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Abstract 

Osteoarthritis (OA) is a common chronic disabling disease that affects hundreds of millions of people around the 
world. The most important pathological feature is the rupture and loss of articular cartilage, and the characteristics 
of avascular joint tissues lead to limited repair ability. Currently, there is no effective treatment to prevent cartilage 
degeneration. Studies on the mechanism of cartilage metabolism revealed that hypoxia-inducible factors (HIFs) are 
key regulatory genes that maintain the balance of cartilage catabolism−matrix anabolism and are considered to 
be the major OA regulator and promising OA treatment target. Although the exact mechanism of HIFs in OA needs 
to be further clarified, many drugs that directly or indirectly act on HIF signaling pathways have been confirmed by 
animal experiments and regarded as promising treatments for OA. Targeting HIFs will provide a promising strategy for 
the development of new OA drugs. This article reviews the regulation of HIFs on intra-articular cartilage homeostasis 
and its influence on the progression of osteoarthritis and summarizes the recent advances in OA therapies targeting 
the HIF system.
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Introduction
In the recent years, as one of the most common chronic 
diseases of orthopedics, the incidence of osteoarthritis 
has been increasing year by year with the aging of the 
population and the increasing proportion of obesity [1]. 
The most important change in this disease is the destruc-
tion of articular cartilage, which is mainly caused by the 
decomposition of extracellular matrix by degradation 
enzymes and the death of chondrocytes caused by apop-
tosis or autophagy. Owing to the lack of blood supply and 
the relatively closed joint cavity, the articular cartilage 

itself is in a hypoxic environment. Since there are no 
capillaries in articular cartilage, the oxygen concentra-
tion gradient varies from only 1–10% [2]. The physiologi-
cal homeostasis of this hypoxic environment is mainly 
regulated by hypoxia-inducible factors (HIFs), especially 
HIF-1 and HIF-2 [3]. The hypoxic environment induces 
chondrocytes to produce a series of hypoxia-related 
molecules, which are involved in the regulation of oste-
oarthritis extracellular matrix-degrading enzymes and 
chondrocyte autophagy and apoptosis. The purpose of 
this article is to review recent studies on the HIF signal-
ing pathway and its roles in the occurrence and develop-
ment of osteoarthritis and to explore potential therapies 
targeting the HIF system.

HIF family
HIFs are heterodimeric transcription factors composed 
of α (HIF-1α, HIF-2α, and HIF-3α) and β (HIF-1β, 
HIF-2β, and HIF-3β, also known as ARNT1, ARNT2, 
and ARNT3) subunits [4–6]. HIF-α and HIF-β have the 
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same structural characteristics: both possess basic helix-
loop-helix (bHLH) and PAS domains (PAS is named after 
the three proteins PER, ARNT and SIM all of which have 

this domain) [7] (Fig.  1A, B). The bHLH-PAS domains 
mediate heterodimerization and further bind with the 
hypoxia response elements (HREs) of the target genes [8]. 

Fig. 1  Schematic diagram of the domain organization of HIFs. A Illustrated functional domain arrangements of HIFs. Domains: bHLH, basic 
helix-loop-helix (DNA binding and dimerization); PAS, Per/Ahr-ARNT/Sim (dimerization); PAS-A PAS-associated domain A; PAS-B PAS-associated 
domain B; ODDD: oxygen-dependent degradation domain; N-TAD, N-terminal transactivation domain (transcriptional transactivation); C-TAD, 
C-terminal transactivation domain (transcriptional transactivation); Factors: PHD1-3, HIF prolyl hydroxylase 1–3; VHL, von Hippel–Lindau tumor 
suppressor protein. CBP/P300: p300/CREB-binding protein. B 3D structural illustrations of HIF domain organization. Mouse HIF-1α:HIF-1β:HRE (DNA 
element) are shown as an example to show domain organizations. The structure is retrieved from the Protein Data Bank (ID: 4ZPR). Color schemes 
are the same as in panel A. Because the structure only contains partial sequences of HIF1α:HIF-1β, only bHLH and PAS domains are shown
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Binding of HIF-1α to HRE causes upregulation of HIF-1α 
target genes and is precisely regulated by many factors [9, 
10]. Besides bHLH and PAS domains, the HIF-1α protein 
also contains an oxygen-dependent degradation (ODD) 
domain and two transactivation domains (N-TAD and 
C-TAD). Interestingly, HIF-1β only has the C-terminal 
transactivation domain (C-TAD), however, it has two 
repeat regions PAS domains known as PAS-A and PAS-
B. HIF-2β and HIF-3β have similar domain organizations 
as HIF-1β (Fig. 1A, B).

