ARTICLE

Open Access

Production of quinolone derivatives in *Escherichia coli*

Yeo-Jin Park[†], Gyu-Sik Choi[†], Shin-Won Lee and Joong-Hoon Ahn^{*}

Abstract

Alkyl-4-quinolones (AQs) are natural compounds synthesized by bacteria. Members of this group are known quorumsensing molecules. Other biological functions, such as anti-bacterial, anti-algal, antifungal, and anti-malaria activities have also been reported. The synthetic pathways of AQs have been validated in *Pseudomonas aeruginosa*. Five genes (*pqsA–E*) are involved in the synthesis of 2-heptyl-4(1H)-quinolone (HHQ). To synthesize HHQ in a microbial system, *pqsA–E* genes were introduced into *Escherichia coli* and HHQ and 2-methyl-4(1H)-quinolone (MHQ) were synthesized. After the copy number, construct promoters, and substrate supplements were optimized, 141.3 mg/L MHQ and 242.8 mg/L HHQ were synthesized.

Keywords: 2-Heptyl-4(1H)-quinolone (HHQ), Metabolic engineering, 2-Methyl-4(1H)-quinolone (MHQ)

Introduction

Alkyl-4-quinolones (AQs) are 4-quinolone derivatives that are produced mainly by two genera of bacteria: *Pseudomonas* and *Bukholderia* [1]. *Pseudomonas* sp. produces over 55 AQs, and *Burkholderia* sp. synthesizes two [2, 3]. Even though AQs are known quorum-sensing molecules, the culture extracts of *P. auruginsa* have also been used as anti-bacterial agents [4]. The main components of the extracts were AQs, which have anti-bacterial, anti-algal, and antifungal activities [5]. Some AQs also exhibit antimalarial activity [6, 7]. 2-Heptyl-4(1H)-quinolone (HHQ) and other AQs also exhibit anti-asthmatic activity [8]. Like many other small compounds from bacteria, AQs might have other unknown functions in humans, which need to be explored.

AQs have been studied in *Pseudomonas aeruginosa* as a quorum sensing system [9]. *P. aeruginosa* uses two AQs (2-heptyl-3-hydroxy-4(1H)-quinolone and HHQ) as quorum-sensing signaling molecules [10]. HHQ is synthesized by the *pqsABCDE* genes [11]. *pqsA* encodes

[†]Yeo-Jin Park and Gyu-Sik Choi contributed equally to this work

*Correspondence: jhahn@konkuk.ac.kr

Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Republic of Korea an enzyme that binds coenzyme A to anthranilate [12]. pqsD uses anthraniloyl-CoA and malonyl-CoA to form 2-aminobenzoylacetyl-CoA, which can spontaneously form either 2, 4-dihydroxyquinoline (DHQ) or HHQ with the help of pqsBCE [13]. When 2-aminobenzoylacetyl-CoA enters the HHQ synthetic pathway, CoA is detached by pqsE, turning it into 2-aminobenzoylacetate [14]. PqsE acts as a pathway-specific thioesterase in the biosynthesis of alkylquinolone signalling molecules [14]. PqsC with the help of pqsB carries an octanoate group and pqsC links the octanoate moiety to 2-aminobenzoylacetate via decarboxylation to form HHQ [15]. PQS is synthesized from HHQ using pqsH, a flavin-dependent monooxygenase [16].

Although *P. aeruginosa* synthesizes diverse AQs, its applications as an AQ producer are hindered by its pathogenic properties [17]. An alternative method to synthesize HHQs is to use a well-characterized microbial system. We transferred the HHQ synthesis pathway from *P. aeruginosa* to *Escherichia coli* and attempted HHQ synthesis (Fig. 1). We optimized the constructs for synthesis of HHQ and engineered *E. coli* to increase synthesis of the anthranilate substrate. Using this engineered *E. coli* strain, both HHQ and an unexpected product, MHQ (2-methyl-4(1H)-quinolone), were synthesized.

© The Author(s) 2022. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Materials and methods

Constructs

pC-pqsD-pqsA and pA-pqsD-pqsA were constructed previously [18]. *TrpE, aroG*, and *aroG^f* have been previously cloned [18, 19]. These genes were subcloned into the pColaDuet-1 vector (Novagen). The modified T7 promoter sequences (H10 and C4) were synthesized based on a previously published sequence [20]. The two T7 promoters from pETDuet-1 were replaced with C4 promoters and those from pACYCDuet-1 were replaced with H10 promoters. The resulting vectors were called pETDuet-1-C and pACYCDuet-1-H, respectively. *pqsD* and *pdsA* were subcloned into the pACYCDuet-1-H vector (pA-H-pqsD-pdsA) (Table 1).

