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Abstract 

Objective  To use deep learning to segment the mandible and identify three-dimensional (3D) anatomical landmarks 
from cone-beam computed tomography (CBCT) images, the planes constructed from the mandibular midline land-
marks were compared and analyzed to find the best mandibular midsagittal plane (MMSP).

Methods  A total of 400 participants were randomly divided into a training group (n = 360) and a validation group 
(n = 40). Normal individuals were used as the test group (n = 50). The PointRend deep learning mechanism segmented 
the mandible from CBCT images and accurately identified 27 anatomic landmarks via PoseNet. 3D coordinates of 5 
central landmarks and 2 pairs of side landmarks were obtained for the test group. Every 35 combinations of 3 midline 
landmarks were screened using the template mapping technique. The asymmetry index (AI) was calculated for each 
of the 35 mirror planes. The template mapping technique plane was used as the reference plane; the top four planes 
with the smallest AIs were compared through distance, volume difference, and similarity index to find the plane 
with the fewest errors.

Results  The mandible was segmented automatically in 10 ± 1.5 s with a 0.98 Dice similarity coefficient. The mean 
landmark localization error for the 27 landmarks was 1.04 ± 0.28 mm. MMSP should use the plane made by B (supra-
mentale), Gn (gnathion), and F (mandibular foramen). The average AI grade was 1.6 (min–max: 0.59–3.61). There 
was no significant difference in distance or volume (P > 0.05); however, the similarity index was significantly different 
(P < 0.01).

Conclusion  Deep learning can automatically segment the mandible, identify anatomic landmarks, and address 
medicinal demands in people without mandibular deformities. The most accurate MMSP was the B-Gn-F plane.
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Introduction
Mandibular deviation is a common deformity in ortho-
dontic clinics and may be caused by differences in the 
size and shape of the mandible or by positional devia-
tion of the mandible [1, 2]. According to the different 
mechanisms of deviation, the solution also varies. There-
fore, accurate identification of the deviation mechanism 
is crucial for treatment. The craniomaxillary median 
sagittal plane (CMSP) was used as the sagittal plane for 
assessing mandibular symmetry in traditional methods; 
however, this plane has limitations when the position of 
the mandible changes, such as during rotation or transla-
tion [1, 3].

With the rapid development of computer and 3D 
reconstruction technology, 3D measurement methods 
have more advantages than two-dimensional (2D) meth-
ods for asymmetry evaluation [2, 4]. The methods for 
craniofacial symmetry analysis are based mainly on ana-
tomical landmarks, original-mirror alignment, and deep 
learning algorithms. Conventional anatomic landmark 
approaches used to be the main option for evaluating 
craniofacial asymmetry. A reference plane is frequently 
created by dividing the lines between bilateral landmarks 
or by connecting median landmarks, which determine 
both sides of 2D or 3D quantitative measurements. Sev-
eral studies have analyzed the planes constructed by B, G, 
and Me to explore the differences between the two sides 
of the mandible [5, 6]. The accuracy of this plane was not 
verified. A mandibular-specific sagittal midline plane for 
3D mandibular analysis. This study was limited by the 
use of dental landmarks, which are unreliable at atrophic 
alveolar ridges [7]. The original-mirror alignment was 
processed by overlapping and aligning the original and 
mirror models through algorithmic 3D spatial coordinate 
transformations, and the best sagittal plane was math-
ematically computed. The iterative closest point (ICP) 
approach was based on the least squares principle and 
iteratively matched the closest point with a minimum 
distance between the original and the matching mirror 
images [8, 9]. However, this method has several limita-
tions. Point clouds for asymmetric regions were added 
to the computation, reducing the algorithm’s accuracy [4, 
8]. Like in the ICP algorithm, the Procrustes analysis (PA) 
algorithm selects the point cloud of the symmetric region 
and transforms the original model with the correspond-
ing coordinates of the mirror model to achieve the best 
match [8, 9]. Nevertheless, it was still unavoidable for 
both approaches to add a subjective element of human 
intervention. Zhu et  al. constructed a 3D facial median 
sagittal plane by implementing this approach with the 
weighted Procrustes analysis (WPA) algorithm. The 
average angle error between the WPA and the manually 
defined planes was 0.73° ± 0.50° [10]. The PRS-Net model 

based on the ShapeNet dataset automated the creation of 
the 3D point cloud data symmetry plane, which was used 
as an important reference for the automated generation 
of the face median sagittal plane [11].

