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Abstract 

There are more than 170 subtypes of sarcomas (SARC), which pose a challenge for diagnosis and patient manage-
ment. Relatively simple or complex karyotypes play an indispensable role in the early diagnosis and effective treat-
ment of SARC. The genes related to absorption, distribution, metabolism, and excretion (ADME) of a drug can serve 
as prognostic biomarkers of cancer and potential drug targets. In this study, a risk score signature was created. The 
SARC cohort was downloaded from The Cancer Genome Atlas (TCGA) database, and divided into high-risk group 
and low-risk group according to the median value of risk score. Compared with high-risk group, low-risk group 
has a longer survival time, which is also verified in osteosarcoma cohort from Therapeutically Applicable Research 
to Generate Effective Treatments (TARGET) database. In addition, the relationship between the signature and immu-
nophenotypes, including status of immune cell infiltration and immune checkpoint expression, was explored. Then, 
we found that high-risk group is in immunosuppressive status. Finally, we verified that PPARD played a role as a car-
cinogen in osteosarcoma, which provided a direction for targeted treatment of osteosarcoma in the future. Generally 
speaking, the signature can not only help clinicians predict the prognosis of patients with SARC, but also provide 
a theoretical basis for developing more effective targeted drugs in the future.
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Introduction
Sarcomas (SARC) are a heterogeneous group of tumors 
that arise from mesenchymal tissues such as bone, carti-
lage, muscle and other connective tissues [1]. Nowadays, 
two broad genetic groups of SARC, including simple 
karyotypes and highly complex karyotypes, have been 
identified [2]. In SARC types with complex cytogenetic 

changes, the molecular alterations are diverse. According 
to the latest WHO classification, there are more than 170 
subtypes of SARC that vary in pathology, clinical presen-
tation, molecular features and response to treatment [3, 
4]. Based on histopathological criteria and the type of tis-
sue in which they predominantly present, 80% of sarco-
mas are classified as soft tissue sarcomas (STS), 15% as 
osteosarcomas and 5% as gastrointestinal mesenchymal 
tumors. In terms of prevalence, they account for less than 
1% of adult cancers, but one fifth of solid malignancies 
in children [5]. However, the prevalence of SARC may be 
underestimated because SARC that develop in parenchy-
mal organs are usually attributed to the affected organ 
rather than the surrounding connective or supporting 
tissue [6]. Misdiagnosis due to their difficulty in differen-
tiation from other malignancies, delayed treatment due 
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to early asymptomatic, and their heterogeneity, aggres-
siveness, and resistance to current therapeutic options 
make the challenging of clinical management of SARC 
[7]. Given the heterogeneity of SARC they are treated 
with nearly all known treatment modalities including 
targeted therapy, immunotherapy, radiation and chemo-
therapy with the combinations related to specific tumor 
subsets. Notably, one-third of patients develop metas-
tases and approximately 20% of SARC recurrence, and 
these patients who develop recurrence and metastases 
respond poorly to radiation and chemotherapy [8].

298 genes related to absorption, distribution, metabo-
lism, and excretion (ADME) were identified by the Phar-
maADME Consortium [9]. ADME-related genes consist 
mainly of genes encoding phase I and II drug metaboliz-
ing enzymes, drug transport proteins and modifiers [10]. 
ADME genes are involved in the metabolism, transport 
and removal of endogenous and exogenous substances 
such as steroid hormones, bile acids and carcinogens 
that may promote cancer development [11, 12]. ADME-
related genes affect the ability of the liver to metabolize 
and clear drugs, thereby affecting the efficacy of drug 
therapy and are associated with anticancer drug resist-
ance [13, 14]. Glutathione S-transferases (GSTs) and 
ATP Binding Cassette transporter B1 (ABCB1) affect 
the sensitivity of tumor cells to chemotherapeutic drugs 
by transporting drug components to the extracellular 
compartment to reduce their intracellular accumulation 
[15, 16]. The expression of ABCB6 enhances hepatoma 
cell proliferation and tumorigenicity by targeting the 
cell cycle [17]. SOD1 can maintain ROS levels below a 
threshold to support oncogene dependent proliferation 
during breast tumor formation [18].

