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1  Introduction
Many non-survey methods of regionalizing a national input–output table (NIOT) 
have been developed, with the aim of avoiding the high costs and lengthy delays asso-
ciated with constructing regional tables via survey-based methods. Non-survey meth-
ods include those based on location quotients (LQs) and constrained matrix-balancing 
methods.

The LQ-based methods include the classical simple and cross-industry LQs, along with 
several refinements examined in the next section. These methods hinge on the assump-
tion that regions and nations employ the same technology of production, with the impli-
cation that regional input coefficients differ from their national counterparts only so far 
as each region imports goods and services from other regions. The performance of LQ-
based methods deteriorates significantly when this assumption of a common technology 
is violated.

By contrast, constrained matrix-balancing methods are less sensitive to viola-
tions of the assumption of identical technology. These procedures estimate unknown 
data from limited initial information, subject to a set of linear constraints. The most 
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popular of such techniques are RAS (Bacharach 1970; Stone 1961) and the cross-
entropy (CE) method (Golan et al. 1994), both of which are known to work well (Davis 
et al. 1977; Golan and Vogel 2000; Hosoe 2014; Kapur and Kesavan 1992; Lamonica 
et  al. 2020; Léony et  al. 1999; Robinson et  al. 2001; Vazquez et  al. 2015). The con-
strained matrix-balancing procedures include methods based on minimizing squared 
or absolute differences (Pavia et al. 2009). However, such techniques are more time-
consuming to implement than the pure LQ-based methods and normally require the 
solution of a constrained nonlinear optimization problem, whereas the LQ-based 
methods are very quick and simple to apply.

The present study focuses on the FLQ (Flegg’s LQ), which is often found to be one 
of the most accurate pure LQ-based methods (Bonfiglio and Chelli 2008; Flegg and 
Tohmo 2016). Applications of the FLQ include Dávila-Flores (2015), Hermannsson 
(2016), Jahn (2017), Kronenberg and Fuchs (2021), Morrissey (2016), and Singh and 
Singh (2011). To apply the FLQ, a value for a crucial unknown parameter, δ, must be 
chosen. Although several empirical studies have sought to find appropriate values of 
δ, these studies have not been conclusive. Examples include analyses of data for Scot-
land (Flegg and Webber 2000), Germany (Kowalewksi 2015), Argentina (Flegg et al. 
2016) and South Korea (Flegg and Tohmo 2019). Given these diverse outcomes, Jahn 
et al. (2020) recommend that analysts should consider regional characteristics when 
selecting a value of δ in the interval 0.3 ± 0.1. This range, which is suggested by earlier 
empirical work, can then be refined in the light of the results. Jahn et al. also formu-
late an econometric model that should assist in this process.

Nevertheless, it is evident that the choice of a suitable value of δ is still an open 
question, which has limited the practical use of the FLQ. Our aim is, therefore, to 
propose a strategy to estimate the value of δ in such a way as to optimize the regional-
ization of the NIOT. This strategy combines constrained matrix-balancing procedures 
with the FLQ. The expectation is that this hybrid approach should yield better results 
than would be attainable by applying each approach alone.

Of the possible matrix-balancing procedures, the CE method was chosen rather 
than RAS for several reasons. In particular, the standard RAS method can only han-
dle non-negative matrices, which would limit the application proposed in this paper. 
Although its generalization GRAS (Junius and Oosterhaven 2003) enables matrices 
with negative elements to be updated, its objective function has been questioned 
by Lemelin (2009), Huang et al. (2008) and Temurshoev et al. (2013). Moreover, the 
results obtained by Golan et al. (1994) and Robinson et al. (2001) appear to favour the 
CE method, while Lamonica et al. (2020) demonstrate that this method performs well 
when it is applied to real data, especially for small economies. Indeed, we find that the 
modified CE (MCE) method, as implemented in this study, outperforms GRAS.

The proposed procedure involves three steps. The first applies the MCE method 
to regionalize the NIOT. This is designed to account for negative or zero input coef-
ficients. The second step uses the derived regional matrix, along with the national 
table, to estimate the optimal δ for each region via a simple regression model. In the 
third step, this estimated δ is used to apply the FLQ formula, thereby computing the 
final estimates of the regional input coefficients. It is worth noting that this hybrid 
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approach can easily be adapted to enhance the performance of other pure LQ-based 
methods that depend on one or more unknown parameters.

Our approach is tested on the South Korean interregional input–output table 
(KIRIOT) for the year 2005. It was built by the Bank of Korea for all 16 South Korean 
regions, with a classification of 78 economic sectors. A smaller version with 28 eco-
nomic sectors is also available, but we opted to use the larger version, so as to minimize 
aggregation bias. The KRIOT is one of the very few survey-based full interregional I–O 
tables. It has data on the volume of all intersectoral transactions, both within and across 
regions, so it is ideal for our purposes. Indeed, Zhao and Choi (2015, p. 909) remark:

[In 2009, the Bank of Korea] divided the entire country into 16 regions and issued 
regional Leontief inverse tables and type I output multipliers for each of these 
regions. These data can be considered as benchmark tables since they are entirely 
based on surveys.

Since the KIRIOT contains negative and null flows, the MCE method is employed. The 
empirical analysis demonstrates that the enhanced version of the FLQ approach devel-
oped here outperforms the MCE method, when it is applied separately, and has a similar 
performance to the ‘optimal’ FLQ approach, where δ is selected by using the observed 
regional coefficient matrix. Of course, in reality, such a matrix would seldom be avail-
able to regional analysts; its use here is merely to generate optimal values of δ that can 
be used as a benchmark in our analysis. Our aim is to offer a new way of regionalizing a 
NIOT in situations where an analyst has access only to the total output of each regional 
sector. Where such data are unavailable, sectoral employment could be used as a proxy. 
This proposed hybrid method, hereafter referred to as the FLQ+ method, is an improve-
ment on the present state of the art, in which analysts need to select values of δ on the 
basis of a priori considerations, e.g. values found in earlier studies, or by taking regional 
characteristics into account, as is suggested by Jahn et al. (2020). In order to demonstrate 
the practical advantages of using the FLQ+ method, we compare its performance with 
the results from the MCE method, GRAS and the FLQ with a single assumed value of δ 
for every region.

2 � Review of pure LQ‑based methods
Here, we review the pure LQ methods most often employed to construct regional input–
output tables (RIOTs). Some alternative approaches are examined thereafter.

Consider a national economic system consisting of k sectors. Let Xn =
[
xnij

]
 and 

X
r =

[
xrij

]
 be matrices whose elements are the flows for intermediate use from sector i to 

sector j at the national and regional levels, respectively, while xn and xr are vectors of 

national and regional total sectoral output. Also, let An =

[
anij =

xnij
xnj

]
 and Ar =

[
arij =

xrij
xrj

]
 

be the matrices whose elements are the respective national and regional input 
coefficients.

Now suppose that only An and the vector of regional total sectoral output, xr, are 
known. The pure LQ methods are used to estimate the matrix of regional input coef-
ficients, Ar , by adjusting the national input coefficient as follows:
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where qij represents a scalar applied to the national coefficient.
With the simple LQ, arij is estimated via the following formula:

where

Here, xri  and xni  are the total output (production) of the ith regional and national sec-
tor, respectively, while xr and xn are the corresponding regional and national aggregates. 
SLQi measures the degree of specialization of region r in sector i relative to the nation. 
The regional input coefficients are derived according the following rule:

However, it has long been known that the SLQ tends to underestimate a region’s 
imports from other regions; this understatement occurs as the SLQ rules out any ‘cross-
hauling’ (Stevens et al. 1989). Cross-hauling takes place when a region simultaneously 
imports and exports a given commodity.

The cross-industry LQ was one of the first refinements of the SLQ, as it considers the 
relative size of both supplying sector i and purchasing sector j. The formula is as follows:

where the constraints are applied as in (4). Unlike the SLQ, however, the CILQ applies a 
cell-by-cell adjustment. This means that it does, in principle at least, deal with the prob-
lem of cross-hauling.1 What it does not do is to consider the relative size of a region, 
xr/xn, which cancels out in formula (5). By contrast, this ratio remains a component of 
the SLQ formula (3).

Round (1978) argues that any adjustment formula should incorporate three elements: 
(i) the relative size of the supplying sector i; (ii) the relative size of the purchasing sector j 
and (iii) the relative size of the region. The CILQ satisfies (i) and (ii) but not (iii), whereas 
the SLQ satisfies (i) and (iii) but not (ii). Round therefore suggests the following formula, 
which simultaneously satisfies all three requirements:

(1)ârij = anijqij ,

(2)ârij = SLQia
n
ij ,

(3)SLQi =
xri /x

r

xni /x
n
=

xri
xni

×
xn

xr
.

(4)ârij =

{
anijSLQi if SLQi < 1

anij if SLQi ≥ 1
.

(5)CILQij =
SLQi

SLQj

=
xri /x

n
i

xrj /x
n
j

,

1  Consider a region where SLQ1 = 0.8, SLQ2 = 1.2, SLQ3 = 0.6 and SLQ4 = 1.5, so that CILQ1,1 = 1, CILQ1,2 = 0.6̇ , 
CILQ1,3 = 1.3̇ , CILQ1,4 = 0.53̇ , etc. For the SLQ to be valid, this region would need to be an importer but not an exporter 
of commodities 1 and 3, and vice versa for commodities 2 and 4. The CILQ would encompass a wider set of possibili-
ties. For instance, industries 2 and 4 could import but not export commodity 1, yet this commodity could be exported 
but not imported by industry 3; consequently, cross-hauling of commodity 1 could occur. In contrast, only exporting of 
commodity 4 would be possible because CILQ4j ≥ 1 for all j.
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Nonetheless, Flegg et al. (1995) criticize the SLQ and RLQ on the grounds that they 
would both tend to underestimate the imports of relatively small regions owing to the 
way in which the ratio xr/xn is implicitly incorporated in each formula. To overcome this 
drawback, the FLQ was introduced.