PsqB (Gene ID: 883098; aaacatATGTTGATTCAG GCTGTGGG as a forward primer, and aaagatctTTA TGCATGAGCTTCTCCCG as a reverse primer; NdeI and BgIII sites are indicated by lowercase letters), *pqsC* (Gene ID, 880660; aaagatct<u>aaggagatatacca</u>ATGCAT AAGGTCAAACTGGCA as a forward primer and aagatatcTCAGCACACCAGCACCTC as a reverse primer; BgIII and EcoRV sites are indicated by lowercase letters; the ribosome binding site (RBS) is underlined.), and *pqsE* (Gene ID, 880721; aaggatccaATGTTGAGGCTT TCGGCTC as a forward primer and aaaagcttTCAGTC CAGAGGCAGCG as the reverse primer; BamHI and HindIII sites are indicated with lowercase letters) were cloned by polymerase chain reaction (PCR) using *P. aer-uginosa* genomic DNA as a template. *PsqE* was cloned into the BamHI/HindIII sites of pETDuet-1 (pE-pqsE). *PsqB* was cloned into the NdeI/BgIII sites of pE-pqsE (pE-pqsE-pqsB). The pqsC-containing RBS was cloned into the BgIII/EcoRV site of pE-pqsE-pqsB. The resulting construct was named pE-pqsE-pqsBC. pE-C-pqsE-pqsBC, which has two modified T7 promoters, was also constructed.

An *E. coli* trpD deletion mutant was generated previously [18] and the kanamycin resistance gene cassette was removed in this *E. coli* strain using a Quick & Easy *E. coli* Gene Deletion Kit (Gene Bridges, Heidelberg, Germany) as per the manufacture's manual.

Synthesis and analysis of reaction products

For the synthesis of HHQ and MHQ from anthranilic acid, an overnight culture of an *E. coli* BL21 (DE3) transformant containing pC-pqsD-pqsA and pE-pqsE-pqsBC was grown in Luria-Bertani (LB) broth with 50 µg/mL spectinomycin and ampicillin overnight at 37 °C. The culture was inoculated into fresh LB medium and incubated at 37 °C until the OD₆₀₀ reached 1.0, after which isopropyl β -D-1-thiogalactopyranoside (IPTG) was added to the medium to a final concentration of 1 mM before the cells were incubated at 18 °C overnight. The cells were resuspended in 1 mL M9 medium containing 1% yeast