In addition to the fact that ADME-related genes can 
influence the degree of tumor cell tolerance to chemo-
therapeutic agents, previous studies have demonstrated 
the role of ADME-related genes as prognostic cancer 
biomarkers and therapeutic targets. ABCB1 and ABCC2 
promote adriamycin efflux from soft tissue sarcoma cells 
and reduce drug-induced intracellular accumulation, tox-
icity and immunogenic cell death [19]. RXRA inhibits 
rhabdomyosarcoma cell proliferation [20]. Overexpres-
sion of Carbonyl reductase 1 (CBR1) inhibits malignant 
behavior and epithelial mesenchymal transition by sup-
pressing TGF-β signaling in uterine smooth muscle sar-
coma cells [21]. Through bioinformatic analysis, Hu 
et al. determined that the ADME gene predicted overall 
survival (OS) for a lot of cancer types [22]. Sunitinib, an 
oral multi-receptor tyrosine kinase inhibitor (TKI), is 
currently used to treat imatinib-resistant/intolerant gas-
trointestinal mesenchymal tumors and primarily metab-
olized by CYP3A4 to N-desethyl sunitinib [23].

In this study, to define an ADME-related signature, 
transcriptome data and clinical data of SARC, which were 
downloaded from The Cancer Genome Atlas (TCGA), 
were used to perform the differentially expressed, uni-
variate Cox (uni-Cox), least absolute shrinkage and selec-
tion operator (LASSO) and multivariate Cox (multi-Cox) 
regression analysis. The signature could predict survival 
outcomes of SARC and was validated by osteosarcoma 
data in TARGET database. What is more, we verified 
the expression of PPARD in osteosarcoma and its func-
tion at the cellular level. Finally, immune cell infiltration, 
immunotherapy response, and clustering analyses were 
explored between the high-risk and low-risk groups. Our 
results suggest that ADME-related signature can predict 
prognosis, immune cell infiltration status and treatment 
response in SARC.

Materials and methods
Data collection
We obtained RNA sequencing and clinical data of SARC 
from TCGA (https://​portal.​gdc.​cancer.​gov/) and data of 
osteosarcoma (TARGET-OS) from UCSC Xena (https://​
xena.​ucsc.​edu/), respectively [24]. The package of "sva" 
was used for batch calibration [25]. Patients without 
survival information were excluded. ADME-related 
genes were obtained from the PharmaADME Consor-
tium (http://​www.​pharm​aadme.​org) (Additional file  1: 
Table S1).

Extraction of prognosis‑related ADME Genes
Kaplan–Meier (K–M) survival analysis and univariate 
Cox (uni-Cox) regression analysis were performed to 
screen prognosis-related genes (p < 0.05). The prognosis-
related ADME genes (PARGs) were confirmed by inter-
section of ADME-related genes and prognosis-related 
genes.

Identification of PARGs signatures
We developed a possible risk score signature for SARC by 
LASSO and multi-Cox regression analysis [26]. The risk 
score for each SARC patient was calculated as follows:

All samples were divided into a train cohort (60%) and 
a test cohort (40%). Patients were defined as high-risk 
groups by the median risk score of all patients. K–M sur-
vival analysis was performed in the whole cohort, train 
cohort and test cohort, respectively. In addition, uni-Cox 
and multi-Cox regression analyses were performed to 
estimate the prognostic independence of the PARGs sig-
nature in SARC.

Risk score =
∑N

i=1
(Expi × Coei)

https://portal.gdc.cancer.gov/
https://xena.ucsc.edu/
https://xena.ucsc.edu/
http://www.pharmaadme.org
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Establishment and validation of a nomogram
We use the "rms" package to develop a predictive nom-
ogram. In the nomogram, each variable is matched to 
a score and the total score is obtained by summing all 
variables in each sample. The nomogram plot was eval-
uated using receiver operating characteristic (ROC) 
curves. Calibration plot of the nomogram plots was 
used to describe the similarity between the predicted 
survival events and the virtual observed results.

