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Abstract 

Purpose  The study aimed to predict acute radiation esophagitis (ARE) with grade  ≥ 2 for patients with locally 
advanced lung cancer (LALC) treated with intensity-modulated radiation therapy (IMRT) using multi-omics features, 
including radiomics and dosiomics.

Methods  161 patients with stage IIIA−IIIB LALC who received chemoradiotherapy (CRT) or radiotherapy by IMRT 
with a prescribed dose from 45 to 70 Gy from 2015 to 2019 were enrolled retrospectively. All the toxicity gradings 
were given following the Common Terminology Criteria for Adverse Events V4.0. Multi-omics features, including radi-
omics, dosiomics (including dose−volume histogram dosimetric parameters), were extracted based on the planning 
CT image and three-dimensional dose distribution. All data were randomly divided into training cohorts (N = 107) 
and testing cohorts (N = 54). In the training cohorts, features with reliably high outcome relevance and low redun-
dancy were selected under random patient subsampling. Four classification models (using clinical factors (CF) only, 
using radiomics features (RFs) only, dosiomics features (DFs) only, and the hybrid features (HFs) containing clinical fac-
tors, radiomics and dosiomics) were constructed employing the Ridge classifier using two-thirds of randomly selected 
patients as the training cohort. The remaining patient was treated as the testing cohort. A series of models were built 
with 30 times training–testing splits. Their performances were assessed using the area under the ROC curve (AUC) and 
accuracy.

Results  Among all patients, 51 developed ARE grade  ≥ 2, with an incidence of 31.7%. Next, 8990 radiomics and 
213 dosiomics features were extracted, and 3, 6, 12, and 13 features remained after feature selection in the CF, DF, 
RF and DF models, respectively. The RF and HF models achieved similar classification performance, with the training 
and testing AUCs of 0.796 ± 0.023 (95% confidence interval (CI [0.79, 0.80])/0.744 ± 0.044 (95% CI [0.73, 0.76]) and 
0.801 ± 0.022 (95% CI [0.79, 0.81]) (p = 0.74), respectively. The model performances using CF and DF features were 
poorer, with training and testing AUCs of 0.573 ± 0.026 (95% CI [0.56, 0.58])/ 0.509 ± 0.072 (95% CI [0.48, 0.53]) and 
0.679 ± 0.027 (95% CI [0.67, 0.69])/0.604 ± 0.041 (95% CI [0.53, 0.63]) compared with the above two models (p < 0.001), 
respectively.
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Conclusions  In LALC patients treated with CRT IMRT, the ARE grade  ≥ 2 can be predicted using the pretreatment 
radiotherapy image features. To predict ARE, the multi-omics features had similar predictability with radiomics fea-
tures; however, the dosiomics features and clinical factors had a limited classification performance.

Keywords  Acute radiation esophagitis, Lung cancer, Radiomics, Dosiomics, Machine learning, Radiotherapy

Introduction
Lung cancer is one of the most common types of malig-
nant tumor [1, 2]. (Chemo)-Radiotherapy (CRT) is the 
standard treatment for locally advanced lung cancer. In 
radiotherapy, side effects still present great challenges 
in treatment management, while high-energy X-rays are 
killing the tumor tissues [3–6]. For example, acute radia-
tion esophagitis (ARE), which occurs within 6  months 
after the first radiotherapy (RT) completion, is one of the 
major debilitating toxicities in patients with lung cancer 
following CRT [7]. The incidence rate of Common Ter-
minology Criteria for Adverse Events (CTCAE) V4.0 
grade  ≥ 2 ARE ranges from 30 to 50% [8], and is greater 
for higher radiation doses and the use of concurrent CRT 
(CCRT). ARE causes throat pain, dysphagia, and severe 
cases even cause complete obstruction, ulceration, or fis-
tula formation in the esophagus [8]. Consequently, those 
symptoms, if not managed well, could seriously reduce 
the patient’s quality of life, incurring a large financial bur-
den and a deteriorating prognosis [9]. More significantly, 
multiple studies have shown that the severe ARE contrib-
utes negatively to overall survival [10, 11]. Therefore, the 
pretreatment identification of the ARE using predictors 
will help physicians to better manage at-risk patients.