Similar to HIF-1α, HIF-2α also interacts with HREs to 
upregulate transcriptional activity of target genes [11]. 
The HIF-2α protein shares 48% sequence identity with 
HIF-1α protein, and has many structural and biochemi-
cal similarities with HIF-1α (e.g., heterodimerization and 
HREs binding). However, when compared with HIF-1α, 
which is widely expressed, HIF-2α is mainly expressed 
in the lung, carotid body, and endothelial cells [12]. 
HIF-2β and HIF-3β also expression in the endothelial 
tissue and have 70% similarity with HIF-1β and shar-
ing similar structure [13–15]. In contrast, HIF-3α is 
involved in hypoxic downregulation through selective 
splicing of transcription factors that may act as inhibitors 
of HIF-1α [16]. HIF-3α is also expressed in a variety of 
tissues, dimerizes with HIF-1α and binds to HREs [17]. 
Currently, HIF-1 and HIF-2 have been more widely stud-
ied, while HIF-3 and other HIFs have been relatively less 
studied (Fig. 1A, B).

Regulation of HIFs
HIFs are key heterodimer transcription factors expressed 
under hypoxic conditions. It mediates adaptive responses 
from normoxic (~ 21% oxygen) to hypoxic conditions by 
binding to the promoters of numerous hypoxia-inducible 
genes, such as those involved in iron metabolism, angio-
genesis, and glucose metabolism. It plays important roles 
for cells and tissues to adapt to low oxygen tension [6, 18, 
19].

The regulation of HIF system is mainly through the α 
subunit HIF-α, whereas β subunit HIF-β is constitutively 
expressed [20]. Under normoxic condition, the expres-
sion of two main HIF-α isoforms (HIF-1α and HIF-2α) 
is regulated by oxygen-independent mechanisms, the 
mitogen-activated protein kinase (MAPK) pathway and 
the growth factor-mediated phosphoinositide 3 kinase 
(PI3K) pathway [21, 22]. Taking the oxygen-independent 
mechanism as an example, HIF-α protein degradation 
is mediated by the ODD domain. HIF-α remains stable 
even in the absence of a hypoxia signal when the entire 
ODD region is removed [23]. Hydroxylation of proline 
residues 402 and 564 in the ODD domain controls the 
interaction between HIF-α and the von Hippel-Lindau 
tumor suppressor protein (pVHL) which facilitates the 

ubiquitination and degradation of HIIF-α [24–27]. The 
hydroxylation process is regulated by three conserved 
HIF prolyl hydroxylases (PHD1, PHD2, PHD3, and also 
known as EGLN2, EGLN1, EGLN3), and their activity 
lies in the presence of oxygen, iron, 2-oxoglutarate and 
ascorbate [18, 28]. Interestingly, it has been shown that 
PHD2 has remarkable significance in regulating HIF-1α 
levels by using small interfering RNA (siRNA) techniques 
[29].

In hypoxia, prolyl hydroxylation of the ODD domain 
is suppressed, and the interaction between HIF-1α 
and pVHL is inhibited. As a result, HIF-α degrada-
tion is interrupted and its concentration consequently 
increases. HIF-α is then translocated and accumulated in 
the nucleus where it binds to HIF-β via bHLHs and PAS 
domains to form the HIF-α/β dimer complex [6]. Tran-
scriptional coactivators, such as p300/CBP (p300/CREB-
binding protein), help the HIF complex couple to HRE 
elements within the promoter region of HIF target genes, 
consequently regulating their transcriptional activation 
[30, 31]. Asparagine hydroxylase, known as FIH-1 (factor 
inhibiting HIF-1), also mediates the transcriptional activ-
ity of HIF-1α [32–35]. Hydroxylation of Asn803 from 
FIH-1 blocks the HIF-1α interaction with p300/CBP in 
its C-TAD under normoxic conditions, so FIH-1 acts as a 
negative regulator of HIF-1α by interacting with pVHL to 
suppress transcriptional activity and modulate stabiliza-
tion (Fig. 2).