Estimation of immune cell infiltration
The immune infiltration status of SARC was analyzed 
from multiple immune data platforms (http://​timer.​
cistr​ome.​org/). The levels of infiltrating immune cells 
and immune-related functions were also studied by 
single-sample gene set enrichment analysis (ssGSEA). 
Then, to predict the therapeutic effect of immune 
checkpoint blockers (ICB) in different risk groups, we 
evaluated the expression of 32 immune checkpoint 
genes [27, 28] (Additional file 2: Table S2). In addition, 
we assessed tumor microenvironment (TME) scores 
(stromal score, immune score and estimated score) by 
"ESTIMATE" package.

Immunotherapy and prediction of chemotherapy response
We performed the Tumor Immune Dysfunction and 
Exclusion (TIDE) algorithm to predict the response 
to immune checkpoint blockade. The TIDE score for 
each SARC patient was determined by the online web 
(https://​tide.​dfci.​harva​rd.​edu/). pRRophetic as an R 
package, can predict clinical chemotherapy responses 
by gene expression levels to assess the differences in 
drug sensitivity between the two risk groups [29].

Consensus clustering analysis of PARGs
The R package "ConsensusClusterPlus" was used for 
consensus unsupervised clustering analysis to classify 
samples into different molecular subtypes based on 
PARGs expression [30]. K–M survival curve was used 
to assess the prognosis of the different molecular sub-
types. Similarly, TME scores (stromal score, immune 
score and estimation score) for the different molecular 
subtypes were also assessed by the ESTIMATE package.

Cell culture and transfection
MG-63 and Saos-2 cells were purchased from the Bio-
logical Cell Unit of Central South University. MG-63 
and Saos-2 were cultured at 37 °C in a 5% CO2 atmos-
phere with RPMI 1640 (Gibco, USA) supplemented 
with 10% FBS (Gibco, USA). The short hairpin RNA 
(shRNA) of PPARD was designed and synthesized 
by HANBIO (ShangHai, China). The target sequence 

of shRNA(sh-#1 and sh-#2) was derived from that 
reported by previous report [31]. (sh-#1, TCA​GGC​
GGC​AGC​CTC​AAC​ATG​GAA​TGTCG; sh-#2, AGC​
ATC​C TC ​ACC​G G C ​AAG​TCC ​AG C​C AC AA . The 
shRNA pGFP-V-RS plasmid was provided by HANBIO 
(ShangHai, China) as a negative control, referred in this 
study as “nc”. Cultured MG-63 and Saos-2 cells were 
transfected with shRNA-expressing lentiviruses. The 
stable knockdown cell lines were selected by 1 μg/ml of 
puromycin.

Western blot analysis
Cellular protein was extracted by 1 × RIPA buffer (Key-
GEN BioTECH) containing 1% PMSF (KeyGEN Bio-
TECH), and protein samples were separated by 10% 
SurePAGE gels (KeyGEN Bio TEch, JiangSu,China) and 
transferred onto a 0.45  μm PVDF membranes (Mil-
lipore, CA, USA), blocked with 5% skim milk for 2  h, 
incubated with primary antibodies at 4  °C overnight 
and secondary antibodies for 1 h at room temperature, 
and visualized using an Odyssey CLx Infrared Imag-
ing System (LI-COR Biosciences, NE, USA). Protein 
abundance was analyzed by ImageJ software (National 
Institutes of Health, Bethesda, MD, USA). Primary 
antibody: The rabbit anti-PPARD antibody (1:1000, 
Cell Signaling Technology, Massachusetts, USA). The 
mouse anti-GAPDH antibody (1:1000, Prpteintech, 
Wuhan, China).

