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Abstract 

Background  Airway remodeling is an important pathological feature of chronic airway diseases, which leads to a 
progressive decline in lung function. The present study examined the anti-remodeling and anti- inflammatory effect 
of BIBF1000, a triple-tyrosine kinase inhibitor that targets VEGF, PDGF, and FGF receptor signaling in a mouse model of 
repeated ovalbumin (OVA) challenges.

Methods  Female Balb-c mice were immunized intraperitoneally on days 0 and 12 with 50 µg ovalbumin plus 1 mg 
of Al(OH)3 in 200 μl saline. Intranasal OVA challenges (20 µg/50 µl in PBS) were administered on days 26, 29, and 31, 
and were repeated twice a week for 3 months. Animals received vehicle or BIBF1000 (25 mg/kg, b.i.d.) through gavage 
from day 26 to the end of fourth month. On day 120, bronchoalveolar lavage (BAL) and lung tissue were collected for 
biochemical and immunohistological analysis.

Results  Compared to vehicle controls, treatment with BIBF1000 reduced the numbers of BAL eosinophils, mac-
rophages, neutrophils, and lymphocytes by 70.0%, 57.9%, 47.5%, and 63.0%, respectively, and reduced IL-5 and IL-13 
in BAL. Treatment with BIBF1000 reduced airway mucus secretion, peribronchial fibrosis, small airway, and pulmonary 
arterial wall thickness, compared to vehicle controls. Furthermore, treatment with BIBF1000 also reduced the expres-
sion of inflammatory mediators (TNF-α, IL-1β, IL-5, IL-13, MMP-2, MMP-9, COX-2, and iNOS) and inhibited ERK and AKT 
phosphorylation.

Conclusions  The protective effect afforded by triple-tyrosine kinase inhibition with BIBF1000 in reducing allergen-
induced airway and arterial remodeling was associated with down-regulation of inflammatory mediators, as well as 
inhibition of ERK and AKT signaling pathways.
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Introduction
Airway remodeling is an important pathological fea-
ture of chronic lung inflammatory diseases, including 
asthma, chronic obstructive pulmonary disease (COPD), 
and pulmonary arterial hypertension (PAH), which leads 
to a progressive decline in lung function [1–4]. Airway 
remodeling refers to structural changes resulting from 
persistent inflammation in airway tissues, which is char-
acterized by airway smooth muscle hypertrophy and 
hyperplasia, collagen deposition to sub-epithelial base-
ment membrane, hyperplasia of goblet cells, thicken-
ing of airway mucosa, and an increase in vascularity [3, 
5]. A variety of growth factors secreted from damaged 
epithelial and inflammatory cells, including basic fibro-
blast growth factor (FGF), platelet-derived growth factor 
(PDGF), vascular endothelial growth factor (VEGF), and 
transforming growth factor-β (TGF-β) can activate the 
fibrotic process upon binding to their receptors, resulting 
in airway wall thickening and increased microvasculature 
which drive structural changes linked to airway remod-
eling [6–9]. FGF, PDGF, and VEGF receptors belong to 
the tyrosine kinase receptor (RTK) family [10]. Activa-
tion of RTKs can activate signaling pathways that pro-
mote the proliferation of airway smooth muscle cells and 
fibroblasts, extracellular matrix production and airway 
inflammation, contributing in many processes of airway 
remodeling [4, 11–14].

Emerging evidence suggests that RTKs play a critical 
role in the pathogenesis of chronic airway diseases. For 
example, VEGF levels in sputum and BALF are increased 
in asthmatics, and the levels correlate directly with 
the disease activity [12]. VEGF promotes both airway 
inflammation and remodeling, and leading to increased 
vascular permeability in asthma [3, 4, 12]. PDGF recep-
tors (PDGFR) are overexpressed in patients with severe 
asthma [15], and PDGFR signaling plays a prominent role 
in airway inflammation and remodeling through altering 
fibroblast chemotaxis,  proliferation,  and collagen pro-
duction [16]. In addition, FGF-2 potentiates the release 
of TGF-β1 from macrophages, and that FGF-2 and TGF-
β1 synergistically stimulate the proliferation of bronchial 
smooth muscle cell (BSMC) through up-regulation of 
the PDGFRs, thus contribute to the hyperplastic pheno-
type of BSMC in remodeled asthmatic airways [13, 17]. 
Given that multiple RTKs are involved in the pathology 
of airway remodeling, simultaneous inhibition of multi-
ple RTKS might be an effective approach for anti-remod-
eling in chronic airway diseases. Nintedanib, a triple RTK 
inhibitor that blocks PDGFR, VEGFR, and FGFR, exhib-
its a powerful anti-fibrotic effect, and has been approved 
by the FDA for treatment of idiopathic pulmonary fibro-
sis (IPF) [18]. Nintedanib ameliorated airway remodeling 
in a mouse model of OVA-induced chronic asthma [19]. 