The reported key predictors to identify ARE in patients 
with lung cancer are inconsistent among studies. Palma 
et  al. [12] found that the volume with the minimum 
dose of 60 Gy (V60) of the esophagus was a key dosimet-
ric factor to predict ARE. Several dose−volume histo-
gram (DVH) dosimetric parameters of the maximum 
dose, average dose, the dose with a volume of 5 cc (D5 cc) 
and the volume received dose larger than 20 Gy, 30 Gy, 
35 Gy, and 40 Gy (that are V20, 30, 35, 40) of the esophagus 
[13] were recognized as predictors of ARE. Other studies 
also provided discrepant predictors from the esophagus 
DVH dosimetric parameters, such as V50, the equivalent 
doses, and D2 cc [14–18]. One explanation for these dis-
crepancies involves the different DVH factors believed to 
be associated with ARE, for example, D5 cc, 10 cc used by 
Nieder et  al. [13], and equivalent doses (EUD) adopted 
by Butof et al. [18]. Another explanation is the different 
three-dimensional (3D) dose distributions delivered by 
different RT techniques, for example, 3D conformal radi-
ation therapy (3D-CRT) in the studies of Palma and Butof 
[12, 13, 18, 19], and intensity-modulated radiation ther-
apy (IMRT) [14, 16, 20, 21]. Moreover, patients involved 

in each of the above-studied cohorts were treated with 
either an obsolete RT technique (i.e., 3D-CRT) or het-
erogenous RT techniques (i.e., 3D-CRT or IMRT). 
Therefore, patient cohorts using a uniform RT tech-
nique, especially advanced RT techniques of IMRT and 
volumetric modulated arc therapy (VMAT), are recom-
mended to investigate ARE.

In terms of dosimetric predictors, the DVH or DVH-
based parameters only characterize the dose informa-
tion of the whole volume of interest (VOI), rather than 
representing the dose spatial pattern of the VOI. The 
dose spatial pattern is determined by the RT technique. 
To determine the dose spatial pattern, new features to 
describe the 3D-dose distribution, known as dosiom-
ics, were proposed to predict radiation pneumonitis, 
and showed potential in clinical application [22]. In con-
trast, radiomics has recently been studied to investigate 
the intrinsic organ treatment response by characterizing 
the image-derived (magnetic resonance imaging (MRI)/
computed tomography (CT)/positron emission tomog-
raphy (PET), etc.) heterogeneous information of the VOI 
[23–27]. Overall, these three types of features, includ-
ing DVH dosimetric, radiomic, and dosiomics features, 
capture comprehensively the heterogeneity of the VOI 
in dosimetry and imaging. Accordingly, several studies 
using a combination of two or three features have dem-
onstrated an improvement in predictive model perfor-
mance [28–30].

Despite the potential of using combination features, 
multi-omics features, including radiomics, dosiomics, 
and DVH dosimetric features, have been applied in a 
few studies to investigate ARE in patients with lung can-
cer treated with radiotherapy. Bourbonne et al. surveyed 
ARE in patients with lung cancer treated with RT VMAT 
by adopting the combined features, integrating the clini-
cal, DVH dosimetric parameters, and radiomics [26]. To 
date, however, ARE in patients with lung cancer has not 
been investigated sufficiently with respect to treatment 
using IMRT.

The present study aimed to construct an integrated pre-
treatment ARE prediction model for patients with locally 
advanced nonsmall-cell lung cancer (LA-NSCLC) treated 
only with IMRT by adopting multi-omics features, based 
on the pretreatment planning CT image, RT structures, 
and the RT 3D dose distribution. Meanwhile, the com-
plementary predictabilities of the three types of features 
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were investigated by comparing the performances of the 
machine learning models constructed from single-mode 
features and multi-mode features.

Materials and methods
In this study, model construction is consist of four parts 
(Fig. 1): (a) data collection, including images and clinical 
data; (b) feature extraction, multi-omics features (radi-
omics and dosiomics features) were extracted for the 
esophagus region based on the pretreatment planning 
CT image and the RT 3D dose distribution; (c) feature 
selection, a portion of the features were screened out 
using unsupervised and supervised methods, consider-
ing feature redundancy and relevance; and (d) modeling 
and evaluation, a classification model for ARE was built 
using the selected features and the regression classifica-
tion algorithm; the model performance in the training 
and testing cohorts was evaluated using two metrics. The 
more details are shown below.