The roles of HIF‑1α in OA
It is extremely important to maintain chondrocyte 
metabolism under hypoxic conditions. In healthy car-
tilage, hypoxic conditions can enhance the expression 
and activity of HIF-1α [36–38], which not only induces 
the expression of Erythropoietin (EPO), SRY-Box Tran-
scription Factor 9 (SOX9), Collagen Type II Alpha 1 
(COL2A1), Vascular endothelial growth factor (VEGF), 
Nitric Oxide Synthase (NOS) and glucose transporter 
protein type 1 (GLUT1) to maintain cartilage homeo-
stasis, but also inhibits the expression of Collagen Type 
I Alpha 1 (COL1A1), Collagen Type I Alpha 2 (COL1A2) 
and Collagen Type III Alpha 1 (COL3A1) to prevent the 
degradation of the extracellular matrix (ECM) [39–42], 
thereby mediating anti-catabolic reactions and prevent-
ing spontaneous and induced destruction of human 
cartilage. In addition, HIF-1α can also protect chondro-
cytes from apoptosis by inducing heat shock protein 70 
(HSP70) to increase ECM gene expression levels and cell 
viability [43–50].

Studies have found that HIF-1α levels are signifi-
cantly related to the severity and progression of osteo-
arthritis [51, 52]. In the early stage of OA, articular 
cartilage undergoes metabolic adaptation under harmful 
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stimulating conditions. Chondrocytes dedifferentiate 
into a hypertrophic phenotype, and ECM is degraded 
which is characterized by decreased synthesis of Colla-
gen II and newly synthesized Collagen I and Collagen X, 
accompanied by activation of matrix-degrading enzymes 
such as MMP13 [53]. During this period, chondrocytes 
attemp to repair damaged cells and ECM through adap-
tive changes in metabolism. Owing to the changes in the 
chondrocyte microenvironment in OA, the activation of 

AMP-activated protein kinase (AMPK) and inhibition 
of the mammalian target of rapamycin (mTOR) induced 
by HIF-1α can also cause chondrocyte autophagy [54]. 
Osteoarthritis of the temporomandibular joint (TMJ) is 
one of the common types of OA. In TMJ-OA, the HIF-
1-VEGF-Notch signaling pathway accelerates cartilage 
angiogenesis, thereby accelerating the development of 
TMJ-OA [55–57]. F-box and WD repeat domain-con-
taining 7 (FBW7) can negatively regulate the HIF-1α/

Fig. 2  Schematic diagram of the HIF-1 pathway. Under normal oxygen conditions, HIF-1α protein is hydroxylated by prolyl 4-hydroxylase (PHD) on 
proline residues and polyubiquitinated by von Hippel–Lindau protein (pVHL). In this case, it will be degraded by the 26S proteasome system. Under 
hypoxia, HIF-1α can enter the nucleus and form a transcription complex with HIF-1β subunits and then recruit coactivators (such as CBP/p300) 
to regulate the transcriptional activity of downstream genes. PHD, molecules containing proline-hydroxylase domain; Ub, ubiquitin; FIH, a novel 
protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity
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VEGF pathway to inhibit angiogenesis, thereby inhibiting 
the degradation of chondrocytes induced by IL-1β [58]. 
Studies have found that the expression of HIF-1α and 
Runx2 in degenerative chondrocytes increases simulta-
neously. Studies showed that Runx2 protein can induce 
the expression of HIF-1α at the transcriptional level and 
accelerate the progression of OA [59]. However, with the 
development of OA, this metabolic adaptation and the 
self-repair ability of cartilage decrease, leading to seri-
ous tissue damage [60, 61]. The abnormal deposition of 
ECM can further lead to synovial fibrosis. Among them, 
TGF-β, procollagen-lysine, 2-oxoglutarate 5-dioxyge-
nase2, COL1A1 and tissue inhibitor of metalloprotein-
ases 1 are involved in osteoarthritis-related fibrosis and 
are considered fibrosis markers [62–64]. Fibroblast-like 
synovial cells (FLSs) are the main effector cells of syno-
vial fibrosis in knee osteoarthritis [65]. More recently, 
a form of programmed inflammatory cell death called 
pyroptosis has been discovered [66]. HIF-1α activates 
nucleotide-binding oligomerization domain-like receptor 
family pyrin domain-containing 3 (NLRP3), assembles 
inflammasome complexes through the adapter protein 
apoptosis-associated speck-like protein containing a cas-
pase recruitment domain, and drives caspase-1-mediated 
inflammation to mediate knee synovial fibrosis in OA 
[67–69]. The HIF-1α/NLRP3 inflammasome is one of 
the inflammasome signal transductions closely related to 
the KOA process. Inhibiting the activation of inflammas-
omes improves synovial fibrosis in KOA [70–73].