The crucial hypothesis underpinning the FLQ is that a region’s propensity to import 
from other domestic regions is inversely and nonlinearly related to its relative size. By 
incorporating explicit adjustments for regional size, the FLQ should yield more precise 
estimates of regional input coefficients and hence multipliers.2 Along with other non-
survey methods, the FLQ aims to offer regional analysts a means by which they can build 
regional tables that reflect, as closely as possible, each region’s economic structure. It is 
defined as follows (cf. Flegg and Webber 1997):

where λ captures a region’s relative size. This scalar is defined as follows:

Here 0 ≤ δ < 1 is a parameter that controls the degree of convexity in Eq. (8). The larger 
the value of δ, the lower the value of λ, and the greater the allowance for extra regional 
imports. The FLQ formula is implemented just like other LQ methods, so:

Many case studies, including those mentioned earlier, have demonstrated that the FLQ 
can yield more accurate results than the SLQ and CILQ. This evidence is corroborated 
by the Monte Carlo study of Bonfiglio and Chelli (2008). Nonetheless, some conflicting 
evidence is presented by Lamonica and Chelli (2017), who find initially that the SLQ 
gives slightly better results than the FLQ.

Lamonica and Chelli’s unusual study employs data from the World Input–Output 
Database, whereas other studies have analysed data for individual countries or used 
Monte Carlo methods (Bonfiglio and Chelli 2008). Lamonica and Chelli examined data 
for the period 1995–2011, classified into 35 economic sectors. Their sample comprised 
27 European countries and 13 other major countries, with the rest of the world as a com-
posite ‘country’. However, when this sample was disaggregated by size of economy, an 
interesting divergence appeared. For the smaller economies, characterized by a high 

(6)RLQij =
SLQi

log2

(
1+ SLQj

) .

(7)FLQij =

{
CILQij� for i �= j

SLQij� for i = j
,

(8)� =

[
log2

(
1+

xr

xn

)]δ
.

(9)ârij =

{
anijFLQij if FLQij < 1

anij if FLQij ≥ 1
.

2  Based on an analysis of data for all Chinese provinces, Okamoto (2014) casts some doubt on this hypothesis. How-
ever, the sheer size and diversity of China make it difficult to apply non-survey methods successfully. Furthermore, the 
intermediate inputs in Chinese regional tables include imports, whereas the FLQ requires such imports to be excluded. 
Okamoto attempted to circumvent this problem by calculating regional self-sufficiency rates, based on the assumption 
that imports were determined by regional demand. While this assumption is reasonable, its use is bound to introduce 
some inaccuracy.
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percentage of near-zero input coefficients, the FLQ (with δ = 0.2) was found to be the 
best method, whereas the SLQ performed the best in the larger economies.

McCann and Dewhurst (1998) criticize the FLQ on the grounds that regional coeffi-
cients may surpass national coefficients where there is regional specialization, a possibil-
ity that is precluded by the FLQ formula. Flegg and Webber (2000) therefore proposed 
the following augmented FLQ:

where log2
(
1+ SLQj

)
 captures the regional specialization of sector j. If SLQj > 1 and 

FLQij ≥ 1, the national coefficients are scaled upwards. However, to avoid excessive 
upward adjustments, the restriction FLQij ≤ 1 is retained. Hence the regionalization pro-
ceeds as follows:

subject to FLQij ≤ 1.
While the AFLQ has the theoretical merit of incorporating a measure of regional spe-

cialization, it tends to produce similar outcomes to the FLQ (Bonfiglio and Chelli 2008; 
Flegg and Tohmo 2013; Flegg and Webber 2000; Flegg et  al. 2016; Kowalewksi 2015). 
Indeed, the analysis in Appendix demonstrates that the AFLQ does not yield more accu-
rate estimates of input coefficients than the FLQ, although it does perform better in 
terms of multipliers.3

Another variant of the FLQ is put forward by Kowalewksi (2015). Using output rather 
than employment to measure regional size, her industry-specific FLQ can be defined as:

The novel feature of this formula is that δ is allowed to vary across industries. This 
greater realism is undoubtedly an attractive feature, yet it does introduce much greater 
complexity into the modelling process (Flegg and Tohmo 2019). For that reason, we do 
not consider the SFLQ further.

To complete this review of pure LQ-based methods, we should note that the FLQ’s 
focus is on the output and employment generated within a given region. Consequently, 
as Flegg and Tohmo (2019) emphasize, it should only be applied to NIOTs where 
imports are excluded from the inter-industry transactions (type B tables). By contrast, 
where the focus is on the total supply of commodities, Kronenberg’s Cross-Hauling 
Adjusted Regionalization Method (CHARM) is an appropriate technique (Többen and 
Kronenberg 2015; Flegg and Tohmo 2018). Unlike the FLQ, however, CHARM requires 
type A tables, where the national transactions include imports.4

(10)AFLQij =

{
FLQij

[
log2

(
1+ SLQj

)]
for SLQj > 1

FLQij for SLQj ≤ 1
,

(11)ârij =

{
anijAFLQij if SLQj > 1

anijFLQij if SLQj ≤ 1
,

(12)SFLQij ≡ CILQij ×
[
log2(1 + xr/xn)

]δj
.

3  Lampiris et al. (2020) use Eurostat data for 2010 and 2014 to assess the performance of various pure LQ-based formu-
lae in a sample of 18 countries. For this data set, the AFLQ generally outperforms the FLQ, although the differences in 
outcomes are typically very small. δ in the range 0.1 to 0.3 gives the best results.
4  See Fujimoto (2019, p. 108–111) for a very clear explanation of how the Japanese type A tables can be converted into 
type B tables for purposes of estimation.
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3 � Review of some alternative approaches
Here, we review three recent studies that offer alternatives to the pure LQ-based meth-
ods discussed previously.5 The first is an innovative study by Fujimoto (2019), who exam-
ines official survey-based data for nine Japanese regions in 2005, the most recent year 
available in a series of official tables published quinquennially since 1960. This study’s 
focus is on cross-hauling and its primary aim is to determine which of four alternative 
assumptions is most appropriate. Each assumption is associated with a particular mod-
elling approach, as follows:

1.	 There is no cross-hauling (LQ approach);
2.	 Cross-hauling depends on regional size (FLQ approach);
3.	 Cross-hauling is proportional to its potential, as measured by output or demand 

(RCHARM);
4.	 Cross-hauling is proportional to its potential, as measured by the volume of trade 

(MCHARM).

To represent the ‘LQ approach’, Fujimoto rejects the SLQ in favour of the scaling 
formula

where X denotes output and D denotes demand. The rationale for using this alternative 
formula is to overcome aggregation bias (Fujimoto 2019, p. 113).

For the second approach, Fujimoto employs the formula:

where vr/vn is the ratio of total regional to total national value-added payments. How-
ever, the author does not explain why DSLQr

i  is used instead of CILQr
ij nor why value 

added is used as a proxy for regional size rather than superior measures such as out-
put or employment. It is, therefore, misleading to refer to this approach as the ‘FLQ 
approach’. The third approach is the refined version of CHARM developed by Többen 
and Kronenberg (2015), while the fourth is the modified version of CHARM proposed 
by Fujimoto.

Fujimoto (2019, p. 115) remarks that ‘[t]he FLQ approach has a problem in addition to 
the difficulty of [specifying] a value for δ: the cross-hauling caused in interregional trade 
depends not only on regional size.’ To demonstrate this, he derives the following equa-
tion for DSLQr

i  < 1:

(13)DSLQr
i =

Xr
i

Dr
i

/
Xn
i

Dn
i

,

(14)FLQr
i ≡ DSLQr

i ×
[
log2(1+ vr/vn)

]δ
,

(15)�Er
i = �Mr

i = DSLQr
i (1− �)

(
1−mn

i

)
Dr
i ,

5  Boero et al. (2018) use US county-level data on demand and supply, along with measures of transport costs, to estimate 
trade flows. They develop a way of estimating regional tables and trade flows simultaneously, thereby making it possible 
to obtain more precise estimates. Although this interesting new procedure seems to yield reasonably accurate results, 
the authors note (p. 236) that it is computationally burdensome, especially where the focus is on a single county. For that 
reason, along with the expectation that it would be more useful in the USA than elsewhere, we opted not to discuss it 
further.
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where E and M denote exports and imports, respectively, mn
i  is the national propensity 

to import from abroad and D is demand. Fujimoto adds that there is ‘no reason why 
cross-hauling [should] depend on DSLQr

i  and mn
i  [and] this dependence causes serious 

bias …’ (p. 116).
However, a straightforward interpretation can be given to the role of both DSLQr

i  and 
mn

i  in Eq. (15). Since it is assumed that mr
i  = mn

i  , the term (1 − mn
i  ) captures the propor-

tion of regional demand Dr
i  that is met by domestic suppliers, some of which are located 

in region r and the rest in other regions. As expected, there is a negative relationship 
between mn

i  and Δ Mr
i  , ceteris paribus.

To explain the positive relationship between DSLQr
i  and Δ Mr

i  , we note that Δ Mr
i  rep-

resents the difference between the extra imports generated by using FLQr
i  and those gen-

erated by applying DSLQr
i  . Although this difference is invariably positive, its magnitude 

increases as DSLQr
i  rises. This is due to the inclusion of λ in FLQr

i  . The upshot is that 
there is a positive relationship between DSLQr

i  and Δ Mr
i .

6

The above discussion suggests that Fujimoto has failed to identify a genuine problem 
with the FLQ approach. Nonetheless, after performing various statistical tests, using 
data for 106 sectors and nine regions, he rejects this approach on the grounds (i) that 
it yields biased estimates of regional imports and (ii) that the appropriate value of δ is 
unknown and depends on each case.

However, since Fujimoto does not use the correct FLQ formula, his findings do not 
constitute a valid test of the FLQ approach. It is also likely that superior estimates could 
have been obtained by using a different δ for each Japanese region. In particular, the 
islands of Hokkaido and Okinawa may well require different values of δ from the main-
land regions. The approach discussed later in this paper affords a way of generating such 
region-specific values.