Data collection
Patient data
The data for all patients with stage IIIA−IIIB LA-
NSCLC treated in our institution from 2015 to 2019 
were retrieved retrospectively in the study, using the fol-
lowing inclusion criteria: (a) age  > 18 years old at treat-
ment, (2) diagnosed with lung cancer (nonsmall cell or 
small cell) with pathological findings, (3) treated with 

(chemo)-radiotherapy using 6 MV X-ray photon, (4) 
received IMRT in a curative manner, and (5) followed up 
for at least 6 months after treatment. The clinical factors, 
including patient’s age, gender, smoking status, TNM 
stage, pathology, RT prescription dose and fraction, 
treatment technology, and using chemotherapy or not, 
were collected. For chemotherapy, patients were given 
sequential or concurrent prescriptions. This study was 
approved by the ethical committee of the Affiliated Can-
cer Hospital of Zhengzhou University.

Radiation toxicities
The gradings of the acute radiotherapy toxicity, ARE, for 
all the patients were assigned by experienced physicians 
(≥ 5  years’ experience) following the CTCAE V4.0 pro-
tocol. The details of the grading criteria of CTCAE V4.0 
protocol from grades 1 to 5 are as follows: (a) grade 1: 
asymptomatic, clinical or diagnostic observations only; 
intervention not indicated; (b) grade 2: symptomatic; 
altered eating/swallowing; oral supplements indicated; 
(c) grade 3: severely altered eating/swallowing; tube feed-
ing, TPN or hospitalization indicated; (d) grade 4: life-
threatening consequences; urgent operative intervention 
indicated; (e) grade 5: death. Acute toxicity was defined 
as toxicity events occurring within 6  months from the 
first radiotherapy treatment. All patients with their 
grading were summarized in the Table  1. In this study, 

Fig. 1  The framework of the classification model construction



Page 4 of 10Zheng et al. European Journal of Medical Research          (2023) 28:126 

we attempted to predict the severe ARE events with a 
grade ≥ 2.

Image acquisition
All patients were immobilized with a vacuum cushion 
in a supine position, and underwent computer tomog-
raphy (CT) scans using a 16-slice Brilliance Big Bore 
CT (Philips Medical System, Cleveland, OH, USA). The 
scanning parameters were as follows: voltage = 120  kV, 
X-ray tube current = 321  mA, thickness = 3  mm, spac-
ing = 1.152 × 1.152  mm and with 512 × 512 pixels. In 
addition, the volume of interest (VOI) of the esophagus 
volume was segmented by physicians with at least 5 years 
of experience following the Radiation Therapy Oncol-
ogy Group (RTOG) 1106 report [31]. It should be men-
tioned that the esophagus volume was contoured using 
mediastinal windowing on CT to correspond to the 
mucosa, submucosa, and all muscular layers out to the 
fatty adventitia. Besides, the esophagus contour begins at 
the level of the cricoid cartilage and continues on every 
CT slice including the gastroesophageal junction, until it 
ends at the stomach. To ensure the correction of segmen-
tation, two physicians with at least 5 years of experience 
were involved in contouring esophagus volume, one phy-
sician for segmentation and another one for review and 
correction. The average volume of the esophagus in our 
data sets is about 37 cc.

Feature extraction
Before feature extraction, CT images were resampled to 
a voxel size of 1 × 1 × 1 mm3. The types of radiomic fea-
tures involved in the study were described in detail in 
the previous publication [32]. The only difference was in 
the bin counts, with the setting of [20, 30, 40, 50, 80, 100, 
150, 200, 250, 300]. Besides, a threshold for the Houns-
field Unit (HU) for the range of [− 150, 180] was used to 
eliminate the nonesophagus region, such as air cavities. 
In total, 8990 radiomics features were extracted from the 
planning CT images within the esophagus volume.

In this study, dosiomics features consisted of three 
parts: (a) scale-invariant 3D dose moments [33, 34], 3rd 
order was chosen for three dimensions, resulting in 64 
possible combinations. Except for the order of [0,0,0] 
with a constant value of 1, the other 63 combinations 
were contained in the study; b) DVH parameters [35, 
36], i.e., Vx and Dx from the DVH curve, where Vx was 
the volume or % volume receiving a dose larger than x 

Gy, and Dx was the dose (Gy) to a relative volume of the 
esophagus; c) radiomics based on the 3D dose distribu-
tions [22], the original image type was used to extract 
radiomics features containing the first-order and high-
order features. In total, 213 dosiomics features were 
acquired from the RT planning 3D dose distributions 
within the esophagus volume. In the feature calculation, 
we adopted our in-house developed Python-based plat-
form based on the Python package Pyradiomics [37].