In addition, the progression of HIF-1α in OA is also 
regulated by long noncoding RNAs (lncRNAs) and 
miRNAs. LncRNAs refer to a subpopulation of noncod-
ing RNAs longer than 200 nucleotides. Previous stud-
ies have shown that abnormal expression of lncRNAs 
plays an important role in the development of OA [74, 
75]. For example, lncRNA UFC1 can increase the pro-
liferation of chondrocytes in OA [76], and lncRNA car-
tilage injury-related (lncRNA-CIR) can promote the 
degradation of chondrocyte extracellular matrix in the 
disease [77]. Long noncoding HIF-1α co-activating RNA 
(LncHIFCAR) positively regulates HIF-1α and HIF-1α 
target genes (such as VEGF and BNIP3), thereby pro-
moting the hypoxia-induced inflammatory response and 
matrix synthesis and inducing cell apoptosis [78]. miR-
NAs are single-stranded small noncoding RNAs abun-
dant in cells. Many miRNAs also plays an important 
role in hypoxia cartilage homeostasis or the OA stress 
microenvironment through the HIF-1α pathway [79, 80]. 
For example, miR-146a upregulates the expression of 
ULK-1, HIF-1α and ATG-5 by targeting TRAF6/IRAK1, 
thereby slowing the progression of OA [81]. miR-204 and 
miR-211 affect nerve growth factor (NGF) expression 
in a Runx2-dependent manner to regulate homeostasis 

and OA progression [82]. miR-411 regulates chondro-
cyte autophagy by targeting HIF-1α [83]. Whereas miR-
373 regulates the damage to chondrocytes treated with 
lipopolysaccharide by targeting HIF-1α [84].

The roles of HIF‑2α in OA
HIF-2α and HIF-1α have different functions in cartilage. 
In the articular cartilage cells of synovial joints, HIF-1α 
promotes the homeostatic pathway, while HIF-2α pro-
motes the degradation pathway. HIF-2α can target 
genes related to the hypertrophy and differentiation of 
chondrocytes, such as Runt-related transcription fac-
tor 2 (RUNX2) and COL10A1, and genes related to the 
degradation of ECM, such as matrix metalloproteinase 
MMP9, MMP13, MMP3 and A Disintegrin and Met-
alloproteinase with Thrombospondin motifs 48–51 
(ADAMTS48-51) [85]. In addition, proinflammatory fac-
tors (such as interleukin IL-1β, IL-6, and tumor necrosis 
factor TNF-α) can upregulate the expression of HIF-2α 
in articular chondrocytes by activating Nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-κB) 
signaling pathways [86, 87], thereby promoting chon-
drocytes from the prehypertrophic state to the termi-
nal hypertrophic state [87]. Previous studies have found 
that nicotinamide phosphoribosyltransferase (NAMPT) 
is the direct target gene of HIF-2α in articular chondro-
cytes and is upregulated in OA cartilage. Inhibition of 
NAMPT enzyme activity by injection of the NAMPT 
inhibitor FK866 (intra-articular or intraperitoneal) can 
inhibit the destruction of osteoarthritic cartilage caused 
by intra-articular injection or DMM surgery with Epas1 
adenovirus (Ad-Epas1) or Ad-Nampt [88]. Fas (CD95) is 
a member of the tumor necrosis factor receptor family, 
containing a death domain to activate apoptosis signals. 
The binding of Fas ligand (FasL) or an agonistic anti-Fas 
antibody to the Fas receptor triggers the apoptosis signal. 
The increase in the chondrocyte apoptosis is also related 
to the severity of human OA cartilage damage [89, 90]. 
The combination of FasL or anti-Fas antibodies can 
induce chondrocyte apoptosis [91, 92]. Researchers have 
found that HIF-2α promotes Fas-mediated chondrocyte 
apoptosis by upregulating Fas expression [93]. The accu-
mulation of iron-dependent lipid hydroperoxides causes 
cell death, known as ferroptosis [94–96]. The recent evi-
dence suggests that ferroptosis in chondrocytes is associ-
ated with the progression of OA [94–96]. These findings 
indicate that ferroptosis suppression is a new potential 
choice to prevent the progression of OA. Human lysyl 
oxidase (LOX) is a hypoxia response gene whose prod-
uct can catalyze collagen cross-linking, while HIF-2α can 
upregulate LOX and play a crucial role in osteoarthritis 
[97, 98]. HIF-2α also causes cartilage destruction by reg-
ulating the expression of various catabolic factors, such 
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as VEGF, type X collagen, prostaglandin intra peroxidase 
synthase 2 (PTGS2) and nitric oxide synthase 2 (NOS2) 
[87].

