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Abstract 

Background  The application of molecular targeting therapy and immunotherapy has notably prolonged the survival 
of patients with hepatocellular carcinoma (HCC). However, multidrug resistance and high molecular heterogeneity 
of HCC still prevent the further improvement of clinical benefits. Dysfunction of tumor-infiltrating natural killer (NK) 
cells was strongly related to HCC progression and survival benefits of HCC patients. Hence, an NK cell-related prog-
nostic signature was built up to predict HCC patients’ prognosis and immunotherapeutic response.

Methods  NK cell markers were selected from scRNA-Seq data obtained from GSE162616 data set. A consensus 
machine learning framework including a total of 77 algorithms was developed to establish the gene signature 
in TCGA–LIHC data set, GSE14520 data set, GSE76427 data set and ICGC–LIRI–JP data set. Moreover, the predictive 
efficacy on ICI response was externally validated by GSE91061 data set and PRJEB23709 data set.

Results  With the highest C-index among 77 algorithms, a 11-gene signature was established by the combination 
of LASSO and CoxBoost algorithm, which classified patients into high- and low-risk group. The prognostic signature 
displayed a good predictive performance for overall survival rate, moderate to high predictive accuracy and was an 
independent risk factor for HCC patients’ prognosis in TCGA, GEO and ICGC cohorts. Compared with high-risk group, 
low-risk patients showed higher IPS–PD1 blocker, IPS–CTLA4 blocker, common immune checkpoints expression 
but lower TIDE score, which indicated low-risk patients might be prone to benefiting from ICI treatment. Moreover, 
a real-world cohort, PRJEB23709, also revealed better immunotherapeutic response in low-risk group.

Conclusions  Overall, the present study developed a gene signature based on NK cell-related genes, which offered 
a novel platform for prognosis and immunotherapeutic response evaluation of HCC patients.
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Introduction
Hepatocellular carcinoma (HCC), originating from 
hepatocytes, is the dominant subtype in primary liver 
cancer and is characterized with high incidence, delayed 
diagnosis and poor prognosis [1]. Although major risk 
factors, such as HBV infection, HCV infection, Aflatoxin 
B1 exposure, liver cirrhosis, non-alcoholic fatty liver dis-
ease (NAFLD) and alcohol abuse, have been ascertained 
and widely publicized for a long time, the incidence of 
HCC has been growing in many countries, including 
developed countries in Europe and North America [2, 
3]. In addition, by 2025, an estimated incidence of over 
1 million cases annually will cause a large burden of dis-
ease across the world [4]. Owing to no specific symptoms 
at early stages, insensitivity of traditional biomarkers and 
the lack of large-scale imaging screening program, only 
about 30% of patients are clinically diagnosed in early 
stages [5], which also partly contributed to the dismal 
overall 5-year survival rate of less than 20% [6]. In the 
past two decades, more optional treatment strategies are 
offered to patients with HCC, mainly including immu-
notherapy and molecular targeted therapy [7]. However, 
only a minority of patients can benefit from each regi-
men. Thus, tailored therapy concept is proposed and the 
related mechanisms to select right regimen are fiercely 
discussed by researchers. With the rapid growth in 
genomics research, high molecular heterogeneity of HCC 
is detected and is considered as one of the critical factors 
to affect prognosis and therapeutic effects [8]. Hence, it is 
of great significance to investigate novel biomarkers for 
the prediction of prognosis and treatment effect through 
high-throughput sequencing data.

Tumor immune microenvironment (TIME) con-
sists of tumor cells, various immunocytes, stromal cells 
and related extracellular matrix molecules [9]. Though 
immune system mainly exerts functions of eliminat-
ing cancer cells, cancer cells can escape from immune 
killing and form an immunosuppressive microenviron-
ment [10]. Therefore, a growing number of studies focus 
on the associations between tumor phenotypes and 
changes in TIME and confirm that TIME acts a signifi-
cant role in cancer initiation and development [11, 12]. 
Natural killer (NK) cell is one of classical cytotoxic cells 
and innate immune members that can identify and elimi-
nate damaged or stressed cells [13]. In liver tissues, NK 
cells account for 50% of the lymphocyte population [14]. 
Unlike acquired immunity, NK cells identify target cells 
via a cascade of germline-encoded surface receptors, and 
the functions of NK cells is tightly modulated by activat-
ing and inactivating signals from these receptors [15]. 
In tumor immunity, NK cells rapidly detect tumor cells, 
directly kill tumor cells and promote immune response 
mediated by T cells, thus inhibiting cancer occurrence 

and development [13]. Previous studies revealed 
decreased infiltrating levels of NK cells in many human 
cancer types, including gastric cancer, esophageal cancer, 
breast cancer and colorectal carcinoma [16–18]. In addi-
tion, high NK cell infiltration levels in tumor tissues are 
considered as biomarkers correlated to better prognosis 
[19–21]. In addition, high NK cell activity in peripheral 
blood is related to reduced risk of malignancy [22]. As 
for cancer immunotherapy, NK cell-based treatment has 
grown rapidly for decades, and its safety and efficacy are 
widely validated by clinical trials, therefore, becoming a 
vital domain of immunotherapy innovation [23]. Previ-
ous publications have systematically elucidated molecu-
lar features of NK cells in bladder cancer, low-grade 
glioma and neuroblastoma [24–26] and have attempted 
to build up NK-cell-related gene signature in lung adeno-
carcinoma, head and neck squamous cell carcinoma, and 
glioma [27–29], while related studies concerning HCC 
are still rare.