Modeling and evaluation
Model construction
In this study, we constructed three classification mod-
els to predict whether a patient would develop severe 
ARE after IMRT up to the end of the follow-up period. 
The three classification models were generated using the 
clinical factors (CF model (CFM)), radiomics features 
(RF model (RFM)) only, dosiomics features (DF model 
(DFM)) only, and the hybrid features (HF model (HFM)), 
which combined both the clinical factors, radiomics and 
dosiomics features. All the model training and evalua-
tions were performed using Scikitlearn in Python [38].

All the models were constructed following a standard 
procedure demonstrated in Fig. 1: (1) Features with high 
outcome relevance and low redundancy were selected 
under random patient subsampling; (2) All data were 
randomly divided into a training cohort (2/3) and a test-
ing cohort (1/3) using 30 independent repetitions. Nota-
bly, the stratified sampling approach was used to keep the 
same event distribution between the training and testing 
cohorts. A series of classification models were trained in 
the training cohort using the selected features. (3) The 
final model was obtained with a comprehensive analy-
sis of model performances in both training and testing 
under the condition of 30 repetitions.

The process of feature selection was first proposed in 
a previous study [39]. The features were selected using a 
100-time patient bootstrapping down-sampling method 
(see Fig. 2a ). At each sampling iteration, 70% of the entire 
patient cohort were randomly sampled and some features 
were filtered out using criteria of variance = 0, and p > 0.1 
(F test). In the rest of the features, the 10% most frequent 
features (with a minimum feature number of 10) that 
were selected in the 100 down-sampling iterations were 
screened out. After that, the Pearson-R correlation test 
was used to remove correlated features using a threshold 
of 0.5 [40]. The final selected features were determined by 
the best performance of fivefold stratified validation with 
20 repetitions among varied feature combinations.

All the models were trained using the selected fea-
tures and the Ridge classifier, as shown in Fig.  2b. At 
each training iteration, the optimal model hyper-param-
eter was determined by grid-searching under tenfold 

Table 1  The patient’s number with each grade

Grade 1 2 3 4 5

Number 111 48 3 0 0
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cross-validation. In addition, easy ensembling with the 
2/3 bootstrapping method was used to reduce the model 
bias from the imbalance of positive and negative cases. 
After that, the area under the curve (AUC) and accu-
racy (ACC) were used to evaluate the performance of 
each model in both the training and testing cohorts for 
each training–testing-split iteration. Finally, the average 
value and standard deviation of the AUC and ACC of 
the model series for 30 training–testing splits were cal-
culated to characterize the overall predictability of the 
selected multi-model features.

In addition, a combined model was generated using the 
30 models from the training–testing splits by means of an 
easy ensemble method. A nomogram using the optimal 
feature group were constructed for visualizing the clas-
sification model using a combined model.

Results
Data and features
Following the inclusion criteria, a total of 161 patients 
with LA-NSCLC diagnosed from 2015 to 2019 were 
included in the study. The patients’ characteristics are 
summarized in Table  2, and all of the characteristics 
showed a significant difference between the endpoints 
and the clinical factors.

As shown in the table, ARE toxicity rate in the whole 
dataset was approximately 31.7%. The average age was 

approximately 62 years old, with a standard deviation 
of 9.5 years, showing that almost all patients are from 
the senior group. Besides, we noticed that almost 66% 
of the patients had squamous carcinoma cancer. In 
addition, the majority of patients received the treat-
ment comprising chemoradiotherapy.

After feature selection, 3, 6, 12, and 13 features were 
involved in the three models, using features of CF, 
DF, RF, and HF determined following the previously 
published procedure, as shown in Additional file  1: 
Table  S1. As shown in the table, three clinical factors 
in the CFM are treatment technology, using chemo-
therapy or not. In addition, five dose features in the DF 
model belonged to spatial texture features, describing 
the spatial dose distribution. The other feature, V0.99, 
was from the DVH metric. The majority of the selected 
features in the RF model are related to the gray level 
matrix from the wavelet filter and log sigma [41], and 
only one selected feature was calculated based on the 
original CT images. In the HF model, all the selected 
features were from the radiomics features, i.e., none 
of dosiomics features and clinical factors were kept in 
the final optimal feature group. Thus, the eight selected 
features in the HF model were also adopted in the RF 
model.

