cancers have gained much interest
due to strides in epidemiological research.
The associations between neurodegeneration and cancer

presented here are likely a fraction of the plethora of
shared mechanisms of these two distinct disorders. Fur-
ther investigations of these links and shared genetic deter-
minants implicated in these pathways may offer valuable
perspectives and new therapeutic options for the two
groups of traditionally disparate yet pathologically conver-
gent diseases.
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