As regards the other approaches, the scatter diagrams of estimated and survey-based 
import propensities (Fujimoto 2019, figure 2) reveal an almost identical pattern for the 
DSLQ and RCHARM methods, with evidence of substantial and widespread underes-
timation. By contrast, the diagram for MCHARM suggests a more random distribu-
tion, albeit with a greater variance and some heteroscedasticity. Even so, using the mean 
absolute error as the criterion, RCHARM invariably outperforms MCHARM (Fujimoto 
2019, table 2). The DSLQ is clearly in third place.7

In another recent study, Pereira-López et al. (2020) focus on the AFLQ rather than the 
FLQ. They argue persuasively that regional specialization can have different effects on 
the columns (cost structure) and rows (selling structure) of a regional coefficient matrix. 
For instance, a region that is specialized in the extraction of mining products may sell 
most of its output to processing sectors such as metal industries located in other regions. 

7  This analysis could be enhanced by weighting the import propensities by regional size. In addition, the root mean 
squared error could be used instead of the mean absolute error; this would capture some very large errors evident in the 
scatter diagram for MCHARM, and allow the overall error to be decomposed into bias, variance and covariance compo-
nents (Stevens et al. 1989).

6  To illustrate, let λ = 0.8 and mn
i  = 0.2. Also, let DSLQr

i = 0.6 initially (case A) but rise to 0.8 (case B).
Case A. Using FLQr

i  , M
r
i  = [1 − 0.6 × 0.8 × 0.8]Dr

i  = 0.616Dr
i  . By contrast, with DSLQr

i  , we get Mr
i  = [1 − 0.6 × 0.8]Dr

i  = 0.52Dr
i  . 

Hence Δ Mr
i  = (0.616 − 0.52)Dr

i  = 0.096Dr
i  , so the extra regional imports due to using FLQr

i  rather than DSLQr
i  are 9.6% of 

regional demand.
Case B. Using FLQr

i  , M
r
i  = [1 − 0.8 × 0.8 × 0.8]Dr

i  = 0.488Dr
i  . By contrast, with DSLQr

i  , we getM
r
i  = [1 − 0.8 × 0.8]Dr

i  = 0.36 Dr
i  . 

Hence Δ Mr
i  = (0.488 − 0.36)Dr

i  = 0.128 Dr
i  , so the extra regional imports are now 12.8% of regional demand.
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The AFLQ has the limitation that it presumes that specialization only affects purchas-
ing sectors (columns). The authors thus propose a bidimensional procedure, the 2DLQ, 
whereby a parameter α is used to adjust the rows, while another parameter β is applied 
to the columns. The regionalization employs the following relationships:

where (xrj /x
n
j ) measures the relative size of purchasing sector j. The hyperbolic tangent 

function (tanh) allows the estimated regional coefficients to be ‘slightly higher’ than the 
corresponding national coefficients if SLQi > 1 (Pereira-López et al. 2020, p. 480). They 
make the interesting observation that the CILQ, FLQ and AFLQ are all nested within the 
2DLQ: FLQij = 2DLQij if α = (ln λ SLQi/ln SLQi ) and β = 1, FLQij = AFLQij if SLQj ≤ 1 , 
and FLQij = CILQij if δ = 0.

Equation (16) has the same data requirements as the AFLQ but the authors claim that 
it makes more efficient use of such data and consequently yields more accurate results. 
To test this claim, they use the Eurostat IO database for 2005 to extract symmetric 
59 × 59 domestic coefficient matrices for:

1.	 Austria, Belgium, France, Germany, Italy and Spain (the ‘observed’ matrices);
2.	 the European Area 17 (EA17) (the parent table).

Two estimated coefficient matrices are derived for each country by applying the 2DLQ 
and AFLQ formulae to the parent table. These estimates are then compared by using the 
weighted absolute percentage error (WAPE) and two other statistics, U and U*, which 
consider the number of cells (n2) and the number of non-empty cells (n2 − z ), respec-
tively. WAPE is defined as follows:8

The results for coefficients show that using the 2DLQ method reduces the WAPE for 
all countries, most noticeably for Austria and Italy (Pereira-López et al. 2020, table 2). 
However, there is little change in the outcomes for Belgium, France and Germany. Spain 
is an intermediate case. On average, the WAPE is lowered by 4.5%. The U and U* meas-
ures yield similar results. The authors also assess the performance of the 2DLQ in terms 
of multipliers. Here the 2DLQ method gives better results than the AFLQ for all coun-
tries apart from Belgium. The average improvement is 3.55%.9

Of the two studies reviewed thus far, the 2DLQ method seems the most promising, 
when evaluated in terms of its theoretical foundations, empirical performance and ease 
of application. Even so, some caveats should be borne in mind. The first concerns the 

(16)ârij =

{
(SLQi)

αanij(x
r
j /x

n
j )

β if SLQi ≤ 1

[0.5 tan h(SLQi − 1)+ 1]αanij(x
r
j /x

n
j )

β if SLQi > 1
,

(17)WAPE = 100

n∑

i=1

n∑

j=1

∣∣∣ârij − arij

∣∣∣

/
n∑

i=1

n∑

j=1

arij .

8  The U and U* statistics are wrongly attributed to Zhao and Choi (2015), who do not use them. See Flegg and Tohmo 
(2013, p. 715) for a range of statistics where (n2 − z ) is used as a divisor.
9  In a subsequent study, again using Eurostat data but with a larger sample, Pereira-López et al. (2021) obtain encour-
aging results for the 2DLQ vis-à-vis the FLQ, AFLQ and CILQ. However, it should be noted that the 2DLQ formula 
involves two unknown parameters, which introduces greater complexity into the analysis compared with the other three 
formulae.
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need to determine suitable values of α and β. Here the authors provide some reassurance 
that the range of suitable values of these parameters is relatively small and that analysts 
would not go far wrong by choosing an α of 0.1 or 0.15 and a β in the range 0.8 to 1.2 
(Pereira-López et al. 2020, table 5).

The second caveat concerns the fact that countries rather than regions are used in the 
testing process, which poses some potential problems. While the authors are right to 
stress the quality and consistency of the Eurostat data they employ, it is not true to say 
that using countries instead of regions is the only possible way to proceed. For instance, 
suitable survey-based official regional and national data are available for Finland (Flegg 
and Tohmo 2013), South Korea (Jahn et al. 2020) and Japan (Fujimoto 2019). It would be 
instructive to re-examine the 2DLQ method by using one or more of such data sets to 
perform a sensitivity analysis.

The study by Lahr et  al. (2020) represents a radical departure from those discussed 
hitherto. The authors examine data for 2014 from the World Input–Output Database, 
pertaining to 23 manufacturing sectors in 28 EU countries. A novel feature of this study 
is its use of quasi-binomial econometric models, in which the regional purchase coef-
ficient (RPC) is regressed on various variables.10 Each country is treated as a ‘region’ and 
the aggregate of all 28 countries as the ‘nation’. Accordingly, RPCc

i  is the proportion of 
national requirements of industry i supplied by firms located within country c.

The following regressors were found to be statistically significant (p = 0.001, two-tailed 
test):

•	 SLQ
•	 ln (land area)
•	 ln (hotel room-nights/area)
•	 ln (weight/value)
•	 supply/demand ratio (SDR).

In addition, six industry-specific binary variables were included. R2 = 0.660. By con-
trast, a model with the SLQ alone gave R2 = 0.142. This worse fit is unsurprising, since 
the SLQ rules out the key factor of cross-hauling and cannot allow for the peculiarities 
of specific industries.

Lahr et al. also carry out a test of what is described as the FLQ method. This is done 
by regressing RPCc

i  on SLQc
i  and the ‘employment share’. R2 = 0.195. However, this test 

is inconsistent in several respects with the FLQ approach. Most importantly, the FLQ 
has a cross-industry foundation, which cannot be captured in a rows-only estimation. 
Consequently, no account is taken of the likelihood that purchasing industries would dif-
fer in their use of particular inputs. This aspect is captured in CILQc

ij and hence in FLQc
ij 

but not in SLQc
i  . We should note too that the FLQ formula is multiplicative, whereas the 

regression model is additive. It is also unclear how the regressor ‘employment share’ was 
measured.11 Finally, whereas output was used to calculate SLQc

i  , employment was used 

11  It is unclear whether this regressor is simply each country’s share of overall EU employment, ec/eeu, or, more appro-
priately, the nonlinear scalar λ used in the FLQ formula. However, we note that λ is incorrectly defined as δ log2(1 + ec/
eeu) rather than as [ log2(1 + ec/eeu)]δ (cf. Lahr et al. 2020, p. 1590).

10  These variables are similar to those used in the pioneering studies of Stevens et  al. (1983) and Treyz and Stevens 
(1985).
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to measure regional size. That would affect the results to the extent that productivity dif-
fered across EU countries.

The authors compare the performance of their econometric approach with that of the 
SLQ, SDR and CHARM. The procedures are judged in terms of their ability to estimate 
RPCs and to replicate each country’s coefficient matrix, Leontief inverse and output 
multipliers. As expected, the SLQ and SDR yield similar results and, on average, both 
methods greatly overstate input coefficients (Lahr et al. 2020, table 5). By comparison, 
the regression-based approach necessarily yields a mean error of zero. The authors find 
that RCHARM performs ‘somewhat better’ than the SLQ and SDR, yet it still systemati-
cally overstates RPCs, with a mean error of 0.240 (Lahr et al. 2020, p. 1594). By contrast, 
MCHARM yields negative RPCs for 337 of 1568 national industries. Therefore, both 
variants of CHARM have serious demerits as a means of estimating RPCs.

A crucial consideration when selecting a non-survey method is its ability to yield unbi-
ased estimates of input coefficients. A regression-based approach can be relied upon to 
perform very well in that respect but it is also possible to obtain unbiased estimates via 
the FLQ approach, so long as an appropriate value of the parameter δ is used.

A drawback of the RPC approach vis-à-vis the FLQ is its more demanding data 
requirements.12 In the model discussed above, for instance, it would be challenging to 
find data for some of the regressors, whereas the FLQ only requires figures for output (or 
employment) in each regional and national industry.

On the other hand, the FLQ has often been criticized on the basis that the results 
obtained from one country or region are not necessarily transferable elsewhere, since 
the optimal δ would differ. This problem is addressed in the present paper via a proce-
dure whereby country-specific and region-specific values of δ can be derived. Lahr et al. 
(2020, p. 1591) note that econometric approaches face a similar challenge in terms of 
transferability of results.