Table 1 Plasmids and strains used in the present study

Plasmids or <i>E. coli</i> strain	Relevant properties or genetic marker	Source or reference
Plasmids		
pACYCDuet-1	P15A ori, Cm ^r	Novagen
pACYCDuet-1-H	Both T7 promoter of pACYCDuet-1 were replaced by promoter H10	This study
pCDFDuet-1	CloDE13 ori, Str ^r	Novagen
pETDuet-1	Both T7 promoter of pETDuet-1 were replaced by promoter C4	Novagen
pETDuet-1-C	f1 ori, Amp ^r	Novagen
pColaDuet-1	ColA ori, Kana ^r	Novagen
pA-pqsD-pqsA	pACYCDuet + pqsD and pqsA from Pseudomonas aeruginosa	[18]
pC-pqsD-pqsA	pCDFDuet + pqsD and pqsA from Pseudomonas aeruginosa	[18]
pA-H-pqsD-pqsA	pACYCDuet-H + pqsD and pqsA from Pseudomonas aeruginosa	This study
pE-pqsE-pqsBC	pETDuet + pqsE, pqsB and pqsC from Pseudomonas aeruginosa	This study
pE-C-pqsE-pqsBC	pETDuet-C + pqsE, pqsB and pqsC from Pseudomonas aeruginosa	This study
pCol-trpE	pColaDuet + <i>trpE</i> from <i>E. coli</i>	This study
pCol-aroG-trpE	pCDFDuet + <i>aroG</i> from <i>Escherichia coli</i> in the first multiple cloning site (MCS1) + <i>trpE</i> from <i>E. coli</i> in the second MCS (MCS2)	This study
pCol-aroG ^f -trpE	pCDFDuet + <i>aroG^f</i> from <i>E. coli</i> in MCS1 + <i>trpE</i> in MCS2	This study
Strains		
DH5a	F– $\phi 80lacZ\Delta M15$ $\Delta (lacZYA-argF)U169$ recA1 endA1 hsdR17(rK–, mK +) phoA supE44 $\lambda-$ thi-1 gyrA96 relA1	Novagen
BL21 (DE3)	$F^- ompThsdS_B(r_B^- m_B^-)$ gal dcm lon (DE3)	Novagen
B-trpD	E. coli BL21 (DE3) deleted in anthranilate phosphoribosyl transferase domain of trpD	[18]
B-H1	E. coli BL21 (DE3) harboring pC-pqsD-pqsA and pE-C-pqsE-pqsBC	This study
B-H2	E. coli BL21 (DE3) harboring pA-H-pqsD-pqsA and pE-C-pqsE-pqsBC	This study
B-H3	E. coli BL21 (DE3) harboring pA-pqsD-pqsA and pE-pqsE-pqsBC	This study
B-H4	E. coli BL21 (DE3) harboring pA-pqsD-pqsA and pE-C-pqsE-pqsBC	This study
B-H5	E. coli BL21 (DE3) harboring pC-pqsD-pqsA, pE-C-pqsE-pqsBC, pCol-trpE	This study
B-H6	B-trpD harboring pC-pqsD-pqsA, pE-C-pqsE-pqsBC, pCol-trpE	This study
B-H7	B-trpD harboring pC-pqsD-pqsA, pE-C-pqsE-pqsBC, pCol-aroG-trpE	This study
B-H8	B-trpD harboring pC-pqsD-pqsA, pE-C-pqsE-pqsBC, pCol-aroG ^f -trpE	This study

extract, 2% glucose, 50 µg/mL spectinomycin, ampicillin, and 1 mM IPTG at an of $OD_{600} = 3$. Anthranilate was also added to the medium at a final concentration of 200 µM, and the culture was incubated at 30 °C for 24 h. The reaction product was extracted using ethyl acetate and vacuum-dried. The dried sample was dissolved in dimethyl sulfoxide (DMSO) and analyzed using high-performance liquid chromatography (HPLC) [18]. The molecular masses of the synthesized compounds were determined as previously described [21].

The reaction products were purified using thin layer chromatography (TLC; TLC silica gel 60 F254; Millipore, Burlington, MA, USA). A mixture of ethyl acetate and hexane (8:1) was used as the developing solvent. The structure was determined using NMR [22]; ¹H NMR of HHQ (DMSO-d6, 500 MHz) δ :0.85 (3H, t, J=7.0 Hz, CH3), 1.19~1.36 (10H, overlapped, (CH2)5), 2.57 (2H, t, J=7.8 Hz, CCH2), 5.90 (1H, s, H3), 7.23 (1H, m, H6), 7.55~7.56 (2H, overlapped, H7 and H8), 8.02 (1H, d,

J=8.0 Hz, H5). ¹H NMR of MHQ (DMSO-d6, 500 MHz) δ: 2.33 (3H, s, CH3), 5.89 (1H, s, H3), 7.24 (1H, ddd, J=8.1, 7.6, 1.0 Hz, H6), 7.51 (1H, dd, J=8.1, 1.0 Hz, H8), 7.57 (1H, ddd, J=8.1, 7.6, 1.3 Hz, H7), 8.02 (1H, dd, J=8.1, 1.3 Hz, H5).

Results and discussion

Optimization of constructs for synthesis of HHQ and MHQ in *E. coli*

At least five genes (*pqsA*, *B*, *C*, *D*, and *E*) are involved in the synthesis of HHQ from anthranilate (Fig. 1). These genes were divided into two constructs (pApqsD-pqsA and pE-pqsE-pqsBC). *E. coli* transformants harboring the two constructs were grown in the presence of anthranilate. The analysis of the culture filtrate using HPLC revealed at least three peaks (Fig. 2). A peak at 6.6 min was DHQ, as determined by comparison with pure DHQ. The identity of the peaks at 4.6 and 11.6 min is unknown. However, the peak at 11.6 min was