Single-cell sequencing technology offers an unprec-
edented opportunity to deepen our understanding on 
the transcriptomic, genomic, proteomic, epigenomic and 
metabolomic information of individual cells. In recent 
years, using single-cell RNA sequencing (scRNA-seq) 
data to identify immune phenotypes and novel immune 
cell-related functional biomarkers in tumor microenvi-
ronment becomes feasible and popular [30–32]. In the 
present study, we combined scRNA-seq data and bulk 
RNA-seq data of HCC to illuminate molecular character-
istics of tumor-infiltrating NK cells and to screen out NK 
cell markers. Using bulk RNA-seq data and correspond-
ing survival data from 4 independent cohorts, an NK cell 
marker-related prognostic signature based on 77 funda-
mental or combined machine learning algorithms was 
next developed and validated, and its associations with 
immune cell infiltration, immune checkpoint blockade 
response, chemotherapy sensitivity were further investi-
gated. This work may provide some new ideas on progno-
sis evaluation and immunotherapy of patients with HCC, 
thereby promoting the development of individualized 
treatment and improving patients’ prognosis.

Materials and methods
Data acquisition and preparation
A total of 7 data sets, containing gene expression data 
and corresponding clinical data, were enrolled to per-
form the present study. The TCGA–LIHC data set 
(n = 370) from The Cancer Genome Atlas (TCGA) 
database (https://​portal.​gdcca​ncer.​gov/​repos​itory) was 
used to establish the prognostic model as the train-
ing group and to perform a series of analyses related 
to prognosis-related genes selection, somatic muta-
tion, immune microenvironment, immune checkpoint 

https://portal.gdccancer.gov/repository
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inhibitor (ICI) response and chemotherapy sensitivity. 
GSE14520 data set (n = 242) and GSE76427 data set 
(n = 115) from Gene Expression Omnibus (GEO) data-
base (https://​www.​ncbi.​nlm.​nih.​gov/​geo/), and ICGC–
LIRI–JP data set (n = 260) from International Cancer 
Genome Consortium (ICGC) database (https://​dcc.​
icgc.​org/) were utilized to verify the predictive power 
of the prognostic model. The single-cell RNA-seq data 
were obtained from 3 HCC samples (GSM4955419, 
GSM4955421, and GSM4955426) in GSE162616 data 
set from GEO database [33]. Moreover, the two immu-
notherapy cohorts, GSE91061 and PRJEB23709 data 
set from GEO database, were also used to externally 
validate the predictive power of ICI response of the 
model.

The inclusion criteria used to perform analyses in 
the present study were as follows: 1. patients with a 
pathological diagnosis of HCC. 2. Patients with com-
plete RNA-seq data and survival data (survival time 
and survival status). The exclusion criteria were: 
1. duplicate samples. 2. Patients with preoperative 
anti-HCC therapy. 3. Samples from recurrent HCC 
patients. 4. Patients with other malignancy history. 5. 
Patients died within 1 month after surgery. After these 
data cleansing processes, the demographic and clinico-
pathological data of the 7 abovementioned data sets 
was summarized in Additional files 1 to 7, respectively.

Single‑cell RNA‑seq data analysis
Through “Seurat” package in R, the original scRNA-
seq data were transformed into Seurat format and 
was standardized by LogNormalize approach. To 
ensure the quality of scRNA-seq data analysis, we per-
formed the quality control process through excluding 
the genes expressed in less than 5 single cells, cells 
expressed less than 50 genes, and cells with mitochon-
dria proportion of over 5%. Next, the top 1500 highly 
variable genes were distinguished by “FindVariableFea-
tures” function in “Seurat” package. Using “RunPCA” 
function, principal components analysis (PCA) based 
on these 1500 genes was conducted to achieve the 
dimensional reduction of scRNA-Seq data. Accord-
ing to t-distributed stochastic neighbor embedding 
(t-SNE) algorithm, unsupervised clustering and unbi-
ased visualization of cell populations in the top 20 
PCs were shown in two-dimensional maps. Setting the 
threshold of |log2 (fold change)| of more than 1 and 
adjusted P value of less than 0.05, “FindAllMarkers” 
function selected out marker genes of each cluster. 
Finally, R package “SingleR” annotated cell subtypes in 
different clusters.

Weighted gene co‑expression network construction 
and module identification
Weighted correlation network analysis (WGCNA) was 
often used to identify clusters or modules of highly asso-
ciated genes. Unlike the conventional method to screen 
out potential biomarkers only based on differentially 
expressed genes, WGCNA could also associate mod-
ules with one another and with phenotypes, and assess 
their correlation strength [34]. Using the expression pro-
file and corresponding clinical data from TCGA–LIHC 
data set, a scale-free co-expression network was estab-
lished by “WGCNA” package. The soft-threshold value 
was selected when the independence degree reached 
0.9. Thirty was set as the minimum of module size. The 
correlations between marker genes in each module and 
survival status, and survival time were evaluated by 
Pearson’s correlation analysis. The optimal module was 
selected through comprehensively considering the coef-
ficient and P value.

Survival analysis and signature establishment 
via integrated machine learning framework
The prognostic performance of the gene markers in 
the selected module was analyzed by univariate Cox 
regression analysis. The genes with P value of less than 
0.05 were defined as prognosis-related genes. Next, the 
expression matrices and corresponding survival data of 
these prognosis-related genes were brought into our inte-
grated machine learning framework containing a total of 
10 machine learning algorithms and 77 combinations to 
find out the optimal algorithm to build up the prognos-
tic signature. Of these 10 machine learning algorithms, 
survival support vector machine (SurvivalSVM), Cox-
Boost, least absolute shrinkage and selection operator 
(LASSO), supervised principal components (SuperPC), 
elastic network (Enet), StepCox, Ridge regression, partial 
least squares regression for Cox (plsRcox), random for-
est (RSF) and gradient boosting machine (GBM) were 
classical algorithms, their statistical characteristics were 
described in the previous study [35]. RSF, LASSO, Cox-
Boost and StepCox algorithm could be utilized for fea-
ture selection. Hence, the combined algorithms included 
at least one of the abovementioned four classical algo-
rithms. TCGA–LIHC data set worked as the training 
cohort, while GSE14520 data set, GSE76427 data set and 
ICGC–LIRI–JP data set worked as the validation cohorts. 
In this process, C-indices of corresponding algorithm 
in the 4 data sets was calculated. The optimal algorithm 
was chosen according to the highest average C-index 
among the 4 data sets. Based on the selected algorithm, 
each HCC patient in the 4 data sets was scored. Set-
ting the median risk score as the cutoff, patients were 