While the model constructed by Lahr et al. sheds some helpful light on the determi-
nants of RPCs in EU countries, it would be interesting to see how well it would perform 
when constructing a RIOT for, say, Catalonia from a Spanish NIOT.

4 � The CE approach to regionalizing NIOTs
Here, we explain our MCE approach to regionalizing NIOTs. Various mathematical 
programming methods based on a constrained optimization framework exist. These 
typically minimize a penalty function, which measures the deviation of the balanced 
matrix from the initial matrix, subject to a set of balancing conditions. We limit our 
attention to the CE method, which is one of the pioneering methods. It is widely used 
and Lamonica et  al. (2020) have shown that it performs very well when applied to 
countries with small economies. Moreover, in contrast to other constrained opti-
mization methods, it is stable in the sense that the MAD index, i.e. the sum of the 
absolute differences between the observed and estimated input coefficients, does not 
change abruptly from one economy to the next. Furthermore, unlike the standard 
RAS method, which can only handle non-negative matrices, the CE method can easily 

12  Szabó (2015, p. 50) remarks that ‘[d]espite its theoretical advantages, the [RPC] approach did not gain popularity 
[owing] to its high data requirements, which usually cannot be satisfied at the regional level.’
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be adapted to deal with matrices with negative entries. Although we could have used 
GRAS to deal with this issue, we wished to avoid the problem noted in the Introduc-
tion regarding this technique.

Referring to Lamonica et al. (2020) for details and treating the primary input vn and 
the final demand fn as ‘additional’ intermediate input and output, the method starts 
with the following augmented input coefficients matrix An:

It turns out that:

and

where u is a unitary vector and u′ is its transpose.
The task at hand is to generate a new matrix Ar from the existing An, with the same 

dimension as before, but respecting new row and column totals xr. More specifically, 
we seek a matrix Ar that satisfies the following consistency and additivity conditions:

Formally, the problem involves minimizing the following function for anij > 0:

subject to

and

The solution is obtained by solving the following Lagrangian function for problem 
(23):

(18)A
n =





an1,1 =
xn1,1

�
xn1

· · · an1,k = xn1,k
�
xnk

an1,k+1 =
f n1
�
xnk+1

...
...

...

ank ,1 =
xnk ,1

�
xn1

· · · ank ,k = xnk ,k
�
xnk

ank ,k+1 =
f nk
�
xnk+1

ank+1,1 =
vn1
�
xn1

· · · ank+1,k = vnk
�
xnk

ank+1,k+1 = 0




.

(19)A
n
x
n = x

n,

(20)u
′
A
n
= u,

(21)A
r
x
r = x

r ,

(22)u
′
A
r
= u.

(23)Min
arij

H =

k+1∑

i=1

k+1∑

j=1

arij ln
arij

anij
;

(24)
k+1∑

j=1

arijx
r
j = xri ,

(25)
k+1∑

i=1

arij = 1.
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The first-order optimal conditions are:

Solving this system of equations yields:

We should note that the estimates of arij depend on the values of the Lagrangian 
multipliers, which must be determined by solving the nonlinear system (31) and (32) 
for the unknowns λ1, λ2, …, λk+1. As no closed-form solution exists, this system is 
solved by using numerical algorithms.

However, any standard solver will fail to find a solution to Eqs. (31) and (32) when 
anij and xri  , i, j = 1, 2, …, k + 1, are values from real IOTs. In fact, the solution to these 
equations requires some attention for two main reasons: the evaluation of the expo-
nential functions for large values of their arguments and the solution to a high-
dimension system of nonlinear equations. These difficulties are addressed by adopting 
the solution proposed by Lamonica et  al. (2020). Since the KIRIOT shows null and 
negative entries, we adapt the CE method to account for negative entries in the NIOT.

To this end, we revise problem (23) by assuming that the sign of the national matrix 
is preserved in the regional matrix (i.e. anij < 0 implies arij < 0, and anij > 0 implies 
arij > 0 ), while a null entry in the national matrix implies a null entry in the regional 
matrix (i.e. anij = 0 implies arij = 0 ). In the following, we refer to this assumption as 
the ‘sign-preserving assumption’. We therefore formulate the following optimization 
problem:

(26)L =

k+1�

i=1

k+1�

j=1

arij ln
arij

anij
+

k+1�

i=1

�i



xri −
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(27)
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(
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r
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= 1, j = 1, 2, . . . , k + 1.
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subject to

and

The solution is obtained by solving the following Lagrangian function for problem (33):

We consider the set of pairs (i, j) ∈ Γ = {1, 2, …, k + 1} × {1, 2, …, k + 1} and its parti-
tion Ŵ=Ŵ+ ∪ Ŵ− , where the sets Ŵ+ and Ŵ− are defined as: Ŵ+ = {(i, j)|arij > 0} and 
Ŵ− = {(i, j)|arij < 0} . The Lagrangian can be rewritten as

The first-order optimal conditions are:

Solving this system of equations yields:
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We solve Eqs.  (44) and (45) with the Matlab solver fsolve, by using the scaling pro-
cedure as in Lamonica et  al. (2020) to overcome the numerical challenges of these 
equations.

5 � Estimation of δ and the FLQ+ approach
We now explain the method employed to estimate δ. We consider the more detailed ver-
sion of the South Korean interregional input–output table (KIRIOT) for the year 2005, 
which was constructed by the Bank of Korea for 16 regions and 78 sectors.

Table 1 illustrates a simplified form of the KIRIOT, where:

•	 Zr;r (r = 1, 2, …, 16) is a 78 × 78 matrix whose elements 
(
z
r;r
ij

)
 are the flows for inter-

mediate use from sector i to sector j of region r;
•	 Zr;k (r, k = 1, 2, …, 16 and r ≠ k) is a 78 × 78 matrix whose elements 

(
z
r;k
ij

)
 are the 

exports for intermediate use from sector i of region r to sector j of region k;
•	 Cr;r (r = 1, 2, …, 16) is a 78 × 5 matrix of the domestic final demand in region r;
•	 Er;k (r, k = 1, 2, …, 16 and r ≠ k) is a 78 × 5 matrix of the exports of region r for final 

demand in region k;
•	 xr (r = 1, 2, …, 16) is a 78 × 1 vector whose elements are the sectoral output of region 

r;
•	 (vr)′ (r = 1, 2, …, 16) is a 1 × 78 vector whose elements are the sectoral value added 

plus the primary sectoral input of region r, inclusive of imports from abroad.

Using the South Korean NIOT, the national augmented matrix of input coefficients, 
A
n = [anij] , was determined as follows. First, let:
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,
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Table 1  Simplified pattern of the KIRIOT

Z1;1 Z1;2 … Z1;16 C1;1 … E1;16 x1

Z2;1 Z2;2 … Z2;16 E2;1 … E2;16 x2

… … … … … … … …

Z16;1 Z16;2 … Z16;16 E16;1 … C16;16 x16

(v1)′ (v2)′ … (v16)′

(x1)′ (x2)′ … (x16)′
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•	 X
n =

16∑
r=1

16∑
r=1

Z
r;r;

•	 f
n =

(
16∑
r=1

C
r;r +

16∑
r=1

16∑

k=1

E
r;k

)
;

•	 x
n =

16∑
r=1

x
r;

•	 (vn)′ =
16∑
r=1

(vr)′.

Next, consider the following national table, IOTn, in block-matrix notation:

Hence, we can determine the following national augmented matrix of input 
coefficients:

where D(xn) is the diagonal matrix whose elements are dii(xn) = xi , i = 1, 2, …, k + 1.
We are now able to define the three steps of our hybrid method:

Step 1: From An and the regional sectoral total output xr, estimate the regional input 
coefficient matrices Âr (r = 1, 2, …, 16), using the MCE method described in the pre-
vious section.
Step 2: Using Âr , estimate the parameter δ in the FLQ formula as follows:
	 Let αij = CILQij if i ≠ j and αij = SLQi if i = j. Also, define β ≡ log2

(
1+ xr

xn

)
 . 

Hence, using Eqs. (7) and (8), we get:

	 Thus, for any pair (ârij , a
n
ij ) that satisfies the sign-preserving assumption, we set:

where εij is a random number with zero mean. Taking expectations, we can obtain an 
estimate of the optimal δ for each region simply by dividing the mean of the regres-
sand by log (β) , which is a given value for each region. See Table 2.
Step 3. Using An, estimate the entries of the regional matrix Ar, the arij , using the FLQ 
method with the estimated optimal parameter δ̂ . We refer to this hybrid approach as 
the FLQ+ method. As before, the estimated input coefficients are denoted by ârij .

6 � Analysis of input coefficients
To validate the proposed FLQ+ method, the estimated matrices of regional input coeffi-

cients are compared with the true ones, Ar =

[
arij =

z
r;r
ij

xj

]
 . Since the RIOT being consid-

ered contains negative and null flows, we assess its performance by using the mean 

(46)IOT
n =

[
X
n

f
n

(vn)′ 0

]
.

(47)A
n = IOT

n
D(xn)−1,

(48)ârij = anijαijβ
δ .

(49)log

(
ârij

anijαij

)
= δ(β)+ εij,
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absolute difference index (MAD), as suggested by Wiebe and Lenzen (2016). It is defined 
as:

The FLQ, as implemented here, is the optimal FLQ in the sense that δ is chosen 
on the basis of minimizing the MAD. Specifically, for each of the sixteen regions, we 
compute the MAD of the FLQ for 99 different values of δ in the interval [0, 1], in 
increments of 0.01. The optimal δ is the value yielding minimum MAD. Determined 
in this way, the regional δ values vary from 0.22 to 0.48, with a mean of 0.35 (see 
Table 3). We refer to these values as the true or optimal values of δ. The characteris-
tics of these regions are illustrated in Table 3 and their locations are shown in Fig. 1. 
For more details, see Flegg and Tohmo (2019) and Jahn et al. (2020).