close to the other peak (P4 in Fig. 2A) derived from the pACYCDuet-1 vector. This peak was always observed when the pACYCDuet-1 vector was used. This suggests that this product was an acetylated compound generated from an E. coli metabolite via chloramphenicol acetyltransferase of pACYCDuet-1. Use of other vectors, such as pCDFDuet-1 instead of pACYCDuet-1, led to the disappearance of this metabolite (Fig. 2B). The molecular masses of each reaction product (P1 and P2 in Fig. 2A) were 243.17 and 159.18-Da, respectively. We purified these two compounds, and their structures were determined using proton NMR (refer to "Materials and methods"). The peak (P3 in Fig. 2A) at 11.6 min corresponds to HHQ, which was the expected reaction product. The peak at 4.6 min (P1 in Fig. 2) A corresponded to MHQ, which was an unexpected product. The structure of each compound was consistent with its measured molecular mass. pqsC attached an octyl group to 2-aminobenzoylacetate (2-ABA), which resulted in the formation of HHQ after decarboxylation [15]. Endogenous octanoic acid in E. coli is likely used to synthesize HHQ. An acetate group is required for synthesis of MHQ. It was not clear whether pqsC could carry and attach acetate to 2-ABA. However, our results suggest that MHQ can be synthesized when the five pqs genes were introduced into E. coli. To determine the function of pqsC during the synthesis of HHQ or MHQ, only four of the pqs genes (pqsA, B, D, and E) were introduced into E. coli and the resulting transformant was tested for synthesis of HHQ or MHQ. The resulting transformant synthesized only DHQ but did not synthesize HHQ or HMG. This result indicated that pqsC carried not only an octyl group, but also an acetyl group.

Next, we tested different copy numbers of each construct and the strength of the promoters. pqsD and pqsA were subcloned into pACYCDuet-1, pACYCDuet-1-H, and pCDFDuet-1. pqsE, pqsB, and pqsC were sub-cloned into pETDuet-1 and pETDuet-1-C. The genes (pqsE, *pqsB*, and *pqsC*) downstream of the pathway were cloned into high-copy-number plasmids, and those (pqsD and pqsA) upstream were cloned into low-copy-number plasmids. Four transformants (BH1-4) were tested for HHQ and MHQ synthesis after addition of 200 µM anthranilate. The productivities of HHQ and MHQ synthesis were clearly different depending on the constructs used. Strain B-H1 harboring pC-pqsA-pqsD and pE-C-pqsEpqsBC showed the highest HHQ (47.5 mg/L) and MHQ (51.1 mg/L) production, followed by B-H3, B-H4, and B-H2 (Fig. 3). The strains that harbored higher plasmid copy numbers synthesized more HHQ and MHQ. Based on these results, two constructs, pC-pqsA-pqsD and pE-C-pqsE-pqsBC, were used to synthesize HHQ and MHQ, respectively.

Synthesis of HHQ and MHQ without feeding anthranilate

Anthranilate is a substrate for HHQ and MHQ synthesis and is also an intermediate of tryptophan biosynthesis via the chorismate pathway [23]. To enhance anthranilate synthesis in *E. coli*, we overexpressed selected genes in the chorismate pathway. The first step in the chorismate pathway is catalyzed by aroG. aroG is subject to feedback inhibition. The feedback inhibition-free version of

aroG is aroG^f, in which the aspartic acid at position 146 is mutated to asparagine [24]. Overexpression of either aroG or its feedback inhibition-free version increases levels of chorismate and aromatic amino acids [25]. Chorismate is converted to anthranilate by anthranilate synthase (trpE), which is used for tryptophan synthesis. Deletion of *trpD*, which encodes anthranilate phosphoribosyl transferase which converts anthranilate into N-(5'-phopsphoribosyl) anthranilate, resulted in accumulation of anthranilate. Therefore, overexpression of aroG and trpE and deletion of trpD resulted increased anthranilate supply. First, we tested the possibility of synthesizing HHQ and MHQ without supplementation of anthranilate. We overexpressed *trpE* in strain B-H1 and found that both MHQ and HHQ were synthesized. To increase the titer of MHQ and HHQ in E. coli, constructs containing a combination of *trpE*, *aroG*, and *aroG*^f were overexpressed and the *trpD* deletion mutant was used. We generated three more E. coli transformants harboring a combination of *aroG*, *aroG*^t, and *trpE* using a *trpD* deletion mutant (B-H6-B-H8). We monitored synthesis of HHQ and MHG, and the remaining anthranilate. As shown in Fig. 4, the strain B-H7 had the highest titer of MHQ (141.3 mg/L; 887.6 µM) and HHQ (242.8 mg/L; 997.7 µM). Strain B-H8 also synthesized comparable amounts of both compounds. However, this strain accumulated approximately 478.2 mg/L of anthranilate, indicating that metabolic balance is critical to increase the final titer of product and that unreacted anthranilate might interfere with the synthesis of HHQ and MHQ.