Cellular functional assay
To estimate cell proliferation of MG-63 and Saos-2 cells 
after PPARD knockdown, logarithmically growing cells 
were seeded in 96-well plates (2 × 103 cells/well). The Cell 
Counting Kit-8 (CCK-8) assay was performed according 
to the manufacturer’s instructions after 12, 24, 48 and 
72 h in culture. For the colony-forming assay, MG-63 and 
Saos-2 transfected with shRNA (0.6 × 103 cells/well) were 
cultured at 37 °C for 2 weeks and then fixed in 4% para-
formaldehyde for overnight and stained overnight with 
0.05% crystal violet.

Wound-healing assays are used to assess the metastatic 
ability after PPARD knockdown in MG-63 and Saos-2 
cells.

For wound-healing assays, MG-63 and Saos-2 trans-
fected with shRNA (3 × 106 cells/well) were inoculated in 
6-well plates. Using a 1 ml pipette to form a wound in the 
center of the cell monolayer when the cells reach reach-
ing a confluence of  90%, and then continue to culture 
with a serum-free medium for 48 h. Microscopy images 
were acquired at 0 and 48  h, and then the area of gaps 
was quantified by ImageJ software.

http://timer.cistrome.org/
http://timer.cistrome.org/
https://tide.dfci.harvard.edu/
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Statistical analysis
All cellular functional assay, as well as western blot assay, 
were repeated 3 times independently. Statistical compu-
tations were performed using GraphPad Prism 8.0 with 
student’s t-test. And bioinformatics analysis using the 
R (version 4.0.4). p < 0.05 was considered statistically 
significant.

Results
Constructing PARGs signature in TCGA cohorts
1139 prognosis-related mRNAs were identified by 
’’survival’’ package (Additional file  3: Table  S3) [32]. 

Prognosis-related genes and ADME-related genes were 
intersected by R package ’’veen’’ and obtained 11 PARGs 
(Fig. 1A). The 11 PARGs were performed uni-Cox regres-
sion analysis (Fig.  1B). 265 patients with SARC were 
assigned to cohort train (n = 156) or test (n = 103), respec-
tively. After selecting 7 genes by LASSO Cox regression 
analysis, a prognosis signature was constructed by the 
multi-Cox regression analysis (Fig. 1C, D). The risk score 
for each patient was calculated as follows:

Fig. 1  Construction of the ADME-related genes signature. A The intersection between ADME-related genes and prognosis-related genes. B The 
univariate Cox regression analysis of 11 prognosis-related and ADME-related genes. C, D The LASSO regression signature was constructed. E PCA 
of SARC samples based on the median risk score
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Patients were assigned to high-risk or low-risk groups 
based on the median value of the risk score for all 
patients. Principal component analysis (PCA) showed 
that patients were distributed in two directions (Fig. 1E).

Evaluation of prognostic signature
The samples of entire TCGA cohort, train cohort and 
test cohort were divided into high-risk and low-risk 
groups based on median risk scores. Risk plots showed 
that patients with high-risk had shorter survival times 

risk score =− 0.213902201617826 ∗ ALDH1A1

− 0.69129999454221 ∗ DHRS12

− 0.231751509847224 ∗HNMT

+ 0.498180587995638 ∗ PPARD

+ 0.256169589090775 ∗ SLC16A1

− 0.212174514978431 ∗ SLC7A7

− 0.165647938855446 ∗ SOD3

compared to low-risk group (Fig.  2A-F). K–M survival 
curves showed that patients in the high-risk group had 
lower OS (Fig.  2G-I). Subsequently, ROC curves were 
performed to assess the predictive efficacy of the signa-
ture on survival. The area under curve (AUC) values for 
risk score for the entire cohort were 0.801, 0.768 and 
0.762 at 1, 3 and 5 years, respectively (Fig. 2J). The AUC 
values for risk score for the train cohort were 0.835, 0.791, 
and 0.781 at 1, 3, and 5 years, respectively (Fig. 2K). The 
AUC values for risk score for the test cohort were 0.750, 
0.738, and 0.723 at 1, 3, and 5 years, respectively (Fig. 2L).