BIBF1000, an orally active potent inhibitor of the recep-
tor tyrosine kinases for VEGF, FGF, and PDGF, prevents 
and reverses the progression of severe pulmonary arte-
rial hypertension, inhibits pulmonary arterial neointi-
mal formation, attenuates right heart hypertrophy, and 
improves survival in an experimental model of PAH [20]. 
The present study examined the anti-remodeling and 
anti- inflammatory effect of BIBF1000 in a mouse model 
of ovalbumin allergen-induced chronic asthma.

Methods
Animals
These animal studies were approved by the Institu-
tional Animal Care and Use Committee at Chonbuk 
National University (CBU 2013-0044). All experiments 
were conducted in accordance with the National Insti-
tutes of Health Guide for the Care and Use of Laboratory 
Animals.

Chronic OVA‑challenged mouse model
Female Balb-c mice (8–10  weeks old) were randomly 
assigned into three study groups: (1) Control, (2) 
OVA + vehicle, and (3) OVA + BIBF1000. The reason 
for choosing female mice is based on the previous stud-
ies that female mice experience more airway remod-
eling compared with male mice [21], and that adult 
women are more susceptible to developing asthma than 
men and that women display more severe forms of the 
disease [22]. The study protocol is illustrated in Fig.  1. 
Briefly, mice were immunized intraperitoneally on days 0 
and 12 with 50  µg ovalbumin plus 1  mg of Al(OH)3 in 
200ul saline. Intranasal OVA challenges (20  µg/50  µl in 
PBS) were administered on days 26, 29, and 31, and were 
repeated twice a week for 3  months. Animals received 
vehicle (0.1% Natrosol) or BIBF1000 (25 mg/kg, b.i.d., a 
gift from Boehringer Ingelheim Pharma KG, Biberach, 
Germany) through gavage from day 26 to the end of 
fourth month. On day 120, bronchoalveolar lavage (BAL) 
was collected and analyzed for inflammatory cell influx 
and biochemical mediators as previously described [23]. 
Briefly, 0.5 ml of sterile PBS was instilled into the mouse 
lung via a 20-gauge angiocath and lavaged three times. 
BAL fluid samples were then pooled and centrifuged, and 
cell numbers and differentials were assessed. The cell-free 
BAL fluid was stored at − 80 °C until used.

Lung histology
Lung tissues were fixed with 10% formalin (Sigma, St. 
Louis, MO), and embedded in paraffin. Lung tissues were 
cut in 5 µm-thickness sections and stained with haema-
toxylin and eosin (H& E, Sigma, St. Louis, MO), periodic 
acid Schiff (PAS), trichrome stain. For IHC analysis, lung 
sections were deparaffinized, hydrated, and incubated in 
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10 mM sodium citrate buffer at 99 °C for 20 min for anti-
gen retrieval. Sections were incubated overnight with a 
primary antibody (1:350) to one of the following antigens: 
α-Smooth muscle actin (ab-5694, Abcam, Cambridge, 

MA), matrix metalloproteinase (MMP)-2 (sc-13594, 
Aviva Biosystems, San Diego, CA), MMP-9 (sc-21733), 
inducible nitric oxide synthase (iNOS, sc-7271), pro-
liferating cell nuclear antigen (PCNA, sc-25280), and 
cyclooxygenase 2 (COX-2, sc-7951) (All from Santa Cruz 
Biotechnology, Santa Cruz, CA) as previously described 
[23]. Next, the section was incubated for 1  h with the 
FITC-labeled goat anti-rabbit IgG secondary antibody 
(1:300) (sc-2012, Santa Cruz Biotechnology), Alexa Fluor 
594, goat, anti-mouse (Catalog# 405326, BioLegend) sec-
ondary antibody, or Goat pAb to Rb IgG (Alexa Fluora 
594), ab 150084 (abcam) secondary antibody. Sections 
were counterstained with Ultra Cruz Mounting Medium 
with 4ʹ, 6-diamidino-2-phenylindole (DAPI; sc-24941, 
Santa Cruz Biotechnology) and coverslipped. Fluores-
cent images were taken using the Nikon Eclipse TE2000-
U fluorescence microscope (Nikon Corp., Tokyo, Japan) 
and a Nikon LWD 0.52 digital camera. Two–three lung 
sections per mouse were analyzed. Images with the same 
magnification (20x) were analyzed using image J soft-
ware. Fluorescence intensity was measured based on 
area, and fluorescence intensity was normalized with 
control group.