https://www.ncbi.nlm.nih.gov/geo/
https://dcc.icgc.org/
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classified into high- and low-risk groups. Afterward, the 
overall survival (OS) curves between these two groups 
in TCGA–LIHC data set and other 3 validation cohorts 
were compared by Kaplan–Meier method. Using R pack-
age “timeROC”, time ROC analysis and clinical ROC 
analysis were enrolled to evaluate the predictive accu-
racy of our model. Moreover, univariate and multivariate 
Cox regression analysis were also conducted to explore 
whether the risk score was an independent indicator to 
predict the prognosis of HCC patients.

Nomogram construction and external comparison 
among signatures
The above integrated machine learning framework deter-
mined the optimal algorithm to build up the risk model. 
In addition, the power of the risk model in prognostic 
evaluation was assessed by survival curves, ROC curves 
and Cox regression analysis. For better correlating with 
clinical practice, a nomogram combining the risk score 
and clinical parameters, including age, gender and clini-
cal stage, was plotted through “rms” package in R. The 
corresponding calibration plot was also constructed to 
compare the fitting degree between the ideal and the 
actual survival probabilities. In addition, using “Deci-
sionCurve” package, decision curve analysis (DCA) was 
also conducted to evaluate predictive accuracy of the 
nomogram. We also focused on whether the predictive 

performance of our model surpassed that of published 
signatures. Harrell’s concordance index (C-index) was 
widely used to describe the fitting degree between pre-
dicted value and actual value of Cox model in survival 
analysis. The C-indices of enrolled signatures were visu-
alized by R package “CompareC”.

Somatic mutation analysis and landscape of immune 
microenvironment
Continuous accumulation of somatic mutations induces 
cancer occurrence and promotes cancer development 
[36]. The overall somatic mutation categories and fre-
quencies of the samples in TCGA–LIHC data set were 
acquired from UCSC Xena (https://​xena.​ucsc.​edu/) and 
were visualized by R package “maftools”. Next, we down-
loaded the mutation annotation format files from TCGA 
database and then used “maftools” package to calculate 
tumor mutation burden (TMB) of each sample. TMB 
was defined as an applied biomarker to identify potential 
beneficiaries for ICI treatment, and the detailed statisti-
cal processing and calculation methods were described 
by Chalmers et  al. [37]. Estimation of stromal and 
immune cells in malignant tumor tissues using expres-
sion data (ESTIMATE) algorithm was used to predict 
tumor purity and the infiltrating status of stromal cells 
and immune cells [38]. In the current study, we also cal-
culated and compared the ImmuneScore, StromalScore, 

Fig. 1  Identification of NK cell markers using scRNA-Seq data analysis. A Quality control process of scRNA-Seq data from 3 HCC samples. B 
Association between the detected gene numbers and the sequencing depth. C Identification of the top 1500 highly variable genes in scRNA-Seq 
data. D Identification of the top 20 PCs by PCA. E Visualization of the 22 clusters through the UMAP algorithm. F Cell subpopulations classified 
by marker genes

https://xena.ucsc.edu/
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ESTIMATEScore and tumor purity in high- and low-risk 
group. To more precisely reflect the immune microen-
vironment in HCC tissues, the infiltration levels of 16 
different kinds of immune cells and relative immune 
functional scores in high- and low-risk patients were 
then visualized via R package “GSVA”.

Gene set enrichment analysis
Different from traditional gene function analysis meth-
ods, gene set enrichment analysis (GSEA) derives its 
power through integrating the information from the 
genes with similar molecular characteristics or biological 
function, thereby flexibly and comprehensively reveal-
ing common biological pathways of the gene group [39]. 
Based on “GSVA” and “GSEABase” package in R, GSEA 
was adopted to evaluate different molecular functions 
and pathways between high- and low-risk group. Fur-
thermore, the threshold of FDR and q value was set as 
0.05 and 0.2, respectively.

ICI response prediction and drug sensitivity prediction
As one of the important methods of cancer immuno-
therapy, ICI treatment has revolutionized treatment 
prospects of various cancer types, prolonging the sur-
vival time of many patients and offering more therapy 
options for cancer patients [40]. According to the expres-
sion profile in TCGA–LIHC data set and R package 
“ggpubr”, the expression levels of some reported immune 
checkpoint genes and human leukocyte antigen (HLA)-
related genes were compared between high- and low-risk 
groups. In previous study, the tumor immune dysfunc-
tion and exclusion (TIDE) score was considered as an 
effective predictor for anti-PD1 or anti-CTLA4 therapy 
[41]. Immunophenoscore (IPS) was calculated accord-
ing to the four main components, including effector 
cells, immune checkpoints, immunosuppressive cells 
and major histocompatibility complex molecules, and a 
higher IPS was related to increased immunogenicity [42]. 
We, respectively, downloaded TIDE score and IPS from 
the TIDE platform (http://​tide.​dfci.​harva​rd.​edu) and The 
Cancer Immunome Atlas (TCIA) (https://​tcia.​at/​home) 
and compared them between high- and low-risk patients.

Because publicly accessible cohort focusing on HCC 
patients’ ICI response was lacking, we could only enroll 
two immunotherapy cohorts comprising patients with 
advanced melanoma, GSE91061 data set (anti-PD1 treat-
ment) and PRJEB23709 data set (anti-PD1 treatment or 
combined anti-PD1/anti-CTLA4 treatment), to externally 
verify the predictive power of the risk model on response 
of ICI therapy. GSE91061 cohort and PRJEB23709 cohort 
included 68 and 120 patients with advanced melanoma, 
respectively. Of these patients, complete follow-up 
records and RNA-seq data of 57 patients in GSE91061 

cohort and 73 patients in PRJEB23709 cohort were pro-
vided. According to the therapeutic response defined by 
RECIST 1.1 criteria, patients were divided into respond-
ers (complete response (CR)/partial response (PR)) and 
non-responders [stable disease (SD)/progressive disease 
(PD)]. The similar study design was also shown in previ-
ous publications [43, 44].