Fig. 2  a The flowchart of feature selection. b The process of model construction
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Model performance
In the 30 training–testing splits mode, the average 
AUCs in the training and testing cohorts are shown in 
Fig.  3 and Table  3. From the figure, we observed that 
the models using the radiomics and hybrid features, i.e., 
RF and HF, achieved similar classification performance 
in training and testing, with AUCs of 0.796 ± 0.023 
(95% confidence interval (CI [0.79, 0.80])/0.744 ± 0.044 
(95% CI [0.73, 0.76]) and 0.801 ± 0.022 (95% CI [0.79, 
0.81]) (p = 0.74), respectively. The model performance 
using CF and DF features showed a poorer predic-
tive performance, with the training and testing AUCs 
of 0.573 ± 0.026 (95% CI [0.56, 0.58])/ 0.509 ± 0.072 
(95% CI [0.48, 0.53]) and 0.679 ± 0.027 (95% CI [0.67, 

0.69])/0.604 ± 0.041 (95% CI [0.53, 0.63]) compared 
with the above two models (p < 0.001), respectively. In 
addition, the receiver-operating characteristic curves 
(ROC) of three models were plotted in Fig.  4, and the 
nomogram using the combined models and the opti-
mal feature group were shown in Additional file  1: 
Fig. S1. The probability of ARE can be read easily while 
the values of RadScore was calculated by the formula 
as shown in Additional file 1: Table S2. The points and 
total points in the Additional file 1: Fig. S1 are the nor-
malization value in 0 to 100 using the RadScore. Two 
points can help user read the probability of ARE.

The same results were found using the evaluation 
metric of accuracy, as shown in Fig. 3 and  Table 3. The 
models using RF and HF have a similar performance 
with the training and testing ACC of 0.740 ± 0.02 (95% 
CI [0.73, 0.75])/0.695 ± 0.045 (95% CI [0.68, 0.71]) and 
0.744 ± 0.030 (95% CI [0.73, 0.75])/ 0.696 ± 0.041 (95% 
CI [0.68, 0.71]), respectively. The CF and DF models 
had a poorer classification result, with the training and 
testing ACCs of 0.571 ± 0.041 (95% CI [0.56, 0.58])/ 
0.538 ± 0.071 (95% CI [0.51, 0.57]) and 0.630 ± 0.049 
(95% CI [0.61, 0.65])/ 0.552 ± 0.037 (95% CI [0.54, 0.56]), 
respectively.

Discussion
In the present study, we investigated the radiation toxic-
ity of the esophagus for patients with LA-NSCLC treated 
with CRT using the IMRT technique. Several models 
using single-omics (i.e., radiomics and dosiomics) and 

Table 2  The overall characteristic information of all patients

SCC Squamous carcinoma cancer, ADC Adenocarcinoma cancer, SCRT​ Sequential 
chemoradiotherapy, CCRT​ Concurrent chemoradiotherapy