For mucus staining: two to three lung sections 
from each animal were stained with Periodic Acid of 
Schiff (PAS) for visualizing mucus expression. (Kit 

395B-Sigma-Aldrich). Images with 20 × magnification 
were used for the analysis. The area of the mucus and the 
total area of airway epithelial layer were measured using 
image J software and mucus percentage in epithelial layer 
was calculated using the following formula:

Lung fibrosis from trichrome staining, small airway and 
arterial wall thickness were measured using image J soft-
ware as previously described [24]. All the analysis was 
performed in a blinded manner.

Biochemical assay
Lung protein extract was prepared using RIPA buffer 
that contained a mixture of proteinase and phos-
phatase inhibitors (Sigma, USA), protein concentra-
tion was measured using BCA kit (Sigma, USA). The 
content of Muc5ac in lung tissue lysate was measured 
using ELISA kit (Cloud-Clone-Crop, Houston, TX). 
The levels of Cysteinyl Leukotriene (Cayman Chemi-
cal, Ann Arbor, MI), IL-5 and IL-13 (both from R&D 
Sytems, Minneapolis, MN) in BAL were measured 
using ELISA kit followed by the manufacturer’s guide.

Reverse‑transcription PCR
Levels of mRNA expression for TNF-α and IL-1β 
were assessed in lung tissues by quantitative reverse-
transcription polymerase chain reaction (q RT-PCR) 
as previously described with some modifications [24]. 
Briefly, total RNA was extracted from the lung tis-
sues using a commercially available kit (RNAiso Plus, 

Mucus % in epithelial layer = sum of area of the mucus
/

total area of the epithelial layer * 100

BIBF1000/vehicle treatment from day 26 till the end of fourth month

Days
0       12                26     29    31                                                                                    120

OVA/alum 
sensi�za�on

OVA Challenge

OVA challenge for 3 months (from day 26) twice/week

Fig. 1  Schematic diagram of experimental design
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Takara, Japan). cDNA synthesis was performed with 
a High Capacity cDNA Reverse Transcription kit 
(Applied Biosystems, USA) on 2 mg RNA. For each RT-
PCR reaction, 50 ng cDNA was used with TaqMan gene 
expression master mix kit (Applied Biosystems, USA). 
Primers were targeted against mice TNF-α (Applied 
Biosystems Gene Expression Assay, Mm00443258) 
and mice IL-1β (Applied Biosystems Gene Expression 
Assay, Mm00434228). All data were normalized against 
Eukaryotic 18  s rRNA endogenous control (FAM™/
MGB pobe, non-primer limited) (Applied Biosystems 
Gene Expression Assay, ABI 4333760T) for each sam-
ple. Amplifications were performed in triplicate using 

an ABI Prism 7900HT Sequence Detection System 
(Applied Biosystems).

Western blotting
Western blot experiments were performed as previously 
described [24]. Briefly, the lung protein extracts were 
separated using SDS-PAGE and transferred to PVDF 
membranes (BIO-RAD, USA). The blots were incubated 
with primary antibodies (1:1000) against: PDGF-BB 
(ab-23914) and α-SMA (ab-21027, abcam, Cambridge, 
Massachusetts), MMP-2 (sc-13594), MMP-9 (sc-21733), 
iNOS (sc-7271), PCNA (sc-25280), COX-2 (sc-7951), 
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Fig. 2  Inhibition of VEGFR, PDGFR, and FGFR signaling by BIBF1000 reduced lung inflammatory cell accumulation in a mouse model of ovalbumin 
(OVA) allergen-induced chronic asthma. Inflammatory cell counts for A eosinophils, B neutrophils, C macrophages, D lymphocytes, and levels of E 
IL-5 and F IL-13 in BAL fluids. All values are mean ± SEM, n = 8. #p < 0.05 vs. control, *p < 0.05 vs. vehicle
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FGF-2 (sc-1360), ERK(sc-514302), p-ERK (sc-23759-R), 
Akt (sc-1619), p-Akt (sc-7985-R), VEGF (sc-53462), 
TGF-β1 (sc-146), and β-actin (sc-47778) (all from Santa 
Cruz Biotechnology, Santa Cruz, CA), followed by incu-
bation with HRP-conjugated secondary antibody (1:2000, 
sc-2354, sc-2002, sc-2004, Santa Cruz, CA). Immuno-
reactivity was detected using an enhanced chemilumi-
nescence Western blotting detection kit (Amersham, 
Piscataway, NJ). Results were quantified using Image J 
software.

