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Tumor microenvironment‑associated lactate 
metabolism regulates the prognosis and precise 
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Abstract 

Background:  Despite the wide clinical application of checkpoint inhibitor immunotherapy in lung adenocarcinoma, 
its limited benefit to patients remains puzzling to researchers. One of the mechanisms of immunotherapy resistance 
may be the dysregulation of lactate metabolism in the immunosuppressive tumor microenvironment (TME), which 
can inhibit dendritic cell maturation and prevent T-cell invasion into tumors. However, the key genes related to lactate 
metabolism and their influence on the immunotherapeutic effects in lung adenocarcinoma have not yet been inves-
tigated in depth.

Methods:  In this study, we first surveyed the dysregulated expression of genes related to lactate metabolism in lung 
adenocarcinoma and then characterized their biological functions. Using machine learning methods, we constructed 
a lactate-associated gene signature in The Cancer Genome Atlas cohort and validated its effectiveness in predicting 
the prognosis and immunotherapy outcomes of patients in the Gene Expression Omnibus cohorts.

Results:  A 7-gene signature based on the metabolomics related to lactate metabolism was found to be associated 
with multiple important clinical features of cancer and was an independent prognostic factor.

Conclusions:  These results suggest that rather than being simply a metabolic byproduct of glycolysis, lactate in the 
TME can affect immunotherapy outcomes. Therefore, the mechanism underlying this effect of lactate is worthy of 
further study.

Keywords:  Lactate metabolism, Gene signature, Risk score, Prognosis, Immunotherapy benefit, Lung 
adenocarcinoma
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Introduction
An important physiological function of glucose is to pro-
vide energy for cell survival. In the human body, glucose 
is metabolized through three main routes: anaerobic 
glycolysis, the pentose phosphate pathway, and mito-
chondrial oxidative phosphorylation [1, 2]. However, 
metabolic reprogramming is common in tumorigen-
esis and cancer development, endowing the tumor cells 
with multiple competitive advantages for survival and 
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progression [3–5]. One such metabolic change is the 
increase in lactate production due to the Warburg effect 
of aerobic glycolysis [6–8]. Lactate metabolism in tumor 
cells is significantly different from that in normal cells 
[9]. Unlike normal cells that gain energy by metabolizing 
glucose to pyruvate, which is then transported into the 
mitochondria for full oxidative phosphorylation, tumor 
cells rely mainly on aerobic glycolysis for energy and pro-
ducing precursors for protein, lipid, and nucleotide syn-
thesis [4, 10, 11]. In tumor cells, glucose is first catalyzed 
to pyruvate by enzymes such as hexokinase, 6-phosphof-
ructokinase-1, and pyruvate kinase [12]. Finally, the high 
expression of lactate dehydrogenase (LDH) and pyru-
vate dehydrogenase kinase in tumor tissue promotes the 
reduction of pyruvate to lactate [13].

This highly efficient aerobic glycolysis can produce 
a large amount of lactate, which can then be secreted 
into the extracellular space to acidify the tumor micro-
environment (TME) [14, 15]. In the past, lactate was 
considered to be only metabolic waste as a byproduct 
of glycolysis. However, an increasing number of studies 
have found that lactate can activate many important sign-
aling pathways in tumor cells to promote the survival, 
invasion, immune escape, metastasis, and angiogenesis 
of multiple types of cancer [16–20]. Baumann et al. [21] 
demonstrated that lactate could induce the upregulated 
expression of transforming growth factor-beta 2 (TGFβ2) 
to stimulate tumor invasion and metastasis. Other stud-
ies have shown that lactate acts as an immunosuppressive 
molecule by promoting the survival of regulatory T lym-
phocytes (Tregs) [19, 22, 23], suppressing the production 
of interferon-gamma (IFN-γ) in cytotoxic T cells [24, 25], 
inhibiting the toxicity and cytolytic functions of natu-
ral killer cells [26, 27], and facilitating M2 polarization 
of tumor-associated macrophages via the ERK/STAT3 
signaling pathway [16, 28]. Additionally, the abnormal 
metabolism and excretion of lactate can suppress the 
degradation of hypoxia-inducible factor 1-alpha (HIF-1α) 
[29] and increase the production of vascular endothelial 
growth factor [30] and fibroblast growth factor [31] in 
endothelial cells, thereby promoting angiogenesis in the 
TME [20, 32, 33]. Therefore, more detailed studies on 
lactate metabolism and the key enzymes involved in the 
process may provide new insights into tumor pathogen-
esis as well as potential therapeutic targets.