Evaluating prognostic signature in different subtypes 
of sarcoma
Considering the heterogeneity of liposarcoma, the prog-
nostic values of the signature in different subtypes of sar-
coma were evaluated. The research results indicate that 
apart from synovial sarcoma and nerve sheath tumors, 

Fig. 2  The prognostic ability of the signature. A-F Mortality in the entire, train and test cohorts, respectively. G-I Kaplan–Meier survival analysis 
of overall survival of SARC by in the entire, train and cohorts, respectively. J-L The ROC curve analysis was performed in entire, train and cohorts, 
respectively
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the signature has a good predictive ability for the remain-
ing subtypes of sarcoma, including fibromatosis, leio-
myosarcoma, liposarcoma, and undifferentiated sarcoma 
(Fig. 3).

Predictive signature validation using TARGET‑OS cohort
The TARGET-OS samples were treated as a valida-
tion dataset to test the reliability of the signature. PCA 
showed that patients were divided into two different 

Fig. 3  The prognostic value of prognostic signature in different subtypes of sarcoma. Kaplan–Meier survival analysis in different subtypes 
of sarcoma, including fibromatosis (A), leiomyosarcoma (B), liposarcoma (C), undifferentiated sarcoma (D), synovial sarcoma (E) and nerve sheath 
tumors (F)

Fig. 4  Validation of prognostic ability of the signature. A PCA of TARGET-OS samples based on the median risk score. B Kaplan–Meier survival 
analysis of overall survival of TARGET-OS cohort. C, D Mortality in the two risk groups in the TARGET-OS cohort
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directions (Fig. 4A). The high-risk patients had a poorer 
prognosis (Fig.  4B). Patients with high-risk scores had 
higher mortality (Fig. 4C, D).

PPARD as a Carcinogen of Osteosarcoma
Because PPARD has the highest risk coefficient in uni-
Cox analysis, it was selected for experimental verifica-
tion in osteosarcoma. We first evaluated the protein 

expression profiles of PPARD in osteosarcoma cell lines 
and osteoblast. We found that PPARD was highly 
expressed in osteosarcoma cell lines, and the high-
est expression was found in MG-63 and Saos-2 cells 
(Fig. 5A). Next, we established PPARD knockdown stable 
cell lines in MG-63 and Saos-2, respectively (Fig. 5B). We 
found that sh-#1 knockdown effect was the most obvious, 
so we chose sh-#1 for subsequent experiments. Through 

Fig. 5  PPARD is raised in osteosarcoma and inhibits osteosarcoma cell proliferation and transfer. A Cellular lysates from osteoblasts and different 
osteosarcoma cell lines were collected for immunoblotting. The PPARD expression is quantified by ImageJ software in the corresponding column 
at right. B The expression level of PPARD in MG-63 and Saos-2 cells after knockdown. C Detection of proliferation rate of MG-63 and Saos-2 cells 
by CCK-8 after PPARD knockdown. D The ability of colony formation in MG-63 and Saos-2 cells after PPARD knockdown. Cell numbers are quantified 
in the corresponding column at right. E, F The wound healing showing the migration of MG-63 and Saos-2 cells after knockdown PPARD, scale 
bar = 200 μm. The results are quantified in the corresponding column at right
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CCK8, and cloning experiments, our data showed that 
the knockdown of PPARD significantly inhibited the 
proliferation of MG-63 and Saos-2 (Fig.  5C, D). The 
wound-healing assays presented inhibition of metastatic 
abilities of MG-63 and Saos-2 cells by PPARD knock-
down (Fig. 5E, F).