However, the use of deep learning techniques to con-
struct sagittal planes is still in its infancy. In addition, 
research on constructing MMSP based on deep learning 
algorithms is rare. The purpose of this study was to auto-
matically determine the mandibular midsagittal plane by 
segmenting it from CBCT images and accurately identi-
fying its 3D landmarks using a deep learning algorithm 
(Fig. 1), thus providing a simple and accurate method for 
the clinical judgment of mandibular symmetry.

Methods
Data collection
Four hundred subjects aged 18 to 45 years were enrolled 
from the Anhui Medical University Stomatological Hos-
pital from 2018 to 2022. All of the subjects were randomly 
divided into a training group (n = 360) and a validation 
group (n = 40). Exclusion criteria: mandible fractures or 
resorption, malformations, or incomplete CBCT images. 
Fifty craniofacial 3D images of morphologically normal 
people were obtained in the test group. Ethical approval 
was obtained from the Anhui Medical University Stom-
atological Hospital (PJ: T2020010). Written informed 
consent was obtained from all participants. The inclu-
sion criteria were as follows: (1) aged 18 to 45 years (28 
females and 22 males, mean age 28.02 ± 8.03  years); (2) 
0° < ANB angle < 4°, normal overjet, and overbite; (3) had 
no missing teeth except for the third molars; (4) had a 
complete CBCT scan covering the lower 2/3 of the maxil-
lofacial region. Exclusion criteria: (1) systemic or genetic 
disorders that would influence mandible growth; (2) no 
cleft lip or palate, craniofacial syndromes, or deformities 
resulting from trauma or tumor; (3) no previous crani-
ofacial surgery, facial fractures, or facial surgery.

Image acquisition
All the CBCT images were acquired from a Meyer 
software (mDX-13STSP1A, Hefei, Anhui) at the fol-
lowing settings: 5  mA, 120  kV, exposure time of 20  s, 
scanning area of 23 × 18 cm, and focal point nominal of 
0.5 × 0.5 mm. CBCT data were exported to Digital Imag-
ing and Communications in Medicine (DICOM) files and 
imported into MyDentViewer (a tool for dental image 
processing software that supports image browsing, meas-
urement annotation, and digital implant simulation; ver-
sion 1.0; Meyer, Hefei, Anhui) to reconstruct 3D images.

PointRend and PoseNet development
The PointRend algorithm architecture for automatic 
mandible segmentation from CBCT images is shown in 
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Additional file 1 (Figure 1). To avoid affecting mandibu-
lar measurements, the algorithm removes the crown and 
alveolar bone (detailed description in Additional file  1). 
The identification of the 3D landmarks of the mandi-
ble using the PoseNet algorithm is shown in Additional 
file  2. 3D mandibular and landmarks images are shown 
in Fig. 2.

Template mapping
The template mapping technique ensured that 17,415 
uniformly sampled quasi-landmarks were automatically 
identified on the entire mandibular surface [12]. Using 
the robust Procrustes alignment algorithm, the point-
wise surface-to-surface distance between the original 
and mirror models in 3D space was calculated, which was 

Fig.1  Automatic construction of MMSP by anatomical landmarks. a PointRend deep learning training; b PoseNet deep learning training; c 
mandible model; d template mapping technique; e MMSP was build

Fig.2  Anatomical landmarks of the mandible. A. right view; B. front view ① “supramentale” ② “pogonion” ③ “gnathion” ④ “menton” ⑤ “genial 
tubercle” ⑥ “fossa of mandibular foramen” ⑦ “mental foramen” ⑧ “gonion” ⑨ “condylion superius” ⑩ “condylion medialis” ⑪ “condylion lateralis” ⑫ 
“coronoid superius” ⑬ “sigmoid notch” ⑭ “ramus point” ⑮ “Jlat” ⑯ “Jmed”
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expressed as the overall asymmetry index (AI). The posi-
tion and severity of mandibular asymmetry are shown by 
a color map in millimeters [4, 13].