To date, the effects of the dysregulation of lactate 
metabolism and related genes in the TME on the thera-
peutic outcomes and prognosis of cancer patients have 
not been studied. Moreover, there is a lack of research on 
the prognostic value of lactate metabolism in lung adeno-
carcinoma. Therefore, the objectives of this study were 
to identify the genes associated with lactate metabolism 
in lung adenocarcinoma and determine their expression 

characteristics and biological significance. To this end, 
data were downloaded from The Cancer Gene Atlas 
(TCGA) and the Gene Expression Onmibus (GEO) data-
bases to identify the lactate metabolism-related genes 
in lung adenocarcinoma. Then, using machine learn-
ing tools, we constructed a prognostic risk score model 
based on lactate metabolism-associated genes screened 
from the TCGA dataset and evaluated its predictive 
effectiveness on the GEO patient cohorts. The 7-gene sig-
nature was found to be associated with multiple impor-
tant clinical features of cancer. These results suggest that 
rather than being simply a metabolic byproduct of glyco-
lysis, lactate in the TME can affect immunotherapy out-
comes. Further elucidation of the mechanism underlying 
this lactate effect could provide a practical reference for 
the formulation of individualized treatment strategies.

Materials and methods
Data acquisition and pretreatment
The lung adenocarcinoma samples of The Cancer 
Genome Atlas (TCGA) database [34] downloaded from 
Xena (https://​tcga-​xena-​hub.​s3.​us-​east-1.​amazo​naws.​
com/​downl​oad/​TCGA.​LUAD.​sampl​eMap%​2FHiS​eqV2.​
gz) were used as the training set. GSE26939, a lung ade-
nocarcinoma chipset [35], was downloaded from GEO 
database (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​
cgi?​acc=​GSE26​939) for verification (shown in Table  1). 
We converted the gene expression data using log2-trans-
formed quantile-normalized signal intensity. When there 
are multiple probes corresponding to the same gene, we 
take the median as the expression value. And then each 
probe was converted to corresponding gene symbol 
according to the labeling information.

Identification of lactate metabolism genes
Lactic acid, and lactate were used as the keyword to 
search for genes related to lactate metabolism in the 
GSEA database (http://​www.​gsea-​msigdb.​org/​gsea/​
login.​jsp). Meanwhile, lactate was used as the keyword 

Table 1  The expression profile dataset in lung adenocarcinoma 
downloaded from online databases

Dataset ID Platform Tumor Normal

TCGA-LUAD Illumina 517 59

GSE26939 GPL9053 116 0

GSE190266 GPL24676 70 0

GSE135222 GPL16791 27 0

GSE136961 GPL24014 21 0

GSE81089 GPL16791 198 22

GSE101929 GPL570 33 33

https://tcga-xena-hub.s3.us-east-1.amazonaws.com/download/TCGA.LUAD.sampleMap%2FHiSeqV2.gz
https://tcga-xena-hub.s3.us-east-1.amazonaws.com/download/TCGA.LUAD.sampleMap%2FHiSeqV2.gz
https://tcga-xena-hub.s3.us-east-1.amazonaws.com/download/TCGA.LUAD.sampleMap%2FHiSeqV2.gz
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26939
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26939
http://www.gsea-msigdb.org/gsea/login.jsp
http://www.gsea-msigdb.org/gsea/login.jsp
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on Genecard database (https://​www.​genec​ards.​org/), 
and genes with score > 20 were selected as supple-
mentary gene sets. By taking the intersection of dif-
ferent gene sets, we finally obtained 26 candidate 
genes related to lactate metabolism (the gene symbols 
and NCBI ID are listed in Additional file  1: Table  S1): 
GOBP_LACTATE_METABOLIC_PROCESS; GOBP_
L AC TATE_TR ANSME MBR ANE_TR ANSP ORT; 
GOMF_LACTATE_DEHYDROGENASE_ACTIVITY; 
GOMF_LACTATE_TRANSMEMBRANE_TRANS-
PORTER_ACTIVITY.