Half maximal inhibitory concentration (IC50) was usu-
ally used in drug sensitivity assessment, and a higher 
IC50 value was correlated with lower drug sensitiv-
ity [45]. From Genomics of Drug Sensitivity in Cancer 

Fig. 2  Weighted correlation network analysis to identify the NK cell 
markers correlated with survival time or survival status. A Optimal 
soft threshold power selection. B Clustering dendrogram of the 3 
modules with different colors. C The relationship between each 
module and survival time, and survival status

http://tide.dfci.harvard.edu
https://tcia.at/home
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(GDSC) (https://​www.​cance​rrxge​ne.​org/), we collected 
IC50 data of several chemotherapy drug or molecu-
lar targeted drug used against HCC. Using R package 

“oncoPredict”, IC50 value of each drug was visualized and 
compared between high- and low-risk patients.

Fig. 3  Univariate Cox regression analysis identified 59 prognosis-related markers from the 245 NK cell markers selected by WGCNA

https://www.cancerrxgene.org/
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Statistical analysis
In the present study, R software version 4.1.2 and Graph-
Pad Prism 9.5.0 was utilized in data processing, statisti-
cal analysis and data visualization. Comparisons between 

two groups were assessed by Student’s t test or Wilcoxon 
test. Kruskal–Wallis test was conducted in comparisons 
among three groups or above. A two-sided P value of less 
than 0.05 was considered significant.

Results
NK cell markers identification by single‑cell RNA‑seq data
The flow diagram concerning study design was shown 
in Additional file 8. The single-cell RNA-seq data were 
from 3 HCC samples, GSM4955419, GSM4955421, 
and GSM4955426, in GSE162616 data set. Numbers 
of detected genes and sequencing depth in each sam-
ple were visualized in Fig.  1A, and a strongly positive 
association based on Pearson’s correlation test was 
observed between the detected gene numbers and the 
sequencing depth (cor = 0.88, P value < 0.05, Fig.  1B). 
Then, the quality control processes were conducted to 
exclude the cells with low-quality, and 24,653 cells were 
finally selected out to perform subsequent analyses. In 
these cells, the standardized gene expression matrices 
were compared to find out top 1500 highly variable 
genes (Fig.  1C). The related data were dimensionally 
reduced by the PCA method, and top 20 PCs were dis-
tinguished with P value of less than 0.05 (Fig. 1D). The 
20 PCs were then classified into 22 clusters through 
t-SNE algorithm, which were later translated to known 
cell types (Fig. 1E, F), including NK cells, T cells, mono-
cytes, macrophages, B cells, hepatocytes and eryth-
roblasts. The corresponding markers in each cell type 
were summarized in Additional file  9, which included 
404 NK cell markers.

Weighted gene co‑expression network analysis 
and module identification
Using the genomic data from TCGA–LIHC cohort, the 
expression matrices of the 404 NK cell markers were 
obtained. According to the above data, weighted gene co-
expression network analysis was performed to screen out 
the survival-related markers form the 404 NK cell-related 
genes. The index of scale-free topologies (R2) of 0.9 cor-
responded to a lowest soft threshold value of 6 (Fig. 2A). 
The 404 genes were then classified into different modules 
and eventually formed the blue module, the turquoise 
module and the grey module (Fig.  2B). The survival-
related module was selected using Pearson’s correlation 
test, and corresponding correlation coefficient and P 
value of each module were visualized in Fig. 2C. Of these 
3 modules, the turquoise module was positively corre-
lated with survival status (cor = 0.14, P value = 0.005), and 
a total of 245 genes were included in the turquoise mod-
ule (Additional file 10).

Fig. 4  Generation of the NK cell-related signature through consensus 
machine learning framework, including a total of 77 independent 
or combined machine learning algorithms
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Survival analysis and prognostic signature establishment
The prognostic performance of the 245 NK cell mark-
ers associated with survival status of HCC patients was 
assessed by univariate Cox regression analysis, and 59 
markers were finally identified as prognosis-related mark-
ers using TCGA–LIHC data set (all P value < 0.05, Fig. 3). 
Integrated framework including 77 fundamental or com-
bined machine learning algorithms was used to develop 
a consensus prognostic model based on the 59 prog-
nosis-related markers. The C-index of each model was 

calculated in TCGA–LIHC cohort, GSE14520 cohort, 
GSE76427 cohort and ICGC–LIRI–JP cohort. With a 
leading average C-index of 0.671 among the 4 cohorts, 
a combination of LASSO and CoxBoost algorithm was 
considered as the optimal algorithm to construct prog-
nostic model (Fig. 4). The 59 markers were first enrolled 
to perform LASSO regression analysis to selected out 
with the minimum partial likelihood deviance and mark-
ers with nonzero LASSO coefficients. These markers 
were next analyzed by CoxBoost proportional hazards 

Fig. 5  Prognostic model construction and validation. Gene expression status, patients’ survival status, risk score distribution and OS plots 
of high-risk group and low-risk group in TCGA–LIHC data set (A), GSE14520 data set (B), GSE76427 data set (C) and ICGC–LIRI–JP data set (D). Clinical 
ROC curves for predicting survival rate in TCGA–LIHC data set (E), GSE14520 data set (F), GSE76427 data set (G) and ICGC–LIRI–JP data set (H). Time 
ROC curves to predict 1-year, 3-year and 5-year survival rate in TCGA–LIHC data set (I), GSE14520 data set (J), GSE76427 data set (K) and ICGC–LIRI–JP 
data set (L)
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regression, and 11 markers, including KLRB1, CFL1, 
LDHA, BSG, ATP1B3, SERBP1, UBE2L3, PCBP2, ENO1, 
OPTN and LMO4, were identified to construct prognos-
tic model. The risk score of each patient was calculated 
according to the expression level weighted by corre-
sponding regression coefficients.