Characteristics Overall (161) ARE (51) p value

Gender p < 0.001

 Male (N/%) 142/88.2% 47/33.1%

 Female (N/%) 19/11.8% 4/21.1%

Age, median (range) 62 (29–83) – p < 0.001

Pathology p < 0.001

 SCC (N/%) 104/64.6% 37/35.6%

 ADC (N/%) 51/31.7% 13/25.5%

 Others (N/%) 6/3.7% 1/16.7%

RT Dose p < 0.001

 Median (range) < 60 Gy 60 (45–70) Gy

 N/% 81/50.3% 24/29.6%

Smoking p < 0.001

 Activity or former (N/%) 123/76.4% 38/30.9%

 Never (N/%) 38/23.6% 13/34.2%

T Stage p < 0.001

 T1 (N/%) 10/6.2% 1/10.0%

 T2 (N/%) 70/43.5% 24/34.3%

 T3 (N/%) 35/21.7% 11/31.4%

 T4 (N/%) 46/28.6% 16/34.8%

N Stage p < 0.001

 N0 (N/%) 9/5.6% 2/22.2%

 N1 (N/%) 4/2.5% 1/25.0%

 N2 (N/%) 85/52.8% 33/38.8%

 N3 (N/%) 63/39.1% 15/23.8%

TNM p < 0.001

 IIIA (N/%) 54/29.2% 20/37.0%

 IIIB (N/%) 107/70.8% 31/29.0%

Treatment technology p < 0.001

 SCRT (N/%) 65/40.4% 17/26.2%

 CCRT (N/%) 87/54.0% 31/35.9%

 RT (N/%) 9/5.6% 3/33.3%

 ARE (N/%) 51/31.7% – –

Fig. 3  The comparison of four models using CF, RF, DF, and HF in 
the training and testing cohorts. The red and blue solid lines are 
the training and testing AUC, respectively. The shadow shows the 
standard deviation (STD), which the narrower of the shadow, the 
smaller of the STD. The upper and lower subfigures are the results of 
AUC and ACC, respectively
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multi-omics (the combination of radiomics and dosiom-
ics) were established to predict ARE with a grade  ≥ 2. 
The model performance revealed that ARE could be pre-
dicted using the pretreatment image and dose factors.

Using the single-omics feature, the performance of the 
model using radiomics was much better than that using 
dosiomics, under the multiple training–testing splits, 
with training average AUCs of 0.801–0.679 and testing 
average AUCs of 0.747–0.604 (p < 0.001). The same situ-
ation occurred for the model stability, with the SD of the 
training AUC being 0.023–0.027 and the SD of the test-
ing AUC being 0.44 to 0.068, respectively. However, the 
multi-omics features could not improve the prediction 
performance for ARE compared with the radiomics fea-
tures, showing similar classification results using RF and 
HF (p = 0.74). On the one hand, these results revealed 
that the radiomics features have an overwhelming cor-
relation with ARE compared with dosiomics. These 
results were consistent with those of a previous study 
[26], in which all selected features in the model using 

multi-omics features (combining radiomics, dosiom-
ics, and clinical factors) were chosen from among the 
radiomics features to predict ARE in patients with lung 
cancer treated with VMAT. None of the dosiomics fea-
tures were adopted in the HF model. On the other hand, 
it might reflect the fact that the dosiomics features have 
limited predictability for ARE comparing to the radiom-
ics features.

In the DF model, the majority of selected dosiomics 
features belonged to the spatial texture feature, except for 
Esophagus_V0.99, which is a one-dimensional dosimetric 
factor from the DVH. This is inconsistent with the previ-
ous studies using DVH metrics of Dmax, mean, 5 cc, 20, 30, 35, 

40,50, 60 and V20, 30, 40, 50, 60 [12, 14, 17, 18] to predict ARE. 
In both the RF and HF models, all utilized features were 
radiomics features obtained by characterizing the spatial 
texture information of the esophagus. This might reflect 
the fact that the radiosensitivity of esophagus tissue 
dominates the occurrence of acute radiation esophagi-
tis, but there was no contribution was from the dose 

Table 3  The model performance in the multiple train−test splits model

ACC accuracy, µ average, σ standard deviation, CI confidence intervals

Model Metric Training cohort ( µ± σ) 95% CI Testing cohort ( µ± σ) 95% CI

CFM AUC​ 0.573± 0.026 [0.56, 0.58] 0.509± 0.072 [0.48, 0.53]

ACC​ 0.571± 0.041 [0.56, 0.58] 0.538± 0.071 [0.51, 0.57]

DFM AUC​ 0.679± 0.027 [0.67, 0.69] 0.604± 0.068 [0.58, 0.63]

ACC​ 0.630± 0.049 [0.61, 0.65] 0.552± 0.037 [0.54, 0.56]

RFM AUC​ 0.756± 0.023 [0.79, 0.80] 0.744± 0.044 [0.73, 0.76]

ACC​ 0.740± 0.024 [0.73, 0.75] 0.695± 0.045 [0.68, 0.71]

HFM AUC​ 0.801± 0.022 [0.79, 0.81] 0.747± 0.041 [0.73, 0.76]

ACC​ 0.744± 0.030 [0.73, 0.75] 0.696± 0.041 [0.68, 0.71]

Fig. 4  ROC curves for each model in the training and testing cohorts. The orange, blue, green, and red solid lines represent the results of CFG, DFG, 
RFG, and HFG
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information. In addition, clinical factors were also inves-
tigated in our study, which is agreed with the findings of a 
previous study [42] that clinical factors had poor predict-
ability for ARE. Besides, this study [42] also investigated 
the correlation between DVH dosimetric parameters 
(Dmean,max, V40,50,60 of esophagus) and ARE, and demon-
strated very limited classification performance, with an 
AUC range from 0.46 to 0.56 [42].