Differential expression analysis
We then screened the differentially expressed genes 
(DEGs) of lung adenocarcinoma samples in the TCGA 
cohorts using R-package DESeq2. By using the Benja-
mini–Hochberg procedure to control the false discov-
ery rate (FDR), 5530 DEGs were identified with a strict 
cut-off of P < 0.01 and an FDR of less than 0.05. And then 
9 genes were screened out after the intersection of the 
5530 DEGs with the candidate genes related to lactate 
metabolism.

Machine learning of prognostic gene signatures based 
on lactate metabolism
We used R-package GLMNET [36] to perform Least 
Absolute Shrinkage and Selection Operator (LASSO) 
regression analysis [37] based on the expression matrix 
of lactate metabolism-related genes from the above uni-
variate Cox regression, and found that the model has the 
highest accuracy when the degree of freedom (gene num-
ber) was 11 (Fig.  4A, B). Finally, the signature of 7 lac-
tate metabolism-related genes was selected to assemble a 
prognostic risk score model (Fig. 4C). The lactate-related 
risk score of each patient was calculated by the formula: 
riskScore = (−0.06275159 *ACTN3 expression value 
−0.01796317 *LDHD expression value + 0.01581625 
*LDHA expression value + 0.01821132 *SLC16A3 
expression value + 0.04737492 *SLC16A1 expres-
sion value + 0.05394477 *HAGH expression 
value + 0.05710535 *DARS2 expression value).

Immunotherapy cohorts and therapeutic benefit 
evaluation
In order to investigate the correlation between the 7-gene 
signature and clinical response, the sequencing and 
clinical data of patients with lung adenocarcinoma who 
received anti-PD-(L)1 immunotherapy in six different 
datasets [GSE190266 (n = 70) [38], GSE135222 (n = 27) 
[39], GSE136961 (n = 21) [40], GSE81089 (n = 198) 
[41], GSE101929 (n = 33) [42] and the MSS Mixed Solid 
Tumors cohort, from Dana-Farber Cancer Institute, 
Boston, USA (n = 47) [43]) were downloaded from GEO 

database and cBioPortal database [44]. We next explored 
the potential effect of lactate metabolism on anti-PD-
(L)1 immunotherapy in patients based on the short-term 
and long-term analysis. The short-term analysis focused 
on the tumor objective response, while the long-term 
analysis focused on the progression-free survival (PFS) 
and overall survival (OS) of patients after receiving 
treatments.

Statistical analysis
SPSS version 23.0 software (SPSS, Chicago, IL, USA) or 
R software (version 4.0.3) was used for statistical analy-
sis. Chi-squared test was used for the clinicopathologi-
cal parameters among different treatment groups. The 
log-rank test was used for the Kaplan–Meier survival of 
each group. Univariate and multivariate analysis were 
presented through Cox regressions. The reported results 
covered hazard ratios (HR) and 95% confidence intervals 
(CI). Curve analysis of the receiver operating charac-
teristic (ROC) was applied for evaluating the predictive 
performance.

Results
Dysregulated expression and biological characterization 
of genes related to lactate metabolism in lung 
adenocarcinoma
First, 5530 DEGs between the 517 cancer samples and 
59 normal tissue samples from the TCGA database were 
extracted using the DESeq2 package. After intersec-
tion of these 5530 DEGs with the genes related to lactate 
metabolism (identified from the GSEA and GeneCards 
platforms), nine genes were screened for further study 
(Fig.  1A). The heatmap in Fig.  1B shows the differential 
expression of these nine genes in the TCGA cohort. To 
determine whether these lactate metabolism-related 
genes can distinguish cancer patients from healthy indi-
viduals, the sample dimensions of the genes were reduced 
using principal component analysis. As shown in Fig. 1C, 
these nine genes had reliable identification value.