The status of immune cells infiltration in different risk 
groups
To elucidate the relationship between risk score and 
the status of immune cell infiltration, bioinformatics 
analysis was performed with different algorithms by 
TIMER2.0 online tool. The results showed that different 
platforms and different immune cells were correlated 
with risk score differently, but they could roughly show 
a negative correlation between risk score and the sta-
tus of immune cell infiltration (Fig. 6A). In other words, 
immunosuppression was present in the high-risk 
group, and the low-risk group was in a state of immune 

activation. In addition, the results of ssGSEA showed 
that the scores of immune cells and immune-related 
pathway were higher in the low-risk group (Fig. 6B, C). 
The differential expression analysis of immune check-
point-related genes was performed and results showed 
that the expression of 17 genes (including CD-274 (PD-
L1), PDCD-1 (PD-1) and CTLA4) was elevated in the 
low-risk group (Fig.  6D). Subsequently, we performed 
immune score (ESTIMATE score, immune score and 
stromal score) analysis, which showed higher results in 
the low-risk group (Fig. 6E-G).

Immunotherapy and chemotherapy response
In this study, we evaluated the response of SARC patients 
to immune checkpoint blockade. The results showed that 
SARC with low-risk score had higher TIDE score and T 
cell dysfunction score than the patients with high-risk 
score (Fig. 7A, B). In contrast, the T cell exclusion score 
was higher in the high-risk group (Fig. 7C). This revealed 

Fig. 6  Differences in immune status between the two risk groups. A The bubble chart of correlation between immune cells and risk score. B, C 
The immune cell subtypes and immune-related functions and pathways were analyzed by single-sample gene set enrichment analysis. D The 
expression of immune checkpoints in the two risk groups. E–G The difference of immune microenvironment (ESTMATE, immune and stromal score) 
between high-risk and low-risk groups
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that SARC patients with higher risk score had a better 
response to anti-immune checkpoint therapy. Subse-
quently, "pRRophetic" algorithm was performed to pre-
dict the sensitivity to chemotherapeutic drugs. Compared 
with low-risk group, high-risk group is more sensitive to 
doxorubicin, etoposide and vinblastine (Fig.  7D-F). In 
brief, we identified a PARGs-related signature to predict 
immunotherapy and chemotherapy response in SARC.

Molecular subtypes constructed based on PARGs
Consensus clustering was performed based on the 
expression profiles of the 7 PARGs. k = 3 was deter-
mined as the best cluster stability from k = 2 to 9, which 
showed maximum intra-group correlation and low inter-
group correlation, indicating the feasibility of classifying 
patients into C1 (n = 72), C2 (n = 72) and C3 (n = 115) 
subtypes (Fig.  8A). Consensus cumulative distribution 
function (CDF) plots showed that the CDF reached an 
approximate maximum at k = 3 and that the classification 
was stable (Fig. 8B-D). PCA showed that the three clus-
ters were clearly separated (Fig. 8E). Sankey plots showed 
that the C1 group corresponded to the low-risk group 
(Fig. 8F). Patients with Cluster1 had a better overall sur-
vival as shown by the K–M curve (Fig. 8G). By compar-
ing the differences of TME score among the three cluster 

groups, we found that patients in the Cluster 1 group had 
higher TME scores (Fig. 8H-J).

Discussion
Sarcoma is the largest and most heterogeneous group 
of rare cancers [33, 34]. The main pillar of radical SARC 
treatment is surgery, which is usually sufficient for low-
grade tumors [35]. However, once metastasis occurs, the 
median survival of patients is often unsatisfactory [36]. 
Reliable and sensitive biomarker is essential for early 
diagnosis, inhibition of disease progression and improved 
prognosis.

In this study, we built a PARGs (ALDH1A1, DHRS12, 
HNMT, PPARD, SLC16A1, SLC7A7 and SOD3) signa-
ture through the TCGA-SARC cohort, and its ability to 
predict prognosis was verified in external TARGET-OS 
cohort. Patients in the high-risk group had shorter OS 
in both the TCGA-SARC and TARGET-OS cohorts. The 
results indicated that the PARGs signature is a valuable 
predictor of prognosis for SARC patients.