Assessment of MMSP
Five central landmarks and the midpoint of 2 bilateral 
landmarks (mandibular foramen and mental foramen) 
composed 35 planes. Each plane was a mirror plane, 
and the first four planes with the lowest AIs were chosen 
(Fig. 3). The ideal MMSP was determined by clinical indi-
ces: distance, volume difference, and similarity index, in 
each of the four sagittal planes. Similarity index: sagittal 
plane mirroring of the left and right mandibles. Volumes 
were computed from nonoverlapping sections from over-
lapping images. The similarity index measures mandibu-
lar symmetry by comparing the overlapping volume to 
the total volume [2]. The similarity index was calculated 
as follows: 2 ∗ intersection (A, B)/ (A + B) (Fig. 4a, b, c, d).

Statistical analysis
All the statistical analyses were performed with SPSS 
software (version 27.0; IBM, Armonk, NY), with P < 0.05 
indicating statistical significance. A paired-sample t test 

Fig. 3  Mandibular asymmetry with the sagittal plane as the mirror 
plane; red indicates asymmetry greater than 4 mm, and dark blue 
indicates no asymmetry. a B-Gn-F: AI = 0.8; b B-Me-F: AI = 0.95; c 
B-Pog-F: AI = 1.34; d B-G-F:AI = 2.19

Fig. 4  Green: left mandible A, yellow: right mandible B; a distance to MMSP (d1-d2); b difference in mandibular volume of two sides (A, B); c MMSP 
is a mirrored plane, superimposed on the left and right sides; d blue is the nonoverlapping area
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was used to compare the mean differences between the 
reference plane and sagittal plane measurements.

Results
Model evaluation
Automatic mandibular segmentation took 10 ± 1.5  s, 
whereas the two operators averaged 2067.9 ± 425.91 s and 
1987.9 ± 391  s, respectively (P = 0.183). The automated 
method exceeded the evaluations performed by two radi-
ologists, achieving a Dice similarity coefficient of 0.98.

Accuracy of landmarks identification
The PointRend method was used to locate anatomic 
landmarks within 0.5  s. The mean error of the 27 land-
marks was 1.04 ± 0.28 mm; the error for the Me was the 
lowest (0.61 ± 0.18  mm), and that for the Conlat-R was 
the greatest (1.52 ± 0.28 mm) (Table 1).

Plane evaluation
The first four planes of AI were B-Gn-F (1.6), B-Me-F 
(1.95), B-Pog-F (1.97), and B-G-F (2.15) (Table  2). The 
B-Gn-F plane has the smallest error among the four 
planes. Except for Cor (P < 0.05), Go (P < 0.05), and RP 
(P < 0.01), the other seven landmarks showed no sta-
tistically significant differences in distance (P > 0.05) 
(Table 3). The difference in volume between the two sides 
was not statistically significant (P = 0.671). Nevertheless, 
the symmetry index was significantly different (P < 0.01). 
The other 3 planes were significantly different from the 
reference plane except for the difference in mandibular 
volume on both sides (Table 4).

Discussion
In recent years, artificial intelligence has been increas-
ingly used in the field of medicine. In the field of ortho-
dontics, the development of automatic cephalometric 
analysis is urgently needed [14]. We combined deep 
learning for mandibular segmentation, automated locali-
zation of landmarks, and automated construction of 
MMSP to enhance clinical efficiency and reveal the area 
and extent of mandibular asymmetry more precisely and 
intuitively. We demonstrated that the B-Gn-F plane is 
closest to the sagittal plane of the mandible.