Next, on the basis of the mutant MAF file from the 
TCGA database, a waterfall plot of single nucleotide vari-
ations of these nine genes was drawn using maftools in 
the R package (Fig.  1D) [45]. Subsequently, these genes 
were divided into mutation and wild-type groups for sur-
vival analysis. The results obtained using survminer in 
the R package demonstrated that the OS of the wild-type 
group was considerably longer than that of the mutation 
group (Fig. 1E).

Copy number variations of genes related to lactate 
metabolism in lung adenocarcinoma
We extracted the CNVs of all lactate metabolism-
related genes to evaluate their copy status (Fig. 2A) and 

https://www.genecards.org/
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then selected the top six genes with the most CNVs. 
As illustrated by the box plots (Fig. 2B–G), the follow-
ing six genes were significantly differentially expressed 
between the normal and cancerous tissues: aspartyl-
tRNA synthetase, mitochondrial (DARS2), embigin 
(EMB), lactate dehydrogenase A like 6A (LDHAL6A), 
6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 

2 (PFKFB2), solute carrier family 16 member 8 
(SLC16A8), and tumor protein P53 (TP53).

Prognostic performance of the lactate metabolism‑related 
genes in lung adenocarcinoma
Using the forestplot package, univariate Cox regres-
sion analysis was performed to evaluate the prognostic 

Fig. 1  Dysregulated expression and biological characterizations of lactate-related genes in lung adenocarcinoma. A Volcano plot of the differential 
expressions of 5530 DEGs in TCGA cohort. B Heatmap of the differential expressions of DEGs related to lactate metabolism. C Sample dimensionality 
reduction by using principal component analysis (PCA) demonstrated the reliable identification value of these 9 lactate-related genes. D 
Waterfall-plot of single nucleotide variation of the 9 lactate-related genes. E The OS curves of patients in lactate-related gene mutation group and 
wildtype group
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Fig. 2  Copy number variations (CNVs) of lactate-related genes in lung adenocarcinoma. A Waterfall-plot of the CNVs of these lactate-related genes. 
B–G Box plots showed the differential expression levels of the top 6 lactate-related genes with the most CNVs. *P < 0.05; **P < 0.01; ***P < 0.001
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Fig. 3  Prognostic performance of lactate-related genes in lung adenocarcinoma. A Forest-plot showed the lactate-related genes associated with 
the prognosis of patients with lung adenocarcinoma analyzed by univariate Cox regression. B–F Box plot and Kaplan–Meier curve exhibited the 
differential expressions and prognostic performance of the top 5 significant lactate-related genes. *P < 0.05; **P < 0.01; ***P < 0.001
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performance of the lactate metabolism-related genes. 
The forest plot in Fig.  3A shows the genes associ-
ated with patient prognosis. The samples were divided 
into high and low expression groups according to the 

median expression level. The box plot and Kaplan–Meier 
curve showed the following top five significant prog-
nostic genes to be closely related to patient survival: 
DARS2, hydroxyacyl glutathione hydrolase (HAGH), 

Fig. 4  Machine learning of prognostic gene signatures based on lactate metabolism. A Dynamic process of variable screening by Least Absolute 
Shrinkage and Selection Operator (LASSO) regression analysis. B, C The cross-validation results of LASSO regression (B) and coefficients of 
selected genes (C). D, E The OS curves of the lactate-related gene signatures in TCGA-LUAD samples (D) and GSE26939 samples (E). F Patients 
with lung adenocarcinoma were divided into high-risk and low-risk groups, taken the best cutoff value as the threshold. G The receiver operating 
characteristic (ROC) curves for 1-year, 2-year, 3-year and 5-year OS. H Scatter-plot showed survival time of patients in high-risk and low-risk groups. I 
Heatmap of the differential expressions of the 7 lactate-related genes selected to construct a prognostic gene signature in lung adenocarcinoma
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lactate dehydrogenase A (LDHA), lactate dehydrogenase 
D (LDHD), and SLC16A3 (Fig. 3B–F).