Statistical analysis
All data are reported as means ± SEM. Statistical differ-
ences were evaluated with a one-way ANOVA, followed 
by Bonferroni’s post hoc test using GraphPad Prism 5 
(GraphPad Software, San Diego, CA). P ≤ 0.05 were con-
sidered to indicate statistically significant differences.

Results
BIBF1000 reduces allergen‑induced lung inflammation 
and mediator expression
On day 120, there was a significant increase in inflamma-
tory cell influx into the lungs of OVA-challenged mice 
compared to control mice (Fig.  2A–D). However, the 

numbers of eosinophils, macrophages, neutrophils, and 
lymphocytes in the BAL were reduced by 70.0%, 57.9%, 
47.5%, and 63.0%, respectively, in mice treated with 
BIBF1000, compared to vehicle-treated mice (Fig.  2A–
D). The levels of IL-5 and IL-13 in BAL were significantly 
lower in BIBF1000-treated mice, compared to vehi-
cle controls (Fig.  2E, F). RT-PCR revealed a significant 
increase of proinflammatory cytokines TNF-α and IL-1β 
mRNA expression in OVA-challenged animal lungs. 
However, the mRNA expression of TNF-α and IL-1β 
was significantly reduced in mice treated with BIBF1000 
(Fig.  3A, B). Furthermore, BIBF1000 treatment lowered 
lung mucin5AC content and BAL cys-leukotriene in mice 
compared to vehicle controls (Fig. 3C, D).

BIBF1000 reduces airway remodeling and mucus 
expression
Histological analysis revealed typical pathological fea-
tures of chronic asthma. Repeated OVA challenge 
resulted in increased lung inflammatory cell infiltration, 
airway and pulmonary arterial wall thickening, colla-
gen accumulation, and mucus expression (Figs.  4, 5). 
Treatment with BIBF1000 reduced airway and pulmo-
nary arterial remodeling with a 48.3% and 22.2% reduc-
tion in small airway and small pulmonary arterial wall 
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Fig. 3  Treatment with BIBF1000 reduced: A, B allergen-induced lung tissue mRNA expression of TNF-α and IL-1β; C lung tissue MUC5AC content, 
and the contents of cys-leukotrienes in lavage fluid. All values are mean ± SEM, n = 8. #p < 0.05 vs. control, *p < 0.05 vs. vehicle
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thickness, respectively, compared to vehicle-treated ani-
mals (Fig.  4). Histological analysis with PAS and Mas-
son’s trichrome staining showed marked reduction in the 
amount of mucus secretion of goblet cells and collagen 
accumulation of peribronchial areas in mice treated with 
BIBF1000, compared to vehicle-treated mice (Fig. 5).

Immunohistochemistry of vehicle-treated asthma 
mice demonstrated substantial cell proliferation in the 
thickened media layer of the airway. This layer was com-
posed of α-smooth muscle actin- and PCNA-positive 
cells in vehicle-treated asthma lung tissues (Fig. 6A and 
B). Immunohistochemistry also showed that there was a 
marked increase in iNOS, MMP-2, MMP-9, and COX-2 
in vehicle-treated asthma lungs (Fig.  6A–D). In con-
trast, treatment with BIBF1000 reduced smooth mus-
cle cell proliferation and nitrosative stress (Fig.  6A, B). 
Similarly, the chronic asthma-induced expressions of 
MMP-2, MMP-9, and COX-2 were strongly suppressed 
by BIBF1000 treatment (Fig.  6C and D). Furthermore, 
western blot analysis further confirmed that BIBF1000 

treatment attenuated the lung expression of α-SMA, 
PCNA, iNOS, MMP-2, MMP-9, and COX-2, compared 
to vehicle-treated asthma lung tissues (Fig. 7A–G).

Effect of BIBF1000 on the expression of growth factors 
and signaling molecules
Western blot analysis showed increased levels of PDGF-
BB, VEGF, FGF-2, and TGF-β in vehicle-treated asthma 
lungs, compared to the sham control group (Fig. 8A–E). 
The expressions of these growth factors were signifi-
cantly reduced in mice treated with BIBF1000, compared 
to vehicle controls (Fig.  8A–E). Furthermore, BIBF1000 
reduced the phosphorylation of ERK and AKT in OVA-
challenged lungs (Fig. 8A, F and G).