Accurate segmentation of the mandible on CBCT is 
necessary for 3D analysis of the mandible. Semiauto-
matic segmentation methods based on threshold and 

Table 1  Landmark localization errors for the anatomical 
landmarks (mm)

Landmark Mean error (mm) Standard error of 
the mean (mm)

Me 0.61 0.18

B 0.43 0.28

Cor (right) 0.61 0.28

G 0.65 0.19

Pog 0.66 0.42

Conmed (left) 0.72 0.30

MF (left) 0.77 0.26

Sig (left) 0.79 0.22

Gn 0.79 0.39

MF (left) 0.80 0.22

Sig (right) 0.90 0.28

Jlat (right) 0.94 0.15

Cor (left) 1.17 0.35

Consup (right) 1.18 0.28

Go (left) 1.19 0.41

Jmed (left) 1.21 0.35

Jmed (right) 1.22 0.19

Conmed (right) 1.22 0.38

Go (right) 1.23 0.13

RP (right) 1.29 0.38

Consup (left) 1.30 0.24

Conlat (left) 1.32 0.34

F (right) 1.37 0.13

F (left) 1.39 0.21

RP (left) 1.41 0.44

Jlat (left) 1.45 0.27

Conlat (right) 1.52 0.28

Table 2  Asymmetry index (AI) of planes

IQR interquartile range (25th, 75th percentile); Min minimum; Max maximum; AI 
asymmetry index

Landmark1 Landmark2 Landmark3 Median (IQR) Min–Max

B Gn F 1.6(1.53–1.92) 0.59–3.61

B Me F 1.95(1.81–2.34) 1.05–3.61

B Pog F 1.97(1.75–2.19) 0.73–5.05

B G F 2.15(1.88–2.81) 0.68–5.38

B F MF 2.34(2.22–3.11) 0.69–4.34

.. .. .. .. ..

.. .. .. .. ..

B G Me 7.49(7.24–10.3) 1.56–19.97

.. .. .. .. ..

.. .. .. .. ..

B G MF 12.57(9.45–16.76) 1.58–41.71

B Gn Me 12.97(11.67–
15.82)

1.34–37.4

G Me MF 17.78(18.44–
25.32)

1.81–36.82

B Pog Gn 18.76(17.25–
25.92)

0.94–53.46

Pog Gn Me 21.15(18.49–
33.68)

1.7–64.04
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region-growing algorithms are time-consuming and 
subjective and cannot be widely used in clinical prac-
tice [15–17]. Deep learning algorithms are more effec-
tive and accurate than traditional segmentation methods. 
Recently, medical image segmentation has employed 
artificial intelligence image segmentation techniques, 
and a convolutional neural network (CNN), a deep learn-
ing algorithm, has been commonly employed to analyze 
images [18]. CNNs learn task-specific features from data 
and are effective at image categorization, target iden-
tification, and recognition [17, 19]. Verhelst et  al. con-
structed a 3D model of the mandible using a layered 3D 
U-Net architecture deep learning algorithm for direct 

segmentation of high-resolution CBCT images in 17  s, 
a 71.3-fold reduction compared to semiautomated seg-
mentation [17]. Robert et al. created in-house segmenta-
tion software that increased the segmentation accuracy 
to 94.2% while decreasing the segmentation time to 
2 min and 3 s. Segmenting skull bones with Mimics soft-
ware provided Dice similarity coefficients of 0.924 and 
0.949 for the maxilla and mandible, respectively, com-
pared to the ground truth [20]. However, in this study, 
the time needed for mandibular segmentation by the 
PointRend algorithm was reduced to 10 ± 1.5  s, and the 
Dice similarity coefficient was 0.98 [17]. PointRend (point 
rendering) based on CNNs is an iterative segmentation 
technique proposed for efficient picture target recogni-
tion and segmentation [21, 22]. Inspired by computer 
graphics image rendering, this novel image segmenta-
tion method solves pixel labeling tasks and over- and 
under-sampling issues by treating image segmentation 
as a rendering problem and generating high-resolution 
segmentation masks [21–23]. With improved segmenta-
tion efficiency and application in CBCT 3D data, forward 
processing was performed directly on the whole sample, 
and the overall features of the mandible were better rec-
ognized from 3D space. The mandible in the image slices 
exhibited similar localized features to those of some 
regions of the maxilla and teeth. Notably, a clearer and 

Table 3  Mean distance difference from landmarks to MMSP

* P < 0.05
** P < 0.01

Landmark Reference plane(mm) B-Gn-F(mm) B-Pog-F(mm) B-Me-F(mm) B-G-F(mm)