Our dataset showed radiation toxicity (i.e. ARE) of 
31.7% when using IMRT radiotherapy only, which falls 
into the previously reported range of 30–55% [12, 13, 18, 
26, 43] for ARE grades  ≥ 2. Apart from this, the incidence 
rates of ARE with a grade  ≥ 3 were about 3.7% in our 
dataset, which was lower than that of the previous stud-
ies (11.4% and 10.3%) [14, 42]. This might be caused using 
either a higher prescription dose [42] with a median dose 
of 66.6 Gy, or the traditional radiotherapy technique [14] 
of 3D-CRT. Both techniques result in a higher received 
dose for organs at risk, including the esophagus, in com-
parison with our study with a lower prescription dose 
(median dose of 60 Gy in our data set) or using the RT 
technique of IMRT. This demonstrated that the lower the 
dose received by the esophagus, the lower the incidence 
rates for severe acute radiation esophagitis  ≥ grade 3. 
Hence, even though the dose features were not adopted 
in the HF model or achieved poor prediction in the DF 
model, decreasing the dose in the esophagus region still 
can benefit the management of radiation esophagitis. 
Therefore, further investigation of other effective dose 
features is warranted in the future.

To verify the study’s conclusion [8], we also analyzed 
the incidence rate of ARE in different prescription 
dose regions and patients with or without the treat-
ment of CCRT. We divided patients into three groups 
based on the prescription dose level: (a) low-dose 
group (prescription dose  < 60  Gy) with 52 patients; 
(b) median-dose group (prescription dose = 60  Gy) 
with 81 patients; and (c) high-dose group (prescription 
dose  > 61  Gy) with 28 patients. ARE incidence rates 
being 30.8%, 29.6%, and 39.3% in the low-dose, median-
dose, and high-dose groups, respectively. The ARE rate 
in the high-dose group is higher than in the other two 
groups. However, there was no statistical difference 
among these three groups, with p values of 0.37 and 
0.46 for high-median and high-low groups, respectively. 
Besides, we also separate all patients into two groups 
following the treatment with or without CCRT, a) the 
CCRT group (treatment using CCRT); (b) the other 
group (using the other treatments). ARE incidence 
rates are 35.6% and 24.2% for the CCRT and other 
groups, respectively. Even though there was a higher 
rate in the CCRT group, there was no statistical dif-
ference between the two groups (p = 0.24). Therefore, 

our data set agreed with the study’s conclusion [8] that 
the incidence rate of ARE is greater in higher radiation 
doses and the use of CCRT. Considering the statisti-
cal analysis results and the feature selection procedure, 
two factors of dose and treatment technology were not 
chosen in the final selected feature set.

In our study, the pretreatment radiotherapy image data 
were adopted for prior prediction of ARE. ARE predic-
tion before RT treatment can aid clinical management 
by allowing more clinical care for patients at high risk. 
Clinical care could attenuate the side effects, i.e., ARE, 
and thus can improve the quality of life of patients in 
the mid-treatment and post-treatment phases to some 
extent. Consequently, it can benefit the overall survival of 
patients with locally advanced lung cancer [11].

The present study still has several limitations. First, 
we only adopted single-center retrospective small sam-
ple size radiotherapy data to construct the prediction 
model. It would be worth carrying out a comprehensive 
investigation of ARE using large cohort multi-center pro-
spective medical information to verify our findings. Sec-
ond, the study only employed the CT images and the RT 
3D dose distributions. It is worth noting that multiple 
modality images, obtained by considering the MR, PET, 
and cone−beam CT (CBCT) images, have the potential 
for ARE prediction. Alam et al. [43] reported the poten-
tial predictability using CBCT and MR images by evalu-
ating the esophagus volume changes in ARE. Another 
study demonstrated that the SUVpeak of PET images 
correlated significantly with the ARE [44]. Finally, the 
robustness of the radiomics features was not considered 
to improve the model generalizability. Several studies [45, 
46] have investigated feature robustness using the image 
perturbation method, and the results showed that only 
some of the radiomics features in NSCLC cohorts are 
robust.

Conclusions
Acute radiation esophagitis  ≥ grade 2 can be predicted 
using pretreatment RT image features for patients with 
lung cancer treated with IMRT. To predict ARE, the 
multi-omics features have similar predictability to radi-
omics features; however, dosiomics features have a lim-
ited classification performance.
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