In TCGA–LIHC cohort, HCC patients in high-risk 
group showed a worse prognosis than low-risk patients 
(P value < 0.001, Fig.  5A). Similar survival outcomes 
were also detected in GSE14520 cohort (P value < 0.001, 

Fig. 5B), GSE76427 cohort (P value = 0.011, Fig. 5C) and 
ICGC–LIRI–JP cohort (P value < 0.001, Fig. 5D). The risk 
score classification, survival status and gene expression 
of single patient in the above 4 cohorts were also shown. 
Next, ROC method was utilized to evaluate predictive 
efficacy of the prognostic signature. In TCGA–LIHC 
cohort, the AUCs for age, gender, clinical stage and risk 
score were 0.499 0.513, 0.703 and 0.816, respectively 
(Fig. 5E). In GSE14520 cohort, the AUCs for age, gender, 
clinical stage and risk score were 0.570, 0.535, 0.689 and 

Fig. 6  Cox regression analysis considering age, gender, clinical stage and risk score in TCGA–LIHC data set, GSE14520 data set, GSE76427 data set 
and ICGC–LIRI–JP data set. Univariate method (A) and multivariate method (B)
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0.622, respectively (Fig.  5F). In GSE76427 cohort, the 
AUCs for age, gender, clinical stage and risk score were 
0.603, 0.575, 0.753 and 0.662, respectively (Fig.  5G). In 
ICGC–LIRI–JP cohort, the AUCs for age, gender, clinical 
stage and risk score were 0.530, 0.421, 0.659 and 0.725, 
respectively (Fig.  5H). As for time ROC analysis, the 
1-year survival, 3-year survival and 5-year survival AUCs 
in TCGA–LIHC cohort were 0.816, 0.741 and 0.722 
(Fig. 5I). The 1-year survival, 3-year survival and 5-year 
survival AUCs in GSE14520 cohort were 0.622, 0.635 and 
0.661 (Fig.  5J). The 1-year survival, 3-year survival and 
5-year survival AUCs in GSE76427 cohort were 0.668, 
0.662 and 0.617 (Fig. 5K). the 1-year survival, 3-year sur-
vival and 5-year survival AUCs in ICGC–LIRI–JP cohort 
were 0.780, 0.725 and 0.750 (Fig. 5L). These ROC results 
revealed our signature had a good performance in prog-
nostic assessment of HCC patients. To verify whether 
the risk score was the independent prognostic indica-
tor for HCC patients, univariate and multivariate Cox 

regression analysis considering age, gender, clinical stage 
and risk score were performed in TCGA–LIHC cohort, 
GSE14520 cohort, GSE76427 cohort and ICGC–LIRI–JP 
cohort, respectively (Fig.  6A, B). To further expand our 
results, we also conducted univariate and multivariate 
Cox regression analysis considering age, gender, race, 
clinical stage, Child–pugh grade, tumor grade and risk 
score in TCGA–LIHC data set (Additional file  11A, B), 
which showed the similar results with Fig. 6A, B. These 
analyses suggested risk score was one of the independent 
risk factors for HCC patients’ survival.

Nomogram construction and comparison with other 
signatures
To offer clinicians with a more quantitative method for 
prognostic assessment, prognostic nomograms combin-
ing age, gender, clinical stage and risk score were estab-
lished in TCGA–LIHC cohort. Each patient would get 

Fig. 7  Nomogram establishment and performance assessment. A Nomogram considering age, gender, risk score and clinical stage to predict 
1-year, 3-year and 5-year survival rate of LIHC patients. Calibration plots (B) and clinical ROC curves (C) to illustrate the predictive efficacy 
of the nomogram. D Decision curves to reveal the potential clinical application valuation of the nomogram
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a score from corresponding clinical parameter, and a 
higher total score was related to a worse survival out-
come (Fig.  7A). In 1-year, 3-year and 5-year calibration 
plots, there was a relatively good fitting between actual 
model and ideal model (Fig. 7B). The clinical ROC curve 
indicated the nomogram had a good predictive efficacy 
with the AUC value of 0.789 (Fig. 7C). Furthermore, the 
decision curves also indicated the high potential of our 
nomogram in clinical utility (Fig. 7D). To further enrich 
our study, we also built up a nomogram and correspond-
ing 1-year, 3-year and 5-year calibration plots consider-
ing the 7 clinical parameters, including age, gender, race, 
clinical stage, Child–pugh grade, tumor grade and risk 
score in TCGA–LIHC data set (Additional file 12A and 

B). The AUC value of the nomogram was 0.798, which 
was comparatively high among these clinical factors 
(Additional file  12C). Furthermore, the decision curve 
also revealed the nomogram had a relatively good pre-
dictive power for HCC patients, prognosis (Additional 
file 12D).

To further verify the predictive efficacy of our prog-
nostic signature, other 10 prognostic signatures were 
enrolled from previous publications [46–55]. The pro-
cesses of target gene selection, risk score calculation and 
risk model establishment all obeyed the corresponding 
original text, and the genomic and clinical data were from 
TCGA–LIHC data set. Survival plots and corresponding 
time ROC curves were listed in Additional file  13 and 
Additional file 14, respectively (all P value < 0.05). C-indi-
ces of the 11 prognostic signatures were also compared 
and visualized in Fig. 8A, B. A relatively high C-index of 
0.730 was obtained from our NK cell-related signature, 
suggesting an advanced performance.