When compared with normal cartilage, the expression 
of various miRNAs in osteoarthritis has also undergone 
some changes, which indicates that the expression of 
miRNAs may also be involved in the metabolic balance of 
cartilage through HIF-2α pathway [99]. There are experi-
ments have shown that miR-365 regulates HIF-2α at the 
posttranscriptional level and cross-regulates the MAPK-
NF-kB signaling pathway to reduce IL-1β-induced chon-
drocyte catabolism [100] (Fig. 3).

Targeting HIF‑1α for OA therapy
Because PHD can hydroxylate HIF-1α and lead to ubiq-
uitination degradation, inhibiting the hydroxylation of 
HIF-1α by PHD may have potential therapeutic value. 
Dimethyloxaloylglycine (DMOG), an analog of 2-oxo-
glutarate, can competitively bind to PHD and eventu-
ally inhibit HIF degradation [101]. In addition, the PHD 
inhibitors TM6008 and TM6089 are designed based on 
the active site of the three-dimensional protein struc-
ture of human PHD2 and inhibit HIF-1α degradation 
[102, 103]. Moreover, FK506-binding protein 38 can 
reduce the stability of PHD2 protein by interacting with 

the N-terminal domain of PHD2, thereby accumulating 
HIF-1 and increasing cartilage stability [104].

The NLRP3 inflammasome (HIF-1α/NLRP3 inflam-
masome) is one of the inflammasome signal transduc-
tion pathways closely related to the KOA process, and 
inhibiting the activation of the NLRP3 inflammasome 
can improve synovial fibrosis in KOA. Researchers found 
that Agnuside (AGN), a nontoxic, natural small molecule 
isolated from the extract of Vitex negundo L., can reduce 
the fibrosis of experimental KOA by inhibiting the accu-
mulation of HIF-1α and the activation of NLRP3 inflam-
masomes [105]. Casticin is a compound purified from the 
Chinese herbal medicine Viticis Fructus. It has the effects 
of promoting the immune response [106], anti-inflam-
mation [107], antioxidative stress [108] and antifibro-
sis [109]. Similarly, casticin reduces MIA-induced KOA 
by inhibiting HIF-1α/NLRP3 inflammasome activation. 
Therefore, casticin may be a potential treatment strategy 
for KOA [110].

In the recent years, magnesium-based biomedical 
devices have shown great potential for translation in 
orthopedics [111]. The use of magnesium ions (Mg2+) 
to promote the synthesis of cartilage matrix mediated by 
HIF-1α is a new treatment option for OA [112]. However, 
oxidative stress can reduce the expression of HIF-1α and 
enhance the inflammatory response, which may impair 

Fig. 3  HIF-1α and HIF-2α have different functions in OA. HIF-1α mainly maintains the extracellular matrix synthesis of chondrocytes 
and chondrocyte differentiation and promotes the balance of articular cartilage autophagy in the body. NF-κB activation promotes the 
heterodimerization of HIF-2α and RNTL, leading to the activation of the transcription factor HIF-2α, and through the IHH and RUNX2 axes, 
coactivating MMP13 prompts articular chondrocytes to show a hypertrophic state of differentiation, leading to the occurrence and progression of 
OA
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the efficacy of Mg2+ in the treatment of OA. Vitamin C 
is an effective antioxidant that can enhance the efficacy of 
Mg2+ in the treatment of OA [113].