Prognostic signature based on lactate metabolism‑related 
genes screened from the TCGA cohort
By constructing a gene signature of seven lactate metab-
olism-related genes that were screened using machine 
learning tools and LASSO regression analysis [37] 
(Fig.  4A–C), we were able to explore the effect of dys-
regulated lactate metabolism on patient survival. Patients 
with lung adenocarcinoma were divided into high- and 
low-risk groups (with the best cutoff value taken as the 
threshold) to test the prognostic performance of the 
constructed gene signature on TCGA-LUAD (train-
ing cohort) and GSE26939 (validation cohort) samples 
(Fig.  4D–F). The areas under the ROC curves (AUCs) 
for 1-, 2-, 3-, and 5-year OS were 0.753, 0.779, 0.716, and 
0.674, respectively (Fig.  4G). The scatter plot in Fig.  4H 
shows the survival time of patients in the high- and low-
risk groups, whereas the heatmap in Fig. 4I displays the 
differential expression levels of the seven genes selected 
to construct the gene signature. Additionally, a multivari-
ate Cox analysis (Table  2), performed using the coxph() 
function of survival in the R package, revealed the 7-gene 
signature to be an independent prognostic factor. These 
results demonstrated that this lactate metabolism-related 
gene signature could effectively distinguish the prognosis 
of patients with lung adenocarcinoma.

Performance of the lactate metabolism‑related gene 
signature in predicting PD‑1 immunotherapy efficacy 
in patients with lung adenocarcinoma
Based on our short- and long-term analyses of six data-
sets of lung adenocarcinoma immunotherapies down-
loaded from the GEO database, we found that lactate 
metabolism may play a potential role in promoting the 

therapeutic effect of anti-PD-1 monoclonal antibodies. 
As shown in Fig. 5A, D, the PFS and OS of patients with 
high risk scores were significantly shorter than those of 
patients with low risk scores (P = 0.012 and P  = 0.003, 
respectively). The overall response rates (ORRs) of the 
high- and low-risk groups were 22.5% and 40.9%, respec-
tively (Fig.  5B). Patients who achieved an objective 
response also had a lower risk score than those who did 
not respond to treatment (P = 0.028, Fig. 5C). Ultimately, 
the ROC curves and the calculated AUCs (Fig.  5E, F) 
indicate that the constructed gene signature is a prom-
ising tool for predicting mortality and recurrence in 
lung adenocarcinoma patients who received anti-PD-1 
immunotherapy.

Correlation of the gene signature with multiple important 
clinical features of cancer
Figure  6A shows the correlations between the lactate 
metabolism-related gene signature and common clini-
cal characteristics of patients with lung adenocarcinoma, 
such as age, sex, TNM stage, and prior radiation therapy. 
Furthermore, we used the RMSE function in the R pack-
age to construct nomograms for guiding clinical practice 
[46] according to these clinical characteristics (Fig.  6B). 
The prediction outcomes for 1-, 2-, 3-, and 5-year sur-
vival are presented in Fig. 6C–F.

Relationship between lactate metabolism and the tumor 
immune microenvironment
We used CIBERSORT (https://​ciber​sortx.​stanf​ord.​edu/​
runci​berso​rtx.​php) [47] to calculate the proportion of 
each type of immune cell in the samples to assess the 
association between lactate metabolism and tumor 
immune microenvironment. The box plot in Fig.  7 
shows the proportions of various infiltrating immune 
cells between the high and low risk-score groups. The 

Table 2  Multivariate Cox regression analysis for survival in patients with lung adenocarcinoma