Somatic mutation analysis and immune cell infiltration 
analysis between high‑ and low‑risk groups
Mutation data from TCGA–LIHC data set was also 
downloaded and then visualized to reveal the overall 
somatic mutation status between the two groups. Both 
in high-risk group (Fig. 9A) and low-risk group (Fig. 9B), 
TP53, CTNNB1, TTN and MUC16 were identified as the 
most frequently mutated genes. Next, the overall TMB 
levels of the two groups was also calculated and com-
pared, which showed no statistical difference between 
the two groups (P value > 0.05, Fig. 9C).

We also investigated the correlations between risk score 
and immune cell infiltration status in HCC. No significant 
difference was detected in tumor purity between these two 
groups (P value > 0.05, Fig. 9G), while high-risk patients had 
lower ESTIMATEScore (P value < 0.05, Fig. 9D) and Stro-
malScore (P value < 0.05, Fig. 9E), but higher ImmuneScore 
(P value < 0.05, Fig.  9F). More precisely, we next assessed 
the infiltration levels of 16 kinds of immnocytes according 
to the ssGSEA algorithm. The infiltrating levels of aDCs, 
B cells, CD8 + T cells, mast cells, neutrophils, NK cells, 
T helper cells, Th2 cells and TIL cells in low-risk patients 
were higher than high-risk patients, while the infiltrating 
level of macrophages was increased in high-risk patients 
(all P value < 0.05, Fig. 9H). As for common immune func-
tions, the ssGSEA score of corresponding items between 
these two groups was also compared. The levels of cytol-
ytic activity, T cell co-stimulation and type II IFN response 
were decreased in high-risk patients, while APC co-stim-
ulation and MHC class I level were increased in high-risk 
patients (all P value < 0.05, Fig. 9I).

Fig. 8  Comparisons with other 10 published signatures. A C-indices 
of the 11 signatures. B RMS result of the 11 signatures
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Gene set enrichment analysis between high‑ and low‑risk 
groups
GSEA was conducted to explore the potential biologi-
cal functions and pathways of the prognostic model. 
The 5 most relevant KEGG items of the two groups were 
shown. High-risk group was mainly enriched in cell cycle, 
cytokine–cytokine receptor interaction, ECM receptor 
interaction, hypertrophic cardiomyopathy and neuroac-
tive ligand receptor interaction (Fig. 10A), while low-risk 
group was primarily enriched in butanoate metabolism, 

glycine serine and threonine metabolism, linoleic acid 
metabolism, primary bile acid biosynthesis and trypto-
phan metabolism (Fig. 10B).

Immunotherapeutic benefit prediction between high‑ 
and low‑risk groups
Previous publications emphasized the major role of 
NK cells in anti-tumor immunity and immunotherapy 
[23, 56]. Thus, we investigated whether the risk score 
could predict ICI response of HCC patients. We first 

Fig. 9  Somatic mutation landscape, immune cell infiltration status and related immune function analysis between high- and low-risk groups. 
Overview of somatic mutation status in high- (A) and low-risk groups (B). Tumor mutation burden (C), ESTIMATEScore (D), StromalScore (E), 
ImmuneScore (F), tumor purity (G), immune cell infiltration (H) and immune function (I) comparison between the two groups. *P < 0.05, **P < 0.01, 
***P < 0.001
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Fig. 10  Gene set enrichment analysis. The top 5 enriched items of GSEA in high- (A) and low-risk groups (B)
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compared the expression levels of HLA-related genes in 
the two groups and found that the expression levels of 
HLA–DMA, HLA–DQB2, HLA-J, HLA–DQA2, HLA-
E, HLA–DMB, HLA–DPA1, HLA-H, HLA-L, HLA-C, 
HLA–DRA, HLA-A and HLA–DOA were significantly 
higher in low-risk patients (all P value < 0.05, Fig. 11A). 
Next, the expression levels of common immune check-
points between the two groups were also compared. 
As shown in Fig. 11B, the TMIGD2 expression and the 
CD40LG expression were increased in high-risk group, 
while the CD200R1, HHLA2, ICOS, CD200, CTLA4, 
LGALS9, TNFRSF14, CD40, CD80, HAVCR2, CD86, 
ICOSLG, VTCN1, CD70, CD276, TNFSF15, TNFSF18, 
CD274, LAIR1, NRP1, CD28, TNFSF9, TNFRSF8, 
TNFRSF4, TNFRSF18, CD44, TNFRSF9, TNFSF4 and 
BTNL2 expression were significantly elevated in low-
risk group (all P value < 0.05, Fig.  11B). Subsequently, 
we also compared TIDE score in the two groups and 
detected that TIDE score in high-risk group was signifi-
cantly higher (P value < 0.001, Fig.  11C). Moreover, we 
also analyzed IPS–CTLA4 + PD1 blocker, IPS–CTLA4 
blocker and IPS–PD1 blocker in the two groups. No 
significant statistical difference was detected in IPS–
CTLA4 + PD1 blocker (P value = 0.081, Fig. 11D), while 
IPS–CTLA4 blocker (P value = 0.018, Fig.  11E) and 
IPS–PD1 blocker (P value = 0.031, Fig. 11F) were higher 
in low-risk patients. From the above results, patients in 
low-risk group might be more likely to benefit from ICI 
treatment.

External validation of immunotherapy responses 
between high‑ and low‑risk groups
In the abovementioned analyses, patients in low-risk 
group were detected to be more reactive to ICI treatment. 
Next, we also enrolled the two immunotherapy cohorts 
(GSE91061 cohort and PRJEB23709 cohort) to externally 
validate this result. Although there was no significant 
statistical difference of risk score between responders 
(CR/PR group) and non-responders (SD/PD group) in 
GSE91061 cohort (P value = 0.11, Fig.  12A), high-risk 
patients were still correlated with an adverse prognosis (P 
value = 0.009, Fig. 12C). The AUC values of 1-year, 2-year 
and 3-year survival rate were 0.784, 0.723 and 0.637, 
respectively (Fig. 12E). As for PRJEB23709 cohort, a sig-
nificant lower risk score was detected in responders (CR/
PR group) (P value = 5.1e−04, Fig.  12B), and high-risk 
patients showed a worse prognosis than those in low-risk 
group (P value < 0.001, Fig. 12D), which was similar with 
ours. In addition, the AUC values of 1-year, 2-year and 
3-year survival rate in PRJEB23709 cohort were 0.750, 
0.804 and 0.871, respectively (Fig. 12F).