We synthesized two AQs by introducing a pathway in *P. aeruginosa*. HHQ was previously synthesized in *E. coli* with a titer of 8.0 mg/L. However, the report investigated the transcription factors that regulate *pgs* genes, and did not optimize the entire pathway [26]. The

synthesis of MHQ has not been reported previously. The octanoyl group was linked to pqsC using pqsB [15]. However, it was not previously clear whether pqsC plays a role in attaching and delivering the acetyl group to 2-aminobenzoylacetate to form MHQ. We showed that pqsC is involved in the synthesis of both HHQ and MHQ. When *pqsC* was not introduced into *E. coli*, only DHQ was synthesized.

We synthesized DHQ with a titer of 753.7 mg/L, which is approximately 4676.7 μ M [18]. The constructs for the synthesis of DHQ contained different genes from the shikimate pathway. Five genes (aroL encoding shikimate kinase, *aroG^t*, *ppsA* encoding phosphoenolpyruvate synthase, tktA encoding transketolase A, and trpE) were overexpressed and E. coli mutants in which *trpD* and *tyrA* were deleted were used. This increased anthranilate synthesis and appeared to increase DHQ synthesis. In the current study, we found that overexpression of *aroG^f* and *trpE* resulted in accumulation of high amounts of anthranilate without further synthesis of HHQ or MHQ and a greater amount of DHQ synthesis. Taken together, these results indicate that a high amount of anthranilate drives the pathway towards DHQ synthesis. When aroG instead of $aroG^{f}$ was expressed, only a small amount of DHQ was synthesized, relative to HHO or MHO synthesis. These results suggest that modulation of substrate production is critical for maximizing the final titer(s) of desired product(s).

In conclusion, two AQs, MHQ and HHQ were synthesized in *E. coli*. The synthetic pathway genes (pqsA– E) were introduced, and the expression of these genes were optimized for the maximal synthesis of two AQs. The results presented in here showed the possibility to synthesize diverse AQs, which have diverse biological activities to be discovered.

Abbreviations

AQ: Alkyl-4-quinolone; DHQ: Dihydroxyquinoline; DMSO: Dimethyl sulfoxide; HHQ: 2-Heptyl-4(1H)-quinolone; HPLC: High-performance liquid chromatography; IPTG: β -D-1-thiogalactopyranoside; LB: Luria-Bertani; MHQ: 2-Methyl-4(1H)-quinolone; PCR: Polymerase chain reaction; RBS: Ribosome-binding site; TLC: Thin layer chromatography.

Acknowledgements

This work was supported by grants from the National Research Foundation (NRF-2022R1F1A1066372) funded by the Ministry of Education, Science, and Technology, Republic of Korea.

Author contributions

GSC and JHA designed the experiments. YJP, GSC, and SWL performed the experiments. YJP, GSC, and JHA analyzed the data and wrote the manuscript. All authors read and approved the final manuscript.

Availability of data and materials

The datasets used and analyzed in this study are available from the corresponding author upon reasonable request.

Declarations

Competing interests

The authors declare that they have no competing interests.

Received: 17 August 2022 Accepted: 19 September 2022 Published online: 01 October 2022