CI confidence interval

*P < 0.05; **P < 0.01; ***P < 0.001

Variables Multivariate analysis P-value

Hazard ratio Lower 95%CI Upper 95%CI

Lactate-related risk score 340.00 40.00 2900.00 < 0.0001***

Age (≥ 60 vs. < 60) 1.20 0.86 1.60 0.30

Gender (male vs. female) 0.98 0.74 1.30 0.87

Pathological stage (III–IV vs. I–II) 2.10 1.00 4.10 0.036*

Distant metastasis (M1 vs. M0) 0.82 0.37 1.80 0.62

Lymph node metastasis (N2-3 vs. N0-1) 0.92 0.47 1.80 0.80

Tumor invasion (T1-2 vs. T3-4) 0.72 0.11 4.60 0.73

Previous radiation therapy (yes vs. no) 1.50 1.10 2.20 0.02

https://cibersortx.stanford.edu/runcibersortx.php
https://cibersortx.stanford.edu/runcibersortx.php
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differential expression of several immune checkpoint 
genes in each group was analyzed using ggplot2 in the 
R package (Fig.  8A). And the correlation coefficients 
between genes in our signature and immune check-
point genes are exhibited in Fig.  8B. Finally, the gene 
sets of 50 cancer hallmark pathways were used to calcu-
late the GSVA scores for the expression matrix. Spear-
man’s correlation analysis was performed to determine 
the relationships between the GSVA scores and the risk 
score of these samples calculated with the constructed 
gene signature. The correlations between the gene sig-
nature and the 50 cancer hallmark pathways are pre-
sented in Additional file 2: Fig. S1.

Discussion
Increasing lines of evidence have shown that the occur-
rence, development, and prognosis of multiple cancer 
types are closely related to the TME [3, 48, 49]. As an 
important stress metabolite, lactate is produced through 
aerobic glycolysis in tumor cells, where its accumulated 
level could affect the expression of the cancerous cells 
as well as T cells, dendritic cells, and macrophages in 
the TME, thereby triggering intracellular signals [22, 23, 
29, 50]. Lactate also has different effects on the biologi-
cal processes of tumors, including their proliferation and 
migration, immune escape, and prognosis, as well as on 
the curative effects of various treatments. It was shown in 

Fig. 5  Efficacy prediction of PD-1 immunotherapy based on lactate metabolism in patients with lung adenocarcinoma. A Kaplan–Meier analysis 
demonstrated that the PFS of patients in the high-risk group were significantly shorter than those of the low-risk group. B The ORR of patients in 
high-risk and low-risk groups. C Box plot of the risk scores for different anti-tumor treatment responses. D The OS of patients in the high-risk and 
low-risk groups. E, F Time-dependent ROC curves for recurrence and mortality of patients at different follow-up times. *P < 0.05
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Fig. 6  The lactate-related gene signature is associated with multiple important clinical features of cancer. A Box plots exhibited the correlations 
between the lactate-related gene signatures and various clinical features in lung adenocarcinoma. B The nomograms constructed based on the 
characteristics for guiding clinical practice. C–F The prediction outcomes of nomograms for 1-year, 2-year, 3-year and 5-year survival
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a previous study that an overflow of proton-coupled lac-
tate in cancerous or stromal cells could promote tumor 
progression by regulating various processes in the TME 
(including cell invasion, angiogenesis, survival signaling, 
metastasis development, and immune surveillance avoid-
ance) [51]. Simultaneously, the acidic microenvironment 
formed by a large amount of lactate accumulation is con-
ducive to tumor cell metastasis and angiogenesis [32, 52].

Many studies have pointed out that the lactate con-
tent in the TME is negatively correlated with the tumor 
survival rate [53, 54]. Thus, research on abnormal lac-
tate metabolism has long-term prospects. Most of ear-
lier studies about lactate metabolism genes either focus 
on the overall survival of patients with various cancer 
types, or explore their potential relationship with tumor 
immune microenvironment through evaluating the cor-
relation with the expression of common immune bio-
markers. However, the identification and performance of 
lactate metabolism-related gene signatures in predicting 
the clinical response and long-term benefits for patients 
receiving checkpoint immunotherapy is still not studied 
in depth. In this study, patients were stratified into two 
clusters with the median risk score as the cut-off point. 
We identified and validated the gene signature based on 
lactate metabolism in predicting immunotherapeutic 

response in lung adenocarcinoma. These results suggest 
that the lactate in TME can affect immunotherapy out-
comes, rather than simply being a metabolic byproduct 
of glycolysis. The underlying mechanism needs further 
research and might provide future directions for for-
mulating individualized treatment strategy (Additional 
file 3).