Before examining the results, it may be helpful to explore why the optimal values 
of δ in Table 3 vary noticeably across regions. The role of δ is to adjust for any dif-
ferences in regional propensities to import from other regions or from abroad that 
cannot be explained solely by differences in regional size. Now consider the following 
regression model fitted using data from Table 3:

where R is the share of gross output imported from other regions; F is the share imported 
from abroad; V is the share of value added in gross output; e is a residual. All regressors 
are statistically significant at the 1% level (one-tailed tests) and the model easily passes 
all χ2 diagnostic tests. R2 = 0.677.

(50)MAD =

78∑

i=1

78∑

j=1

∣∣aij − âij
∣∣

78× 78
.

(51)ln δ = −3.154 + 0.582 ln R+ 1.040 ln F + 2.515 lnV + e,

Table 2  Computation of δ from model (49). Source: authors’ calculations

MSE mean square error, V coefficient of variation

Region Mean of regressand log (β) Estimated δ MSE

Gyeonggi − 0.6482 − 1.2003 0.54 0.388

Seoul − 0.4804 − 1.2983 0.37 0.166

N Gyeongsang − 0.5264 − 2.0246 0.26 0.095

S Gyeongsang − 0.6640 − 2.1419 0.31 0.091

Ulsan − 0.9298 − 2.1623 0.43 0.325

South Jeolla − 0.5295 − 2.3021 0.23 0.072

S Chungcheong − 0.8869 − 2.2742 0.39 0.269

Incheon − 1.1510 − 2.3980 0.48 0.187

Busan − 0.7473 − 2.4909 0.30 0.083

N Chungcheong − 0.9054 − 3.0180 0.30 0.095

Daegu − 0.7892 − 3.0353 0.26 0.064

North Jeolla − 0.8951 − 3.0864 0.29 0.119

Gangwon − 0.7976 − 3.3234 0.24 0.107

Gwangju − 1.0590 − 3.3095 0.32 0.103

Daejeon − 1.1905  − 3.4014 0.35 0.094

Jeju − 0.8049 − 4.4716 0.18 0.018

Mean − 0.8128 − 2.6211 0.31 0.140

V 0.32 0.32 0.30 0.100
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Equation (51) shows that regions with an above-average share of imports from other 
regions or from abroad require a bigger δ to compensate; and likewise if the share of 
value added in gross output is above average. Just over two thirds of the interregional 
variation in ln δ can be explained by these three factors, while almost one third must 
be ascribed to region-specific factors, differences in regional industrial structure, 
measurement errors, etc.

Table  4 displays the values of MAD (100×) for the MCE, FLQ with optimal δ, and 
FLQ+ methods. A key finding is that the MADs for the FLQ (both versions) are typically 
less than half of those for the MCE method. This result demonstrates the potential gains 
from employing the FLQ as a regionalization technique rather than applying the MCE 
method alone.

Another key finding is that the estimates of δ from the proposed FLQ+ method are 
mostly fairly close to the optimal values; the differences are invariably only in the second 
decimal place and range from − 0.06 to 0.09. It is noticeable that the FLQ+ overesti-
mates δ in the two biggest regions, Gyeonggi and Seoul. In the majority of regions, how-
ever, the estimates from this method are a little lower than the optimal values and, on 

Table 3  Characteristics of South Korean regions in 2005. Source: adapted from Flegg and Tohmo 
(2019, table 9)

Shares are expressed as a proportion of gross output. Seoul is classified as a ‘special city’; Busan, Daegu, Daejeon, Gwangju, 
Incheon and Ulsan as ‘metropolitan cities’; Jeju as a ‘special self-governing province’; and the rest as ‘provinces’. The last 
column displays the optimal values of δ from Table 4

Region Share of 
national 
output

Share of 
national 
employment

Share of 
intraregional 
inputs

Share of 
inputs 
from other 
regions

Share of 
inputs 
from 
abroad

Share 
of value 
added

Optimal 
value 
of δ

Gyeonggi 0.201 0.202 0.226 0.245 0.120 0.410 0.48

Seoul 0.182 0.254 0.237 0.173 0.060 0.529 0.32

North 
Gyeong-
sang

0.084 0.054 0.247 0.254 0.163 0.336 0.31

South 
Gyeong-
sang

0.073 0.067 0.223 0.284 0.125 0.369 0.32

Ulsan 0.071 0.025 0.202 0.240 0.283 0.275 0.41

South Jeolla 0.065 0.033 0.288 0.163 0.219 0.331 0.28

South 
Chun-
gcheong

0.063 0.039 0.201 0.274 0.177 0.348 0.43

Incheon 0.055 0.048 0.175 0.288 0.171 0.366 0.45

Busan 0.051 0.074 0.200 0.266 0.077 0.457 0.32

North 
Chun-
gcheong

0.029 0.030 0.181 0.307 0.104 0.408 0.30

Daegu 0.029 0.047 0.189 0.279 0.061 0.472 0.29

North Jeolla 0.027 0.032 0.192 0.304 0.074 0.430 0.34

Gangwon 0.022 0.029 0.198 0.230 0.044 0.528 0.22

Gwangju 0.022 0.028 0.165 0.307 0.099 0.430 0.37

Daejeon 0.019 0.027 0.133 0.281 0.065 0.520 0.44

Jeju 0.007 0.011 0.172 0.253 0.039 0.536 0.26

Mean 0.0625 0.0625 0.202 0.259 0.118 0.422 0.35

V 0.89 1.08 0.18 0.16 0.58 0.20 0.22
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average, δ is understated by 0.02. However, when the results are weighted by the regional 
share of national output, this outcome changes to a small overstatement on average. 
The biggest errors occur in the two smallest regions, Daejeon and Jeju. Table 3 reveals 
that the metropolitan city of Daejeon has an unusually low intraregional share of inputs, 
which could explain why the estimated δ is noticeably below the optimal value, with a 
discrepancy of 0.09. As for Jeju, the fact that it is a remote island can probably explain 
much of the understatement of δ by the FLQ+ method.

Table 5 provides some descriptive statistics of regional input coefficients estimated by 
the optimal FLQ and FLQ+ methods. Clearly, the two distributions are very close to 
each other in terms of central tendency and dispersion. Furthermore, they have an iden-
tical shape, as measured by the coefficients of kurtosis and skewness (not shown). The 
uniform behaviour of the two methods lends credence to the FLQ+ method proposed 
in this work, which is applicable when regional sectoral outputs are the only regional 
data available. By contrast, the optimal FLQ method requires knowledge of the entire 
regional matrix, so that an optimal value of δ can be computed for each region.

Fig. 1  South Korean regions. Source: South​ Korea​ regio​ns map merged.​png author: Peter Fitzgerald, NordN​
ordWe​st; licensed under the Creative Commons Attribution-Share Alike 3.​0 Unpor​ted; available in Wikimedia 
Commons

https://commons.wikimedia.org/wiki/File:South_Korea_regions_map_merged.png
https://commons.wikimedia.org/wiki/User:NordNordWest
https://commons.wikimedia.org/wiki/User:NordNordWest
https://creativecommons.org/licenses/by-sa/3.0/deed.en
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Table 6 displays descriptive statistics for the absolute differences between the observed 
input coefficients and those estimated via the FLQ+ and GRAS+ methods. FLQ+ 
combines the MCE method, our preferred matrix-balancing approach, with the FLQ, 
whereas GRAS+ combines GRAS with the FLQ. The two methods produce similar 
results on the whole, although it is interesting that GRAS+ gives larger mean absolute 
differences than FLQ+ for the biggest eight regions, yet almost identical values for five 
of the six smallest regions. A possible explanation of this outcome is that the FLQ+ is 
apt to perform better when the percentage of zero flows is relatively low, as is the case 
for the larger regions. The two methods concur that Busan and Gangwon have, respec-
tively, the smallest and biggest maximum absolute differences.13 Taking a holistic view, 
the MAD is increased by 7.3% on average by using GRAS+ rather than FLQ+ and by 
12.3% when the results are weighted by regional size. This finding, along with the the-
oretical criticisms noted earlier regarding the objective function employed in GRAS, 
lends support to our use of a modified CE method as the foundation of our proposed 
FLQ+ approach.

Table 4  MAD (×100) and δ values by region for the MCE, optimal FLQ and FLQ+ methods. Source: 
here and in the subsequent tables, all calculations were performed by the authors

Region MCE Optimal FLQ FLQ+ Difference in δ

MAD MAD Optimal δ MAD Estimated δ FLQ− FLQ+

Gyeonggi 0.249 0.120 0.48 0.121 0.54 − 0.06

Seoul 0.330 0.147 0.32 0.148 0.37 − 0.05

N Gyeongsang 0.324 0.157 0.31 0.158 0.26 0.05

S Gyeongsang 0.254 0.143 0.32 0.143 0.31 0.01

Ulsan 0.354 0.162 0.41 0.162 0.43 − 0.02

South Jeolla 0.347 0.169 0.28 0.170 0.23 0.05

S Chungcheong 0.289 0.146 0.43 0.147 0.39 0.04

Incheon 0.305 0.132 0.45 0.132 0.48 − 0.03

Busan 0.295 0.148 0.32 0.148 0.30 0.02

N Chungcheong 0.270 0.148 0.30 0.148 0.30 0.00

Daegu 0.295 0.139 0.29 0.139 0.26 0.03

North Jeolla 0.305 0.136 0.34 0.137 0.29 0.05

Gangwon 0.393 0.203 0.22 0.203 0.24 − 0.02

Gwangju 0.339 0.134 0.37 0.134 0.32 0.05

Daejeon 0.338 0.134 0.44 0.138 0.35 0.09

Jeju 0.372 0.152 0.26 0.160 0.18 0.08

Mean 0.316 0.148 0.35 0.149 0.33 0.02

Weighted mean 0.303 0.144 0.37 0.145 0.38 − 0.01

V 0.13 0.13 0.22 0.13 0.29 2.47

13  We can confirm that the unusual figure of 124.6 for Gangwon in the second column of Table  6 is correct. It 
exceeds 100 because the observed intermediate flow from sector 6 to sector 22 is 14882.38, while its total out-
put is 11664, which is less than 14,882.38 because the taxes on net production are 8820.29. Hence the input coef-
ficient = 14,882.38/11664 = 1.276. The corresponding coefficient estimated via the FLQ+ method is 0.030, so the 
maximum difference is 100 (1.276 − 0.030) = 124.6. Sector 6 is Mining of coal, crude petroleum and natural gas, while 
sector 22 is Coke and hard coal.
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Table 5  Descriptive indices (×100) for the estimated input coefficients from the optimal FLQ and 
FLQ+ methods