Consup 1.46 ± 0.97 1.56 ± 1.21
P = 0.628

2.9 ± 1.85** 2.93 ± 2.41** 3.07 ± 2.91**

Conmed 1.3 ± 1.07 1.36 ± 1.1
P = 0.739

2.38 ± 1.71** 2.25 ± 2.21** 2.88 ± 2.8**

Conlat 1.38 ± 1.12 1.72 ± 1.35
P = 0.085

2.58 ± 1.72** 2.69 ± 2.27** 2.74 ± 2.49**

Sig 0.84 ± 0.59 1.05 ± 0.88
P = 0.121

1.8 ± 1.23** 1.8 ± 1.75** 2.2 ± 2.04**

Cor 0.93 ± 0.68 1.39 ± 1.04
*

2.88 ± 1.95** 2.71 ± 2.5** 3.66 ± 3.19**

Go 1.43 ± 1.07 1.85 ± 1.38
*

1.99 ± 1.78* 1.98 ± 1.7* 2.13 ± 1.74*

RP 0.74 ± 0.62 1.22 ± 0.88
**

1.38 ± 0.89** 1.42 ± 1.19** 1.5 ± 1.17**

MF 1.97 ± 1.51 0.99 ± 0.73
P = 0.537

1.06 ± 0.74
P = 0.260

1.1 ± 0.69
P = 0.197

1.05 ± 0.67*

Jlat 0.98 ± 0.66 0.91 ± 0.65
P = 0.131

1.14 ± 0.81
P = 0.364

1.17 ± 0.98* 1.38 ± 1.13*

Jmed 1.26 ± 1.12 1.46 ± 1.23
P = 0.773

1.42 ± 1.24** 1.54 ± 1.35** 1.67 ± 1.39**

F – 0 ± 0 0 ± 0 0 ± 0 0 ± 0

Mean 1.23 ± 0.37 1.23 ± 0.49
P = 0.893

1.78 ± 0.75
P = 0.066

1.78 ± 1.16
P = 0.057

2.03 ± 1.4*

Table 4  Absolute values of volume and similarity index 
difference for MMSP

* P < 0.05
** P < 0.01

Plane Volume (mm3) P value Similarity index P value

Reference 1066.39 ± 781.95 – 0.86 ± 0.04 –

B-Gn-F 1106.06 ± 781.73 0.671 0.81 ± 0.07 **

B-Pog-F 1124.67 ± 774.83 0.560 0.76 ± 0.1 **

B-Me-F 1148.88 ± 840.56 0.438 0.78 ± 0.1 **

B-G-F 1131.17 ± 794.73 0.537 0.74 ± 0.12 **
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more complete mandibular boundary can be extracted 
by iterative upsampling of only the edge points at the end 
of the model using the multilevel information of the net-
work without affecting most of the foreground pixels.

3D anatomical landmarks reflect the morphological 
characteristics of the mandible and are the basis of 3D 
mandibular analysis. Manual landmark localization relies 
on doctors’ clinical expertise and is tedious [24, 25]. The 
You-Only Look-Once version 3 (YOLOv3) algorithm was 
applied to 1028 cephalograms to automatically identify 
80 cephalometric landmarks with a manual landmark 
average error of 1.46 ± 2.97 mm [25]. Zhang et al. simulta-
neously achieved the joint bone segmentation and land-
mark digitization (JSD) framework by context-guided 
fully convolutional networks (FCNs) with an average 
error of 1.1 mm for 15 anatomical landmarks [26]. In this 
study, we used the PoseNet algorithm [29], which has 
high expansibility and can accurately locate key points 
in 3D CBCT images without adding additional structure 
or computations to the model. On average, the error of 
the 27 landmarks was 1.04 ± 0.28 mm, while the clinical 
acceptability was 2  mm [24, 25, 27]. The mean error of 
the central landmarks was 0.63 ± 0.29  mm, which was 
smaller than that of the lateral landmarks 1.13 ± 0.28 mm, 
probably because the central landmarks were more 
accurate and reliable [24]. According to Schlicher et  al., 
landmarks with a distinct anatomical structural contour 
showed fewer errors than landmarks that were located on 
curves, which also supported this result [28].