Discussion
The present study examined the anti-remodeling and 
anti- inflammatory effects of BIBF1000, a triple-tyros-
ine kinase inhibitor that targets VEGF, PDGF, and FGF 
receptor signaling in an experimental model of chronic 
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asthma. We found that administration of BIBF1000 sig-
nificantly reduced allergen-induced chronic inflam-
mation, mucus expression, and airway remodeling. 
Furthermore, the protective effect afforded by BIBF1000 
in reducing airway remodeling was associated with 
down-regulation of airway inflammation, and inflamma-
tory mediators (MMP-2, MMP-9, COX-2, and iNOS), as 
well as inhibition of ERK and AKT phosphorylation.

The asthmatic airway is characterized by chronic 
inflammation, sub-epithelial fibrosis, airway mucus 
hypersecretion, and airway wall thickening [1–3]. 
Inflammatory cells, such as polymorphonuclear (PMN) 
leukocytes, are recruited to the airway after aller-
gen exposure and during asthma exacerbations [1–3]. 
Many factors contribute to leukocytes recruitment to 
the airway, including cytokines and chemokines [1–5]. 
Moreover, the PMN leukocytes contribute to the devel-
opment of airway inflammation and airway remodeling 
through release of granular enzymes, growth factors, 

and cytokines (i.e., TNF-α, IL-1β) [1–5]. VEGF receptor 
blockade ameliorated allergen OVA-induced eosinophilic 
inflammation and cytokine production [25]. Nintedanib 
inhibits macrophage activation and attenuates vascular 
remodeling in a mouse model of systemic sclerosis [26]. 
In the present study, treatment with BIBF1000 reduced 
allergen-induced inflammatory cell infiltration and 
cytokine expression (TNF-α, IL-1β) in the lung. Type 2 
inflammation plays central roles in developing allergic 
asthma [27]. Each of the type-2 cytokines (interleukin 
(IL)-4, IL-5, and IL-13) exerts several roles in the air-
way inflammation cascade [27–30]. IL-4 plays a key role 
in Th2 cell differentiation [28], while IL-5 is specifically 
involved in eosinophilic inflammation and airway hyper-
responsiveness [29]. However, IL-13 is known to be a 
powerful stimulator of eosinophilic inflammation, tis-
sue fibrosis, mucus metaplasia, alveolar remodeling, and 
airways’ hyperresponsiveness [30]. In the present study, 
BIBF1000 reduced allergen OVA-induced IL-5 and IL-13 
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production in the lung. Furthermore, comparing to nin-
tedanib, BIBF1000 was equally potent and effective in 
reducing OVA-induced airway inflammatory cell infiltra-
tion and cytokine production in mice [19]. These findings 
further support the hypothesis that VEGFR, PDGFR, and 
FGFR signaling may be important in mediating allergic 
airway inflammation.

Airway mucus can contribute to the airway obstruction 
seen in asthma. In humans, sub-epithelial glands are the 
major source of airway mucus [31]. Mucous cell meta-
plasia by which pleomorphic cells of the airway surface 
epithelium differentiate to become mucous cells is a criti-
cal event to the development of the mucus hypersecre-
tion in chronic airway diseases [32]. Secretion of mucins 
from airway epithelial cells can be stimulated by a num-
ber of inflammatory mediators, including TNF-α, IL-13, 

leukotrienes, and prostaglandins [30, 33–36]. TNF-α 
has been shown to stimulate mucin release through acti-
vation of nitric oxide synthase, as well as via activation 
of NF-κB in a human lung epithelial cell [35, 36]. In the 
present study, treatment with BIBF1000 reduced OVA-
stimulated production of TNF-α, IL-13, and leukotrienes, 
attenuated the expression of iNOS and COX-2 in mice. 
Furthermore, collagen degradation beneath the epithe-
lium while permitting epithelial cells to migrate down-
ward to form new or enlarge existing mucous glands is 
another important contributing factor to the develop-
ment of the mucus hypersecretion in chronic airway dis-
eases [32]. Matrix metalloproteinases’ (MMPs) activation 
contributes to the mucus hypersecretion via regulation 
of matrix deposition and degradation and thus promot-
ing mucous metaplasia and gland enlargement in chronic 
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airway diseases [32]. In the present study, treatment 
with BIBF1000 reduced mucus expression of goblet cells 
and lung MUC5AC content. The reduction of mucus 
expression in this study was attributed to inhibition of 
multi inflammatory mediators, including TNF-α, IL-1β, 
IL-13, MMP-2, MMP-9, iNOS, COX-2, and leukotriene 
production.