Q3: third quartile (Q1 = 0 always), SD: standard deviation

Optimal FLQ FLQ+

Mean Median Q3 SD Mean Median Q3 SD

Gyeonggi 0.2517 0.0097 0.1066 1.1559 0.2346 0.0091 0.0994 1.0774

Seoul 0.2400 0.0052 0.0918 0.9174 0.2244 0.0049 0.0858 0.8578

N Gyeongsang 0.2301 0.0089 0.0872 1.1129 0.2537 0.0098 0.0961 1.2274

S Gyeongsang 0.2225 0.0081 0.0855 1.0509 0.2289 0.0083 0.0880 1.0808

Ulsan 0.1826 0.0043 0.0713 0.8149 0.1768 0.0042 0.0690 0.7890

S Jeolla 0.2293 0.0042 0.0769 1.1567 0.2590 0.0047 0.0868 1.3066

S Chungcheong 0.1800 0.0066 0.0687 0.8771 0.1967 0.0072 0.0750 0.9586

Incheon 0.1674 0.0065 0.0742 0.6868 0.1533 0.0059 0.0680 0.6289

Busan 0.1985 0.0063 0.0856 0.7915 0.2094 0.0066 0.0903 0.8349

N Chungcheong 0.1709 0.0067 0.0659 0.8113 0.1683 0.0066 0.0649 0.7995

Daegu 0.1782 0.0056 0.0695 0.7944 0.1970 0.0061 0.0768 0.8784

N Jeolla 0.1504 0.0045 0.0557 0.7488 0.1768 0.0053 0.0655 0.8804

Gangwon 0.1918 0.0052 0.0707 0.9931 0.1774 0.0048 0.0653 0.9182

Gwangju 0.1208 0.0025 0.0412 0.5875 0.1501 0.0031 0.0512 0.7301

Daejeon 0.0939 0.0026 0.0349 0.4469 0.1298 0.0036 0.0482 0.6174

Jeju 0.1253 0.0007 0.0381 0.6687 0.1798 0.0009 0.0546 0.9595

Mean 0.1833 0.0055 0.0702 0.8509 0.1948 0.0057 0.0741 0.9091

Weighted mean 0.2121 0.0066 0.0834 0.9507 0.2132 0.0066 0.0834 0.9603

V 0.247 0.435 0.284 0.242 0.193 0.401 0.214 0.211

Table 6  Statistics of the absolute differences (×100) between the observed and estimated input 
coefficients from the FLQ+ and GRAS+ methods
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∣

 FLQ+
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∣
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ij
− âr

ij
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∣

∣

 GRAS+

Mean Max Median SD Mean Max Median SD

Gyeonggi 0.1207 40.9 0.0033 0.8375 0.1379 51.3 0.0029 0.9830

Seoul 0.1478 27.9 0.0030 0.7102 0.1748 28.2 0.0020 0.8378

N Gyeongsang 0.1584 40.5 0.0043 0.8583 0.1876 68.7 0.0034 1.3135

S Gyeongsang 0.1426 34.7 0.0038 0.7409 0.1610 51.9 0.0029 1.0010

Ulsan 0.1620 48.3 0.0028 1.0850 0.1950 61.7 0.0017 1.3991

South Jeolla 0.1702 34.7 0.0030 0.9026 0.2044 67.6 0.0019 1.5013

S Chungcheong 0.1472 47.0 0.0033 0.9046 0.1556 60.2 0.0024 1.1178

Incheon 0.1323 25.5 0.0026 0.7887 0.1386 27.4 0.0022 0.8462

Busan 0.1484 18.7 0.0033 0.6654 0.1496 23.1 0.0028 0.7192

N Chungcheong 0.1476 49.6 0.0032 1.0025 0.1529 58.5 0.0028 1.1151

Daegu 0.1393 42.1 0.0032 0.7675 0.1398 49.3 0.0027 0.8530

North Jeolla 0.1373 52.0 0.0027 0.9149 0.1377 62.1 0.0023 1.0641

Gangwon 0.2027 124.6 0.0038 1.9126 0.2044 125.0 0.0035 1.9534

Gwangju 0.1357 48.6 0.0023 0.8746 0.1340 52.3 0.0021 0.9069

Daejeon 0.1382 40.8 0.0022 0.8513 0.1390 39.8 0.0023 0.8444

Jeju 0.1599 51.1 0.0010 0.9909 0.1522 51.1 0.0008 1.0117

Mean 0.1494 45.4 0.0030 0.9255 0.1603 54.9 0.0024 1.0917

Weighted mean 0.1448 39.2 0.0032 0.8542 0.1626 50.1 0.0025 1.0559

V 0.127 0.51 0.267 0.309 0.156 0.43 0.279 0.290
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6.1 � Analysis of the important input coefficients

Here we analyse the ability of the FLQ+ and GRAS+ methods to reproduce what Hew-
ings and Romanos (1981) call ‘inverse important coefficients’, whereby an input coeffi-
cient aij is said to be inverse important if an error of α% in that coefficient produces a 
corresponding error of β% in one or more entries of the Leontief inverse.

In this analysis, α and β were set equal to 30% and 20%, respectively, as suggested 
by Hewings and Romanos. This means that an input coefficient is held to be inverse 
important if a perturbation of 30% generates a change of at least 20% in one or more 
entries in the Leontief inverse. More formally, we assume that only one coefficient, 
aij, of the matrix A is perturbed. Let apij denote this perturbed value of aij, i.e. apij = aij 
(1 + α/100). This shock generates a perturbed matrix Lp = [Lpks ] of the Leontief matrix 
L = (I − A)−1 = [Lks ], k, s = 1, 2, …, 78, whose elements are determined as follows:

where the indices i and j relate to the perturbed coefficient in A, while k and s pertain to 
the Leontief inverse L and the corresponding perturbed matrix Lp.

The relative error of each coefficient of the Leontief matrix reads as

We then say that the coefficient aij is inverse important if there exists at least one pair 
(k, s) such that the following inequality holds:

Table 7 reveals a sharper distinction between the two methods, with the superiority of 
FLQ+ over GRAS+ now much more apparent, especially when the results are weighted 
by regional size. The MAD is now raised by 11.5% on average by using GRAS+ rather 
than FLQ+ and by 18.2% when regional weights are applied. It is clear that GRAS+ 
yields relatively poor estimates of the most important input coefficients. It is also appar-
ent that the absolute differences increase when the focus is placed on the most important 
coefficients. This outcome is to be expected, given the increased size of the coefficients 
being estimated. Of the 782 = 6084 coefficients, those deemed to be important ranged 
from 1651 (27.1%) for Jeju to 2147 (35.3%) for Daejeon, with a median of 1869 (30.7%).

6.2 � Comparison of alternative methods

The analysis thus far has demonstrated the superiority of the proposed FLQ+ approach 
over the MCE and GRAS+ methods. However, what has not yet been explored is 
whether the FLQ can be expected to yield more accurate estimates of input coefficients 
than more straightforward methods such as the SLQ. For the purposes of this compari-
son, it is assumed that the analyst does not wish to employ matrix-balancing methods. It 
is further assumed that the choice is between the SLQ and the FLQ with a fixed value of 
δ = 0.3 for all regions under consideration.

(52)L
p
ks = Lks + [LkiLsjaij(/100)]/[1− Ljiaij(/100)],

(53)
LPks − Lks

Lks
=

LkiLsjaij(/100)

Lks[1Ljiaij(/100)]
.

(54)
∣∣∣∣

LkiLsjaij(/100)

Lks[1− Ljiaij(/100)]

∣∣∣∣ ≥ β/100.
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As noted in Sect. 2, the SLQ has the theoretical drawback that it precludes cross-haul-
ing and hence tends to understate a region’s imports from other regions. It is unsurpris-
ing, therefore, to observe in Table 8 that the SLQ generates less accurate results than the 
FLQ for all regions apart from Seoul and (marginally) South Jeolla. On average, the MAD 
is raised by 25.8% by using the SLQ rather than the FLQ and by 20.7% if regional weights 
are applied. In addition, the MAD for the SLQ exhibits greater interregional variation. The 
superior performance of the SLQ in Seoul is probably due to the relatively high variation in 
the size of the input coefficients in this region. In such situations, the SLQ is apt to produce 
more accurate estimates (Lamonica and Chelli 2017).

Given the uncertainty regarding the appropriate value of δ, it is reassuring that Table 9 
shows that the outcomes from the FLQ are little affected by variation in the value of this 
parameter in the range 0.2 to 0.4. The SLQ still outperforms the FLQ in Seoul and South 
Jeolla but yields inferior results in the other fourteen regions.