Drug sensitivity evaluation between high‑ and low‑risk 
groups
The IC50 levels of some common targeted or chemo-
therapy drugs used against HCC were further com-
pared between high- and low-risk patients. As shown 
in Fig.  13, IC50 values of irinotecan (P value = 6.1e−08, 
Fig.  13A), vorinostat (P value = 7.4e−06, Fig.  13B), 
axitinib (P value = 4.3e−06, Fig.  13C), cytarabine (P 

Fig. 11  Role of our signature for immunotherapeutic benefits prediction. Differential expression levels of HLA-related genes (A) and immune 
checkpoint-related genes (B) between low-risk and high-risk groups. Comparison of TIDE score (C), IPS–PD1 + CTLA4 blocker (D), IPS–CTLA4 blocker 
(E) and IPS–PD1 blocker (F) between low- and high-risk groups. *P < 0.05, **P < 0.01, ***P < 0.001
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value = 4.8e−08, Fig. 13D), oxaliplatin (P value = 4.7e−05, 
Fig.  13E), leflunomide (P value = 0.0012, Fig.  13F), 
cisplatin (P value = 0.0019, Fig.  13G), topotecan (P 
value = 2.9e−06, Fig. 13H), mitoxantrone (P value = 0.02, 
Fig. 13I), sorafenib (P value = 1.5e−07, Fig. 13J), fludara-
bine (P value = 3e−06, Fig.  13K) and gemcitabine (P 
value = 6.6e−07, Fig.  13L) in low-risk group were sig-
nificantly lower than those in high-risk group, which 
revealed that low-risk patients might be more reactive to 
targeted therapy and chemotherapy.

Discussion
scRNA-seq technology could collect and classify the 
genomic data from various cell subpopulations in TME, 
thereby deepening our understanding of tumor heteroge-
neity and molecular features of tumor-infiltrating immu-
nocytes. NK cell dysfunction had been observed in HCC 
tissues, which mainly contained abnormal frequency and 

phenotype of NK cells, and functional impairment of NK 
cells [57]. Considering such phenomena, accumulating 
studies attempted to explore the features of NK cells in 
HCC and related immunoregulation of NK cells in TME. 
HCC patients with low intratumoral NK cells showed 
higher recurrence rate and shorter overall survival rate 
after surgical resection [58]. In addition, NK cell mark-
ers, such as CD96, TIM-3 and TIGIT, were strongly cor-
related with functional exhaustion of NK cells and poor 
survival outcomes in HCC [59, 60]. As for NK cell-based 
immunotherapy of HCC, various immunotherapeutic 
strategies, including antibody-dependent cell-mediated 
cytotoxicity (ADCC) promoter, immune checkpoint 
blockade, genetically modified NK cells, off target effects 
on NK cells, autologous NK cell transfer and allogeneic 
NK cell transfer, were utilized in clinical application or 
clinical trials, which exhibited an overall positive effect 
[61]. Nevertheless, there was still a lack of studies to sys-
tematically elaborate the role of NK cell markers in prog-
nostic prediction and immunotherapy of HCC patients.

With the rapid rise of computational medicine and bio-
informatics, varied machine learning approaches were 
utilized to develop prediction models based on gene 
expression data. Nevertheless, why to select a particular 
algorithm and how to choose the optimal algorithm were 
rarely discussed in the process of model construction. 
As a matter of fact, a significant number of researchers 
chose the algorithm according to personal experience 
and preference, which might bias the results. To avoid 
this issue, we combined scRNA-Seq data, bulk RNA-Seq 
data and the consensus machine learning framework 
including a total of 77 independent or combined machine 
learning algorithms to develop a signature based on a 
total of 11 NK cell marker genes, KLRB1, CFL1, LDHA, 
BSG, ATP1B3, SERBP1, UBE2L3, PCBP2, ENO1, OPTN 
and LMO4. In GSE14520 data set, GSE76427 data set, 
ICGC–LIRI–JP data set and TCGA–LIHC data set, high-
risk patients showed a worse OS rate than those with low 
risk score. In addition, the risk score was identified as the 
independent risk factor to affect patients’ prognosis via 
univariate and multivariate Cox regression analysis. ROC 
curves based on the survival time and clinical parameters 
revealed moderate to high prediction accuracy of our 
signature. In addition, compared to other 10 risk mod-
els published in previous studies, the leading C-index of 
0.730 was also presented in our signature, displaying rela-
tively high predictive value for HCC patients’ prognosis.

In published studies, the expression level of CFL1 was 
significantly increased in HCC tissue, and high CFL1 
expression was strongly correlated with poorer survival 
outcomes. Downregulation of CFL1 suppressed prolif-
eration, invasion and epithelial–mesenchymal transfor-
mation (EMT) in HCC cell lines [62]. As the upstream 