In summary, there are many different ways to treat 
OA through the different HIF-1α pathways. Firstly, car-
tilage homeostasis can be strengthened through inhib-
iting degradation of HIF-1α in the early of OA, using 
compounds such as DMOG, FK506-binding protein 38, 
PHD inhibitors TM6008 and TM6089. However, with 
the progression of OA, the improving synovial fibro-
sis through inhibiting accumulation of HIF-1α become 
more important using compunds, such as Agnuside and 
Casticin. Besides, Mg2+ can be used to promote the syn-
thesis of cartilage matrix mediated by hypoxia-inducible 
factor-1α.

Targeting HIF‑2α for OA therapy
HIF-2α is a regulatory factor for the expression of cata-
bolic factors during the development of osteoarthritis. 
Therefore, HIF-2α inhibitors have potential therapeu-
tic prospects for osteoarthritis. Studies have found 
that curcumin CMC2.24 regulates chondrocyte apop-
tosis and ECM homeostasis by inhibiting the NF-κB/
HIF-2α pathway, thereby providing a new perspective 
for the treatment of OA [114]. One of the extracts of Cir-
sium japonicum var. maackii (CJM), apigenin inhibits 
HIF-2α through the NF-κB pathway, effectively block-
ing the expression of Prostaglandin-endoperoxide syn-
thase 2 (COX-2), MMP3 and MMP13, and is worthy 
of use as a therapeutic drug for OA to block cartilage 
inflammation [115]. D-mannose inhibits chondrocyte 
ferroptosis enhanced by HIF-2α and has a chondropro-
tective effect on the progression of OA [116]. Icariin 
(ICA) is a typical flavonoid compound extracted from 
Epimedii Folium that may inhibit inflammatory dam-
age by inhibiting the NF-κB/HIF-2α signaling pathway, 
thereby increasing chondrocyte viability [117]. Inhibi-
tion of syndecan-4 (SDC-4) induces the expression of 
microRNA-96-5p (miR-96-5p), targets HIF-2α 3′-UTR 
sequences and inhibits HIF-2α signaling in mouse car-
tilage tissue and chondrocytes. Therefore, this method 
may provide a potential new strategy to prevent the pro-
gression of osteoarthritis [118]. 4 (2′-Aminoethyl) amino-
1,8-dimethylimidazo(1,2-a)quinoxaline (BMS-345541) 
is a selective inhibitor of the subunits of IκBα kinase 
(IKK). Intra-articular administration of BMS-345541 
may inhibit the development of OA by downregulating 
NF-κB/HIF-2α signaling [119]. Studies using vectors to 
deliver siRNA and silence HIF-2α expression can prevent 
cartilage degradation in mice affected by OA [120]. In 
brief, there are many HIF-2α inhibitors (CMC2.24, CJM, 
D-mannose, ICA, SDC-4 and BMS-345541 et. al) have 
the potential therapeutic prospects in the OA diseases.

Conclusion
HIF-1α α and HIF-2α have different functions in car-
tilage. The regulation of HIF-1α is crucial in maintain-
ing cartilage homeostasis. It induces the expression 
of COL2A1, SOX9, GLUT1, EPO, NOS and VEGF to 
maintain cartilage homeostasis and inhibits the expres-
sion of COL1A1, COL1A2 and COL3A1 to prevent 
ECM degradation. HIF-2α is involved in a pathway that 
promotes osteoarthritis degradation and regulates the 
expression of genes related to chondrocyte hypertro-
phy and differentiation, such as COL10A1 and RUNX2, 
and the expression of genes related to ECM degrada-
tion, such as MMP9, MMP13, MMP3, ADAMTS. Many 
of those proteins may serve potential targets for novel 
therapy development. However, many research gaps 
still exists for further in-depth studies. For example, 
HIFs pathways may cross-talk with other pathways 
and regulation of the potential targets may thus result 
in serious side effects [121]. What’s more, the molec-
ular mechanism of osteoarthritis is very complicated 
and many of those reported potential therapeutics still 
need further provement in clinical experiemnts [122]. 
In conclusion, OA is a dynamic change caused by the 
imbalance between the anabolic and catabolic of joint 
tissue. For osteoarthritis, increasing the accumulation 
and activity of HIF-1α to increase cartilage stability and 
inhibiting the activity of HIF-2α to reduce ECM degra-
dation are promising therapeutic approaches.
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