7 � Analysis of multipliers
One of the most useful features of RIOTs is the fact that they yield estimates of sectoral out-
put multipliers, so Tables 10 and 11 examine the relative performance in this regard of eight 
alternative procedures. The following formulae are used in this evaluation:

(55)MAPE =
100

78

78∑

j=1

∣∣∣L̂j − Lj

∣∣∣
Lj

;

Table 7  Statistics of the absolute differences (×100) between the observed and estimated ‘inverse 
important’ input coefficients from the FLQ+ and GRAS+ methods
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− âr

ij

∣

∣

∣

 GRAS+

Mean Max Median SD Mean Max Median SD

Gyeonggi 0.3008 40.9 0.0743 1.2803 0.3554 51.3 0.0825 1.5706

Seoul 0.3374 18.4 0.0724 0.8849 0.4479 28.2 0.0654 1.2231

N Gyeongsang 0.4178 40.5 0.0908 1.3990 0.5306 68.7 0.1110 2.2601

S Gyeongsang 0.3771 34.7 0.0849 1.1992 0.4422 51.9 0.0851 1.6980

Ulsan 0.4026 48.3 0.0713 1.7161 0.5020 61.7 0.0801 2.2664

South Jeolla 0.4398 34.7 0.0923 1.4292 0.5537 67.6 0.1006 2.5508

S Chungcheong 0.3500 47.0 0.0805 1.4193 0.3791 60.2 0.0734 1.8007

Incheon 0.3236 25.5 0.0577 1.2792 0.3482 27.4 0.0618 1.3841

Busan 0.3747 18.7 0.0880 1.0106 0.3893 23.1 0.0926 1.1152

N Chungcheong 0.3476 49.6 0.0634 1.5083 0.3670 58.5 0.0625 1.7175

Daegu 0.3559 42.1 0.0710 1.2597 0.3655 49.3 0.0725 1.4249

North Jeolla 0.3293 52.0 0.0693 1.4640 0.3361 62.1 0.0649 1.7321

Gangwon 0.5654 124.6 0.1004 3.4241 0.5765 125.0 0.0993 3.4986

Gwangju 0.3344 48.6 0.0542 1.4388 0.3349 52.3 0.0529 1.5045

Daejeon 0.3101 40.8 0.0552 1.2330 0.3108 39.8 0.0558 1.2182

Jeju 0.3927 51.1 0.0747 1.6197 0.4077 51.1 0.0689 1.7564

Mean 0.3725 44.8 0.0750 1.4728 0.4154 54.9 0.0768 1.7951

Weighted mean 0.3583 37.5 0.0765 1.3111 0.4235 50.1 0.0796 1.7087

V 0.173 0.53 0.183 0.381 0.203 0.43 0.223 0.337
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Table 8  Statistics of the absolute differences (×100) between the observed and estimated input 
coefficients from the FLQ (with a fixed δ = 0.3) and SLQ
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 SLQ

Mean Max Median SD Mean Max Median SD

Gyeonggi 0.1306 28.0 0.0044 0.7456 0.1883 45.6 0.0067 1.0584

Seoul 0.1474 27.9 0.0032 0.7219 0.1093 27.8 0.0017 0.6091

N Gyeongsang 0.1573 44.1 0.0042 0.8980 0.1744 20.7 0.0052 0.7840

S Gyeongsang 0.1427 42.3 0.0038 0.7345 0.1831 20.4 0.0055 0.8640

Ulsan 0.1653 41.8 0.0034 0.9905 0.1935 64.5 0.0023 1.2788

South Jeolla 0.1688 42.3 0.0028 1.0038 0.1593 29.8 0.0023 0.7967

S Chungcheong 0.1574 39.2 0.0043 0.8342 0.2411 24.8 0.0071 1.1199

Incheon 0.1435 22.9 0.0042 0.7423 0.2358 27.5 0.0070 1.0377

Busan 0.1483 18.8 0.0033 0.6658 0.1986 18.3 0.0055 0.8757

N Chungcheong 0.1476 49.1 0.0032 0.9973 0.2058 27.1 0.0064 1.0600

Daegu 0.1388 46.7 0.0029 0.8194 0.2055 63.3 0.0048 1.1814

North Jeolla 0.1367 53.3 0.0027 0.9311 0.1877 22.9 0.0052 0.9586

Gangwon 0.2050 125.1 0.0034 1.9620 0.1723 120.9 0.0040 1.7209

Gwangju 0.1360 48.2 0.0023 0.8713 0.1921 54.0 0.0027 1.1145

Daejeon 0.1419 36.5 0.0026 0.8237 0.2268 55.4 0.0043 1.3287

Jeju 0.1527 51.1 0.0007 1.0352 0.1709 55.6 0.0007 1.2610

Mean 0.1513 44.8 0.0032 0.9235 0.1903 41.4 0.0045 1.0656

Weighted mean 0.1481 37.0 0.0036 0.8363 0.1787 36.5 0.0046 0.9547

V 0.118 0.53 0.290 0.324 0.167 0.63 0.448 0.248

Table 9  Statistics illustrating how the absolute differences (×100) between the observed and 
estimated input coefficients vary with changes in the assumed value of δ 
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Mean Max Median SD Mean Max Median SD

Gyeonggi 0.1502 27.9 0.0054 0.7620 0.1215 33.0 0.0039 0.7681

Seoul 0.1512 27.8 0.0035 0.7590 0.1484 27.9 0.0030 0.7083

N Gyeongsang 0.1644 34.0 0.0047 0.8089 0.1596 52.4 0.0038 1.0142

S Gyeongsang 0.1504 23.6 0.0047 0.6777 0.1461 42.4 0.0033 0.8403

Ulsan 0.1806 35.1 0.0044 0.9522 0.1619 47.1 0.0028 1.0645

South Jeolla 0.1723 31.6 0.0032 0.8710 0.1728 50.8 0.0024 1.1507

S Chungcheong 0.1818 28.5 0.0058 0.8295 0.1468 47.7 0.0032 0.9132

Incheon 0.1705 21.0 0.0053 0.8168 0.1327 24.4 0.0033 0.7495

Busan 0.1583 18.2 0.0041 0.6743 0.1493 22.9 0.0029 0.7166

N Chungcheong 0.1554 37.3 0.0043 0.9125 0.1520 57.8 0.0027 1.1050

Daegu 0.1452 34.9 0.0041 0.7128 0.1450 55.4 0.0023 0.9432

North Jeolla 0.1493 41.4 0.0036 0.8213 0.1376 62.0 0.0023 1.0630

Gangwon 0.2030 124.2 0.0041 1.8780 0.2130 125.8 0.0029 2.0477

Gwangju 0.1505 36.2 0.0032 0.8309 0.1343 56.9 0.0017 0.9564

Daejeon 0.1600 25.4 0.0036 0.8160 0.1349 45.1 0.0019 0.8906

Jeju 0.1564 51.1 0.0010 0.9861 0.1586 51.1 0.0006 1.1137

Mean 0.1625 37.4 0.0041 0.8818 0.1509 50.2 0.0027 1.0028

Weighted mean 0.6007 31.3 0.0044 0.8158 0.1460 41.6 0.0031 0.8944

V 0.096 0.65 0.278 0.317 0.139 0.47 0.307 0.315
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where L̂j and Lj denote the estimated and observed column totals of the Leontief inverse 
matrices.

Table 10 displays the outcomes in terms of MAPEs when estimating type I output 
multipliers for the sixteen regions. The first two columns illustrate the benefits of pur-
suing the FLQ+ approach rather than the MCE method alone. In particular, there is 
a sharp fall in both unweighted and weighted means, along with a large decrease in 
dispersion. It is evident that the MCE method by itself does not yield satisfactory esti-
mates of multipliers.

Although the FLQ+ and FLQ with δ = 0.3 have similar means, there are marked dif-
ferences in the MAPEs for several regions. Busan and North Chungcheong are excep-
tions where the two methods yield identical results; this is because δ = 0.3 happens to 
be the estimated value from the FLQ+.

By itself, GRAS generates highly inaccurate results, yet combining it with the FLQ 
in the form of GRAS+ is clearly helpful in producing a more acceptable set of results. 
This better outcome is due to the fact that, when estimating δ in the GRAS+ proce-
dure, we consider only those pairs (ârij , a

n
ij) satisfying the ‘sign-preserving assumption’, 

whereas GRAS accounts for all possible pairs. Nonetheless, GRAS+ still yields sub-
stantially worse results than FLQ+.

It is interesting that the AFLQ has the lowest weighted mean of all eight approaches, 
whereas FLQ+ is the best in terms of the unweighted mean. This outcome is 

(56)MPE =
100

78

78∑

j=1

L̂j − Lj

Lj
,

Table 10  Statistics of the mean absolute percentage differences (MAPEs) between the estimated 
and observed type I output multipliers from alternative approaches

FLQ0.3 denotes the FLQ with a fixed δ = 0.3

MCE FLQ+ FLQ0.3 GRAS GRAS+ AFLQ AFLQ+ SLQ

Gyeonggi 11.408 1.913 3.355 16.875 5.682 0.605 1.748 4.940

Seoul 15.252 1.947 0.707 2023.701 8.554 0.108 1.145 2.320

N Gyeongsang 14.979 2.120 3.155 8.967 9.253 0.415 2.235 7.788

S Gyeongsang 1.697 4.489 4.293 9.531 8.050 3.039 2.799 5.232

Ulsan 23.051 3.868 0.186 315.443 10.203 2.905 3.440 3.860

South Jeolla 15.573 1.184 3.263 2.784 9.754 8.091 11.756 9.666

S Chungcheong 0.327 2.077 0.463 3.149 6.177 7.046 2.575 17.014

Incheon 22.071 2.638 2.415 284.593 4.704 1.882 2.557 13.515

Busan 12.517 2.825 2.825 261.020 5.314 3.191 2.729 2.436

N Chungcheong 4.436 4.190 4.190 12.482 6.827 0.247 0.247 12.200

Daegu 13.808 3.204 4.513 199.788 5.636 3.979 2.922 9.937

North Jeolla 6.728 2.046 2.333 4.315 4.871 5.298 8.479 14.849

Gangwon 5.919 6.580 7.671 377.345 7.859 1.692 2.505 2.589

Gwangju 11.166 4.110 3.730 503.281 4.803 4.924 4.097 3.717

Daejeon 18.257 2.850 1.493 575.148 2.762 4.563 2.612 13.339

Jeju 7.077 1.933 5.860 2.827 5.187 7.743 17.545 13.453

Mean 11.517 2.998 3.153 287.578 6.602 3.483 4.337 8.553

Weighted mean 12.456 2.589 2.548 461.489 7.201 2.392 3.041 6.822

V 6.540 1.321 1.911 486.558 2.056 2.559 4.367 4.881
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attributable to the superior performance of the AFLQ in several larger regions, 
most noticeably in Seoul. Nonetheless, it is odd that AFLQ+ often generates worse 
results than the AFLQ, especially in South Jeolla and Jeju. As regards the remaining 
approach, the SLQ, Table 10 reveals that its performance is clearly inferior to that of 
the FLQ and AFLQ.

While the MAPE index is a good way of assessing the relative accuracy of alterna-
tive methods, it tells us nothing about the direction or extent of bias. For that reason, 
Table 11 displays outcomes for actual rather than absolute percentage deviations.