Fig. 12  Real-world immunotherapy cohorts to externally 
validate our NK cell-related signature. The risk score distribution 
between responders and non-responders in GSE91061 data set (A) 
and PRJEB23709 data set (B). The OS curves of high- and low-risk 
groups in GSE91061 data set (C) and PRJEB23709 data set (D). 
Time ROC analysis to predict 1-year, 2-year and 3-year survival rate 
in GSE91061 data set (E) and PRJEB23709 data set (F)
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regulators of LDHA, miR-383 and miR-142-3p exerted 
anti-tumor effects via negatively regulating LDHA 
expression [63, 64]. BSG, also known as CD147, acted 
as an oncogene in HCC and was considered as prog-
nostic indicator for HCC patients [65]. In addition, BSG 
overexpression could activate ERK signaling pathway 
and TGF-β signaling pathway, thereby promoting HCC 
migration, invasion and EMT [66, 67]. In addition, chi-
meric antigen receptor (CAR) therapy toward CD147 
could selectively kill HCC cells and avoid severe on-tar-
get/off-tumor toxicity in mouse model [68]. Silencing of 
ATP1B3 induced apoptosis and inhibited proliferation 
and migration in two HCC cell lines, HCCLM3 and Huh7 
[69]. SERBP1 was also detected to promote metastasis 
and EMT of HCC cells, while miR-218 could repressed 
the pro-tumor functions of SERBP1 [70]. UBE2L3 was 
also identified as a pro-tumorigenic factor to stimulate 
HCC cell proliferation by inactivating GSK3β/p65 signal-
ing pathway [71]. PCBP2 expression was also increased 
both in HCC cell lines and tissues. PCBP2 overexpres-
sion predicted unfavorable prognosis for HCC patients 
and induced proliferation and sorafenib resistance in 
HCC cells [72]. Ferroptosis of HCC cells was inhibited by 
ENO1–IRP1–Mfrn1 regulatory axis [73]. Furthermore, 

elevated OPTN expression promoted the proliferation, 
migration and mitophagy of HCC cells, thus modulating 
HCC progression [74].

We illustrated the overall somatic mutation sta-
tus in high- and low-risk groups and identified some 
highly mutated genes in HCC. In previous study, Ke 
et  al. analyzed the somatic mutation profiles from 22 
HCC patients, which revealed that TP53, MUC16 and 
TTN were the genes with high mutation frequency in 
HCC [75]. These results were similar with ours. The 
correlations between immune microenvironment and 
risk score were also evaluated in these two groups. 
First, higher StromalScore and ESTIMATEScore were 
detected in low-risk patients. Afterward, we observed 
increased infiltration levels of aDCs, B cells, CD8 + T 
cells, mast cells, neutrophils, NK cells, T helper cells, 
Th2 cells and TIL cells in low-risk group, while the 
infiltrating level of macrophages was increased in 
high-risk patients. In addition, related immune func-
tion analysis revealed a decreased ssGSEA score of 
cytolytic activity, T cell co-stimulation and type II IFN 
response in high-risk patients. The anti-cancer effects 
of CD8 + T cells, NK cells and TIL cells in TME were 
widely recognized in previous study [76]. The increase 

Fig. 13  Comparison of estimated IC50 value between high- and low-risk groups. Low‐risk patients were more sensitive to irinotecan (A), 
vorinostat (B), axitinib (C), cytarabine (D), oxaliplatin (E), leflunomide (F), cisplatin (G), topotecan (H), mitoxantrone (I), sorafenib (J), fludarabine (K) 
and gemcitabine (L)
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of tumor-associated macrophages in TME promoted 
tumor growth and resistance to sorafenib in HCC cells 
[77]. Shankaran et al. reported that IFN could cooper-
ate with lymphocytes to maintain the immunogenic-
ity of tumor cells, thus inhibiting tumor progression 
[78]. These evidences indicated anti-tumor immune 
response may be relatively more active in low-risk 
patients. Next, we also found that the expression lev-
els of the majority of common immunotherapeutic 
targets were elevated in low-risk patients. In addition, 
IPS–CTLA4 blocker and IPS–PD1 blocker were higher 
in low-risk patients, while TIDE score was higher in 
high-risk patients. Moreover, the similar risk score dis-
tribution and survival status were also observed in the 
external validation cohort, PRJEB23709. Based on the 
distribution of cytotoxic immune cells in TME, solid 
tumor was classified into “hot” and “cold” tumor, and 
the “hot” tumor was more sensitive to ICI therapy [79]. 
In the current study, the low-risk group might be iden-
tified as “hot” tumor and more likely to benefit from 
ICI treatment.

The curative effects of cancer targeting agents and 
chemotherapy drug varied greatly among individuals, 
which was mainly attributed to tumor heterogeneity [80]. 
Thus, it had become popular in recent years to utilize 
tumor molecular characteristics to develop tools to iden-
tify potential beneficiary group for specific regimens. In 
our work, we found that low‐risk group was more sensi-
tive to irinotecan, vorinostat, axitinib, cytarabine, oxali-
platin, leflunomide, cisplatin, topotecan, mitoxantrone, 
sorafenib, fludarabine and gemcitabine, which provided 
novel insights on clinical selection of these 12 anti-tumor 
drugs. In follow-up work, we are willing to explore the 
underlying molecular mechanisms of the differences in 
drug sensitivity.

Some limitations in this study should be declared. First, 
the data used in our work was derived from transcrip-
tome sequencing. Therefore, some of our results may 
not be applicable to studies with protein level. Secondly, 
the underlying molecular mechanisms of the prognostic 
signature to influence the prognosis, drug sensitivity, ICI 
response, and immune cell infiltration still need further 
investigation. Third, the genomic data used in the current 
study was from retrospective studies. We deeply hope 
our signature can be further verified by multi-center pro-
spective projects. Fourth, due to the lack of publicly avail-
able cohorts concerning ICI treatment of HCC patients, 
we enrolled the immunotherapy cohorts of melanoma 
patients, GSE91061 and PRJEB23709 data set, to exter-
nally validate the predictive power of our signature on 
ICI response. Although similar study design was detected 

in previous publications [43, 44], we still expect future 
researchers can offer related data to supply our findings.

Conclusions
In all, we developed and validated an NK cell-related gene 
signature to possess good performance on prognosis and 
ICI treatment response prediction of HCC patients based 
on scRNA-Seq data, bulk RNA-Seq data and multiple 
machine learning algorithms, which might offer a prom-
ising tool for risk stratification and immunotherapeutic 
guidance of HCC patients.
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