Airway wall thickening and sub-epithelial fibrosis have 
been associated with disease severity in chronic asthma. 
Compared to non-asthma controls, airway wall thickness 
is increased 50–300% in fatal asthma cases and 10–100% 
in cases of nonfatal asthma [37]. An increase in airway 

smooth muscle mass resulting from hypertrophy and 
hyperplasia is well described in the asthmatic airway [37]. 
Moreover, airway smooth muscle cells contribute to the 
perpetuation of tissue inflammation and are important 
sources of extracellular matrix (ECM) in the asthmatic 
airway [3]. Growth factors, including PDGF, VEGF, FGF, 
and TGF, activate receptors with intrinsic kinase activity 
and have been shown to promote airway smooth muscle 
cell proliferation, migration, and ECM accumulation [11–
16]. Furthermore, transformation of fibroblasts to myofi-
broblasts has been implicated in the pathogenic events 
of airway remodeling [37, 38]. Myofibroblasts are major 
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sources of cytokines, including TGF-β, which stimulates 
collagen production [38, 39]. BIBF1000 inhibited TGF-
stimulated fibroblasts to myofibroblasts’ transformation 
and lung fibrosis [8]. In the present study, treatment with 
BIBF1000 reduced airway wall thickness and lung fibro-
sis. The reduction in airway wall thickness afforded by 
BIBF1000 treatment was accompanied by reduction in 
airway smooth muscle mass and cell proliferation, as well 
as reduction in the expression of PDGF-BB, VEGF, FGF-
2, and TGF-β.

The mechanisms of airway remodeling are not well 
defined. A number of mediators have been implicated 
in the pathogenesis of airway remodeling [1–3]. Matrix 
metalloproteinases contribute to the pathogenesis of air-
way remodeling via their influence to alter the collagen, 
elastin, and other extracellular matrix proteins of the air-
ways [23, 40]. Growth factors PDGF, FGF, and VEGF pro-
mote cell proliferation, migration, and tissue remodeling 
via stimulating MMPs activation, and phosphorylation of 
ERK and AKT signaling pathways [41–44]. In the present 
study, the expression of MMP-2 and MMP-9, and the 
phosphorylation of ERK and AKT induced by repeated 
OVA challenge were inhibited by BIBF1000 treatment.

Pulmonary arterial hypertension and chronic airway 
diseases (asthma, COPD) share important pathologi-
cal features, including inflammation, smooth muscle 
proliferation, and remodeling [45]. In an experimen-
tal model of pulmonary arterial hypertension in rats, 
we showed that BIBF1000 prevented and reversed the 
progression of severe pulmonary arterial hypertension, 
inhibited pulmonary arterial neointimal formation, and 
improved survival [20]. Furthermore, this compound 
inhibited growth factor, and hypoxia-stimulated pul-
monary arterial smooth muscle cell outgrowth from 
explant cultures of rat pulmonary arteries [20]. In the 
present study, small pulmonary arterial wall thick-
ness was significantly increased following repeated 
OVA challenge. BIBF1000 treatment also significantly 
reduced pulmonary arterial wall thickness. These 
studies suggest that simultaneous inhibition of VEGF, 
PDGF, and FGF receptor signaling with BIBF1000 can 
target inflammatory cells, as well as lung structural 
cells, including inhibition of OVA-induced inflamma-
tory cell infiltration, smooth muscle cells’ migration 
and proliferation, and transformation of fibroblasts to 
myofibroblasts, etc., thus ameliorating lung remod-
eling. Furthermore, BIBF1000 may have the potential to 
reverse the progression of pulmonary remodeling. Fur-
ther studies are warranted.

Conclusions
Administration of BIBF1000, an orally active small mol-
ecule triple-tyrosine kinase inhibitor that targets VEGF, 
PDGF, and FGF receptor signaling, significantly reduced 
allergen-induced chronic airway inflammation, mucus 
expression, airway, and pulmonary arterial remodeling. 
The protective effect afforded by BIBF1000 in reduc-
ing airway and arterial remodeling was associated with 
down-regulation of growth factors, inflammatory media-
tors (Il-5, Il-13, TNF-α, IL-1β, MMP-2, MMP-9, COX-
2, and iNOS), as well as inhibition of ERK and AKT 
phosphorylation.
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