A key finding from Table 11 is that the FLQ+ and GRAS+ procedures invariably gen-
erate underestimates of multipliers. Taking regional size into account, the FLQ+ under-
states these multipliers by 2.6% on average, whereas GRAS+ does so by 7.2%. Apart 
from the sign, the results from the FLQ+ and GRAS+ methods are identical in the two 
tables. By contrast, the SLQ produces a positive bias of 6.8% on average. Seoul is the only 
region where this bias is negative.

Another important outcome from Table 11 is that the AFLQ shows minimal bias on 
average. However, the estimated multipliers from the AFLQ display greater dispersion 
than those from FLQ+, which would tend to boost the MAPEs in Table 10. Even so, the 
AFLQ still emerges with a weighted mean MAPE that is marginally lower than that for 
FLQ+. What is more, of the eight procedures examined in Table 10, the AFLQ produces 
the best results for the problematic Seoul region.

Table 11  Statistics of the mean percentage differences (MPEs) between the estimated and 
observed type I output multipliers from alternative approaches

FLQ0.3 denotes the FLQ with a fixed δ = 0.3. Negative values indicate underestimates

MCE FLQ+ FLQ0.3 GRAS GRAS+ AFLQ AFLQ+ SLQ

Gyeonggi 11.408 − 1.913 3.355 − 16.875 − 5.682 − 0.605 − 1.748 4.940

Seoul 15.252 − 1.947 − 0.707 − 2023.701 − 8.554 − 0.108 − 1.145 − 2.320

N Gyeongsang 14.979 − 2.120 − 3.155 − 8.967 − 9.253 0.415 2.235 7.788

S Gyeongsang 1.697 − 4.489 − 4.293 − 9.531 − 8.050 − 3.039 − 2.799 5.232

Ulsan 23.051 − 3.868 − 0.186 − 315.443 − 10.203 − 2.905 − 3.440 3.860

South Jeolla 15.573 − 1.184 − 3.263 2.784 − 9.754 8.091 11.756 9.666

S Chungcheong 0.327 − 2.077 0.463 3.149 − 6.177 7.046 2.575 17.014

Incheon 22.071 − 2.638 2.415 − 284.593 − 4.704 − 1.882 − 2.557 13.515

Busan 12.517 − 2.825 − 2.825 − 261.020 − 5.314 − 3.191 − 2.729 2.436

N Chungcheong − 4.436 − 4.190 − 4.190 − 12.482 − 6.827 0.247 0.247 12.200

Daegu 13.808 − 3.204 − 4.513 − 199.788 − 5.636 − 3.979 − 2.922 9.937

North Jeolla − 6.728 − 2.046 − 2.333 − 4.315 − 4.871 5.298 8.479 14.849

Gangwon 5.919 − 6.580 − 7.671 377.345 − 7.859 − 1.692 − 2.505 2.589

Gwangju 11.166 − 4.110 − 3.730 − 503.281 − 4.803 − 4.924 − 4.097 3.717

Daejeon 18.257 − 2.850 − 1.493 − 575.148 − 2.762 − 4.563 − 2.612 13.339

Jeju − 7.077 − 1.933  − 5.860 2.827 − 5.187 7.743 17.545 13.453

Mean 9.237 − 2.998 − 2.374 − 239.315 − 6.602 0.122 1.018 8.263

Weighted mean 11.736 − 2.589 − 0.876 − 444.087 − 7.201 0.026 − 0.095 5.978

V 9.492 − 1.321 − 2.821 − 512.024 − 2.056 4.321 6.070 5.357
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8 � Conclusion
This paper has proposed a new approach to the regionalization of national input–out-
put tables where very limited regional data exist and analysts are considering employ-
ing methods based on location quotients. We focus on the FLQ, which often yields the 
most accurate results of such methods. The FLQ formula involves an unknown param-
eter, δ, which plays a crucial role in the regionalization process. However, the difficulty 
of selecting an appropriate value of δ has been an obstacle to the successful application 
of the FLQ approach. Hitherto, analysts have had to choose a value of δ on the basis of a 
priori considerations and the results of previous case studies, which often conflict. Our 
aim has been to develop an enhanced and more objective way of implementing the FLQ 
approach.

Our proposed procedure, the FLQ+ method, is a hybrid approach that uses the results 
from a modified cross-entropy (MCE) method and a simple regression model to esti-
mate δ. This value, which is specific to a given country and region, is used to estimate 
regional input coefficients and hence multipliers via the FLQ method. Our empirical 
analysis, based on a rare survey-based South Korean interregional input–output table 
for 2005 with 16 regions and 78 sectors, gave credence to the proposed method, in that 
the FLQ+ behaved much like the FLQ with an optimal δ.

The FLQ+ approach generated substantially more accurate estimates of both input 
coefficients and sectoral output multipliers than those from the MCE approach alone. 
Moreover, the MCE method clearly outperformed GRAS. In further testing of the FLQ+ 
approach, we considered the simple LQ (SLQ), the augmented FLQ (AFLQ) and the 
FLQ with an assumed value of δ. However, the SLQ gave inferior outcomes to the FLQ+, 
so we would not recommend using this method.

The AFLQ and FLQ+ gave almost identical results when estimating input coefficients. 
By contrast, in terms of multipliers, the AFLQ gave some good outcomes, characterized 
by minimal bias, whereas the FLQ+ tended to understate the multipliers. Indeed, the 
AFLQ generated the most accurate estimates of multipliers for the problematic Seoul 
region.

Using the FLQ with an assumed value of δ has the merit of ease of application, yet it 
runs the risk of choosing an inappropriate value. To explore this issue, we used values 
of δ in the interval 0.3 ± 0.1 to estimate input coefficients. This range is suggested by 
Jahn et al. (2020). We found that the mean absolute differences were not much affected 
by variation in δ. However, an analysis of multipliers revealed marked differences in the 
mean absolute percentage errors for several regions, despite the fact that the FLQ+ and 
FLQ with δ = 0.3 had similar means. Therefore, we would recommend using the FLQ+ 
approach, which takes region-specific characteristics into account, along with any coun-
try-specific differences.

In concluding, we should note some avenues for further research on this topic. The 
first would be to re-examine the effectiveness of the AFLQ, in the light of its good per-
formance in estimating multipliers. It would also be interesting to see how well the 
2DLQ refinement of the AFLQ proposed by Pereira-López et al. (2020) performs when 
tested using a national data set such as that for South Korea. Secondly, it would be useful 
to investigate why the FLQ+ tended to underestimate output multipliers. This outcome 
may well because the optimal values of δ were derived by minimizing the mean absolute 
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difference. An alternative might be to employ Theil’s inequality coefficient, which cap-
tures both bias and variance (Stevens et al. 1989). Thirdly, it would be worthwhile to con-
sider how superior data might be used in practical applications of the FLQ+ approach. 
Finally, it would be interesting to examine the possible benefits of incorporating the the-
oretical restrictions regarding the value of δ into the constraint set of the MCE model.

Appendix
This appendix shows how the proposed hybrid approach can be adapted to encompass 
the AFLQ. All that is required is to modify Eqs.  (48) and (49) as follows. First define 
αij = CILQij if i ≠ j and αij = SLQi if i = j, so that Eq. (48) changes to

where wij reads as

Thus, for any pair (ârij , a
n
ij) that satisfies the sign-preserving assumption, we set:

(57)ârij = anijwijβ
δ ,

wij =

{
αij

[
log2

(
1+ SLQj

)]
for SLQj > 1

αij for SLQj ≤ 1
.

(58)log

(
ârij

wija
n
ij

)
= δ log (β)+ εij,

Table 12  Comparison of results for the FLQ and AFLQ in terms of input coefficients. Source: authors’ 
calculations

Region FLQ FLQ+ AFLQ AFLQ+

MAD Optimal δ MAD Estimated δ MAD Optimal δ MAD Estimated δ

Gyeonggi 0.12 0.48 0.12 0.54 0.12 0.60 0.12 0.56

Seoul 0.15 0.32 0.15 0.37 0.14 0.58 0.14 0.69

N Gyeongsang 0.16 0.31 0.16 0.26 0.16 0.43 0.16 0.35

S Gyeongsang 0.14 0.32 0.14 0.31 0.16 0.46 0.16 0.39

Ulsan 0.16 0.41 0.16 0.43 0.16 0.49 0.16 0.53

South Jeolla 0.17 0.28 0.17 0.23 0.16 0.45 0.17 0.28

S Chungcheong 0.15 0.43 0.15 0.39 0.14 0.48 0.14 0.42

Incheon 0.13 0.45 0.13 0.48 0.14 0.51 0.14 0.39

Busan 0.15 0.32 0.15 0.30 0.15 0.39 0.15 0.35

N Chungcheong 0.15 0.30 0.15 0.30 0.15 0.41 0.15 0.36

Daegu 0.14 0.29 0.14 0.26 0.14 0.31 0.14 0.29

North Jeolla 0.14 0.34 0.14 0.29 0.13 0.41 0.14 0.31

Gangwon 0.20 0.22 0.20 0.24 0.20 0.32 0.20 0.28

Gwangju 0.13 0.37 0.13 0.32 0.13 0.42 0.14 0.36

Daejeon 0.13 0.44 0.14 0.35 0.13 0.49 0.14 0.40

Jeju 0.15 0.26 0.16 0.18 0.15 0.30 0.16 0.19

Mean 0.15 0.35 0.15 0.31 0.15 0.44 0.15 0.38

V 0.13 0.22 0.12 0.30 0.12 0.20 0.12 0.32
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from which a value of δ can be derived as done for Eq.  (49). However, it should be 
noted that the optimal δ for the AFLQ can normally be expected to exceed the corre-
sponding value for the FLQ (e.g. Bonfiglio and Chelli 2008, table 1).

Table  12 reveals that the FLQ and AFLQ give almost identical values of the MAD. 
Therefore, Ockham’s principle suggests that the FLQ should be preferred on the basis 
of its greater simplicity. However, such a conclusion would not be supported by the out-
comes in terms of type I output multipliers presented in Tables 10 and 11, which indi-
cate that the AFLQ can produce superior results to the FLQ. It should be noted, finally, 
that the values of δ shown in Table  12 for the AFLQ are almost always higher than 
those for the FLQ but that expected outcome is irrelevant when assessing their relative 
performance.
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