Previous studies have shown that central markers are 
more accurate than bilateral markers when the sagit-
tal plane of the face is used. However, for the mandible, 
the bony markers at the mandible are very close together 
[29]. The reliability and stability of the MF and F points 
were high, and both sides of the structure were symmet-
rical, with no significant difference [7, 30, 31]. The F point 
was located on the posterior region of the mandible, and 
the fact that 4 planes were screened in this experiment 
provided additional evidence that this point is involved in 
the composition of the sagittal plane with a high degree 
of stability. Therefore, in this study, the MF and F points 
were added to form the sagittal plane.

The template mapping approach based on the Mesh-
Monk algorithm was used to automatically assess the 
AIs of 35 planes. Technical template mapping and 3D 
surface-to-surface deviation analysis have become 
important scientific tools in orthodontics for studying 
changes in skeletal morphology [9, 32, 33]. This method 
was used in this study to mirror and superimpose a 
mandibular model onto a 3D color map to precisely 
identify morphological asymmetries. This approach, 
which was more intuitive and accurate than linear and 
angular measurements, assesses the asymmetry of the 

whole mandibular surface [4]. The ICP was not selected 
as a reference plane because although both methods 
use the root-mean-square value, the ICP algorithm cal-
culates the closest distance between the original model 
and the mirror model, whereas the template mapping 
method calculates the distance between the original 
model and the mirror corresponding quasi-landmarks, 
which has the advantages of more points, intelligence, 
and good correspondence relationships [9]. When the 
mandible was heavily asymmetrical, the precision of 
the ICP algorithm was reduced [4]. Many previous 
studies used the B-G-Me plane as the MMSP to study 
the symmetry of mandibles [5, 6]. The results of the 
present study showed that the AI of the B-G-Me plane 
was 7.49 (Table 2), which differed significantly from the 
results obtained for the B-Gn-F plane (AI = 1.6). When 
the 3 points were spread to form a larger and broader 
triangle, the stability of the plane increased [34]. In 
contrast, 3 points in the B-G-Me plane were located at 
the mandibular symphysis, close enough to make the 
plane unstable.

Mandibular asymmetry is a complicated condition 
that is categorized into morphological and spatial struc-
tural differences between two sides [35]. On both sides 
of the mandible, the difference in volume between the 4 
planes and the reference plane was not statistically sig-
nificant (P > 0.05; Table 4). Although volumetric data are 
often used to compare differences between two sides of 
the mandible, these data do not allow for quantitative 
assessment of symmetrical and asymmetrical regions 
[36]. The similarity index and nonoverlapping volume 
can reflect both morphological and structural differ-
ences in the mandible [2]. Significant differences were 
found between the B-Gn-F plane and the reference plane 
(P < 0.01) (Table 4). This was probably because the algo-
rithmic analysis examined the shape of the mandible, 
while the anatomical landmarks method simply looked 
at the structure. However, the mean value of the overall 
similarity index was closest to that of the reference plane. 
Therefore, it is reasonable to use the B-Gn-F plane as the 
MMSP in the clinical analysis of the mandible.

To assess mandibular asymmetry, landmarks-based 
analyses were applied. In this method, distance, volumet-
ric data, similarity index, surface-to-surface deviation 
analysis, and template mapping techniques were com-
bined to screen for relatively accurate MMSP data, facili-
tating the identification of regions affected by asymmetry. 
The limitations of this study are that the automated local-
ization accuracy of severe mandibular deformity data was 
not evaluated. Hence, only adults with mandible symme-
try were studied, while other asymmetry types were not 
confirmed. The MyDentViewer software is the unopen 
source and is currently used for collaborative research.
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Conclusions
In this study, automated segmentation of the mandible 
and localization of anatomical landmarks were used to 
realize automatic cephalometric analysis. Furthermore, 
the B-Gn-F plane can be used for clinical application 
because of the symmetry of the mandibular structure.

The benefits of artificial intelligence go beyond short-
ening the time needed to obtain asymmetric information. 
Combining deviation analysis with artificial intelligence 
provides a more efficient workflow, and accurate quanti-
fication of mandibular asymmetry will help orthodontists 
and surgeons better understand asymmetry and guide 
treatment planning. Color-coded charts not only are an 
important tool for diagnosis, but also allow patients and 
parents to easily understand asymmetry.
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