According to previous studies, these PARGs are 
involved in tumorigenesis. ALDH1A1, as a key ALDH1 
isoenzyme associated with stem cell populations, is 
a cancer stem cell (CSC) marker and involves in self-
renewal and differentiation in many solid tumors [37]. 

Fig. 7  Prediction of immunotherapy. A-C The difference of TIDE score, T cell dysfunction score and T cell exclusion between the two risk groups. 
D-F The difference of sensitivity of three common chemotherapeutic drugs to the two risk groups
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DHRS12 inhibits osteosarcoma proliferation and metas-
tasis via the Wnt3a/β-catenin pathway [38]. SOD3 over-
expression inhibits sarcoma cell proliferation, migration 
and metastasis [39].

PPARD is one of the three main isotypes of peroxi-
some proliferator-activated receptors (PPARs), which 
has been widely studied in cancer. The high expression of 
PPARD is associated with the activation of various onco-
genic signaling pathways, including K-Ras, Wnt, and Src 
[40–42]. PPARD is up-regulated in many cancers, includ-
ing lung cancer, colon cancer, and breast cancer [43–45]. 
Fatty acids, as natural active ligands of PPARD, could 
promote colorectal tumorigenesis [46]. PPARD promotes 

vascular repair after ischemia through its interaction 
with HIF1α [47]. PPARD agonists promote the expres-
sion of platelet-derived growth factor receptor beta, 
platelet-derived growth factor subunit B, and the tyros-
inkinase KIT to promte tumor angiogenesis and progres-
sion [48]. We speculate that these are the reasons why it 
promotes osteosarcoma cell metastasis. Although some 
PARGs had been studied in SARC, their biological func-
tions and molecular mechanisms remained unclear.

The sarcoma immune status can have a better under-
standing by biomarkers, which may help to decipher 
the reasons for different responses to immunotherapy 
[49–51]. Subsequently, immune cell infiltration in the 

Fig. 8  Consensus clustering of 7 PARGs. A Consensus clustering matrix for k = 3. B Consensus clustering CDF with k = 2–9. C The tracking plot 
for different k. D The area under the CDF curve for different k. E PCA of TARGET-OS samples according to the clustering. (F) The Sankey diagram 
of the two risk groups and the three clusters. G The survival estimates of the two clusters. H-J The difference of immune microenvironment 
(ESTMATE, immune and stromal score) in the three clusters
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tumor microenvironment was examined between the 
low-risk and high-risk groups. The results showed that 
the two groups had significantly different immune cell 
infiltration characteristics. Interestingly, we found that 
the level of immune cell infiltration, especially B and T 
cells, was higher in the low-risk group than in the high-
risk group. The level of CD4 T cell infiltration was posi-
tively associated with the prognosis of patients with 
dedifferentiated liposarcoma [52]. These findings sug-
gest that the PARGs signature can estimate the immune 
status of SARC patients. The higher level of infiltra-
tion of immune activated cells contributes to a better 
immune response against cancer cells, which could 
explain the improved prognosis observed in the low-
risk group. Further assessing the relationship between 
the risk score and the benefits of immune checkpoint 
blockade therapy and chemotherapy, we found that 
patients with high-risk responded better to immune 
checkpoint blockade therapy compared to patients with 
low-risk. The high-risk group was more sensitive to the 
most commonly used chemotherapy regimens in SARC 
(doxorubicin, etoposide and vinblastine) and anti-
immune checkpoint therapy.

In summary, a PARGs signature for SARC was con-
structed by the TCGA cohort and validated with TAR-
GET-OS cohort. The risk signature performed well in 
predicting patient survival. In addition, we identified 
the relationship between PARGs-related risk score and 
immune cell infiltration in TME. The following analysis 
confirms the prediction of PARGs scores for response to 
immune checkpoint blockade therapy and chemother-
apy. Our study provides a promising prognostic feature 
to guide the individualized treatment of SARC patients.
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