Machine learning algorithm is an intelligent tool that 
explores and simulates the law of human intelligent 
activities based on computer technology. Recently, as 
high-throughput sequencing has evolved, machine learn-
ing algorithms are gaining traction in medical research 
[55]. Stratifying tumor patients by bioinformatics and 
machine learning approaches to explore new biomark-
ers has proven to be reliable and useful. At present, there 
are few reports on the influence of dysregulated lactate 
metabolism on the immunotherapy response in lung can-
cer using these algorithms. LASSO analysis involved in 
our study is a powerful regression machine learning algo-
rithm for processing high-dimensional data and feature 
selection. And the prognostic gene signature screened 
and developed by LASSO regression had been further 
evaluated by ROC analysis. In general, the combination 
of machine algorithm and clinical medicine may become 
a trend in future clinical research. With its high accuracy 

Fig. 7  The infiltration proportion of various types of immune cells between high-risk and low-risk groups. *P < 0.05; **P < 0.01; ***P < 0.001



Page 12 of 15Qiu et al. European Journal of Medical Research          (2022) 27:256 

Fig. 8  The relationship between lactate metabolism-related genes and immune checkpoint genes. A Box plots of the differential expression levels 
of several representative immune checkpoint genes between high-risk and low-risk groups. B Correlation analysis between genes in the signature 
and immune checkpoint genes (color of dots represents correlation coefficient). *P < 0.05; **P < 0.01; ***P < 0.001
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and operability, these algorithms can greatly improve the 
efficiency of clinical practice, and provide a new perspec-
tive for diseases research.

The gene signature constructed in this study was based 
on seven differentially expressed lactate metabolism-
related genes screened from TCGA cancer samples: 
actinin alpha 3 (ACTN3), SLC16A1, SLC16A3, LDHA, 
LDHD, HAGH, and DARS2. ACTN3, a structural pro-
tein of the Z-line of fast skeletal muscle fibers [56], main-
tains the orderly arrangement and normal contraction of 
muscle fibers by cross-linking with fine muscle filaments. 
SLC16A1 and SLC16A3 belong to the solute carrier pro-
tein 16A family, also known as the monocarboxylic acid 
transporter family [57]. They mediate the transmem-
brane transport of monocarboxylic acids dominated by 
lactate and short-chain fatty acids. Tumor cells can pro-
mote lactate production through the enzyme LDHA, 
thereby destroying tumor-infiltrating T cells as well as 
IFN-γ in natural killer cells and other cytokines to pro-
mote epithelial–mesenchymal transformation, angiogen-
esis, and invasion [26]. With regard to the human HAGH 
gene, its extended transcripts have been shown to encode 
both cytosolic and mitochondrial isoforms of glyoxalase 
II [58]. As for the DARS2 gene, its abnormal expression is 
reportedly involved in the occurrence and development 
of primary liver carcinoma, with the expression level 
being closely related to the tumor size, stage, and prog-
nosis [59].

Notably, the present study has certain limitations. First, 
the specific molecular functions of the genes involved in 
the constructed lactate metabolism model were not clear. 
Further research is needed to clarify their expression lev-
els and roles in lung adenocarcinoma. Additionally, more 
clinical practice data are needed to verify the predictive 
value of this risk score model in the real-world setting.

Conclusion
In conclusion, our novel gene signature based on genes 
related to lactate metabolism has been proven effective in 
predicting the prognosis and immunotherapy outcomes 
of patients with lung adenocarcinoma. Our model pro-
vides a practical reference for improving the prediction of 
the efficacy of individualized immunotherapies and guid-
ing clinical practice.
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