References

- Diggle SP, Lumjiaktase P, Dipilato F, Winzer K, Kunakorn M, Barrett DA, Chhabra SR, Cámara M, Williams P (2006) Functional genetic analysis reveals a 2-alkyl-4-quinolone signaling system in the human pathogen Burkholderia pseudomallei and related bacteria. Chem Biol 13:701–710
- Lépine F, Milot S, Déziel E, He J, Rahme LG (2004) Electrospray/mass spectrometric identification and analysis of 4-hydroxy-2-alkylquinolines (HAQs) produced by *Pseudomonas aeruginosa*. J Am Soc Mass Spectrom 15:862–869
- Reen FJ, McGlacken GP, O'Gara F (2018) The expanding horizon of alkyl quinolone signalling and communication in polycellular interactomes. FEMS Microbiol Lett 365:1–10
- Hays EE, Wells IC, Katzman PA, Cain C, Jacobs FA, Thayer SA, Doisy EA, Gaby W, Roberts E, Muir R (1945) Antibiotic substances produced by *Pseudomonas aeruginosa*. Biol Chem 159:725–750
- Saalim M, Villegas-Moreno J, Clark BR (2020) Bacterial alkyl-4-quinolones: discovery, structural diversity and biological properties. Molecules 25:5689
- Biavatti MW, Vieira PC, Silva MFDGD, Fernandes JB, Victor SR, Pagnocca FC, De Albuquerque S, Caracelli I, Zukerman-Schpector J (2002) Biological activity of quinoline alkaloids from *Raulinoa echinata* and X-ray structure of flindersiamine. J Braz Chem Soc 13:66–70
- 7. Foley M, Tilley L (1998) Quinoline antimalarials: Mechanisms of action and resistance and prospects for new agents. Pharmacol Ther 79:55–87
- Kitamura S, Hashizume K, Iida T, MiyashIta E, Shirahata K, Kase H (1986) Studies on lipoxygenase inhibitors. Il KF8940 (2-n-heptyl-4-hydroxyquinoline-N-oxide), a potent and selective inhibitor of 5-lipoxygenase, produced by *Pseudomonas methanica*. J Antibiot 39:1160–1166
- Lin J, Cheng J, Wang Y, Shen X (2018) The *Pseudomonas* quinolone signal (PQS): not just for quorum sensing anymore. Front Cell Infect Microbiol 8:230
- Déziel E, Lépine F, Milot S, He J, Mindrinos MN, Tompkins RG, Rahme LG (2004) Analysis of *Pseudomonas aeruginosa* 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci USA 101:1339–1344
- Winsor GL, Lam DK, Fleming L, Lo R, Whiteside MD, Yu NY, Hancock REW, Brinkman FSL (2011) *Pseudomonas* genome database: improved comparative analysis and population genomics capability for *Pseudomonas* genomes. Nucleic Acids Res 39:596–600

- Coleman JP, Hudson LL, McKnight SL, Farrow JM, Calfee MW, Lindsey CA, Pesci EC (2008) *Pseudomonas aeruginosa* PqsA is an anthranilate-coenzyme A ligase. J Bacteriol 190:1247–1255
- Zhang YM, Frank MW, Zhu K, Mayasundari A, Rock CO (2008) PqsD is responsible for the synthesis of 2, 4-dihydroxyquinoline, an extracellular metabolite produced by *Pseudomonas aeruginosa*. J Biol Chem 283:28788–28794
- Drees SL, Fetzner S (2015) PqsE of *Pseudomonas aeruginosa* acts as pathway-specific thioesterase in the biosynthesis of alkylquinolone signaling molecules. Chem Biol 22:611–618
- Dulcey CE, Dekimpe V, Fauvelle D-A, Milot S, Groleau M-C, Doucet N, Rahme LG, Lépine F, Déziel E (2013) The end of an old hypothesis: the pseudomonas signaling molecules 4-hydroxy-2-alkylquinolines derive from fatty acids, not 3-ketofatty acids. Chem Biol 20:1481–1491
- Schertzer JW, Brown SA, Whiteley M (2010) Oxygen levels rapidly modulate *Pseudomonas aeruginosa* social behaviours via substrate limitation of PqsH. Mol Microbiol 77:1527–1538
- Dolan SK (2020) Current knowledge and future directions in developing strategies to combat *Pseudomonas aeruginosa* infection. J Mol Biol 432:5509–5528
- Choo HJ, Ahn J-H (2019) Synthesis of three bioactive aromatic compounds by introducing polyketide synthase genes into engineered *Escherichia coli*. J Agric Food Chem 67:8581–8589
- Kim MJ, Kim B-G, Ahn J-H (2013) Biosynthesis of bioactive O-methylated flavonoids in *Escherichia coli*. Appl Microbiol Biotechnol 97:7195–7204
- Jones JA, Vernacchio LDM, Lebovich M, Fu L, Shirke AN, Schultz VL, Cress B, Linhardt RJ, Koffas MAG (2015) ePathOptimize: a combinatorial approach for transcriptional aalancing of metabolic pathways. Sci Rep 5:11301
- Song MK, Cho AR, Sim GY, Ahn J-H (2019) Synthesis of diverse hydroxycinnamoyl phenylethanoid esters using *Escherichia coli*. J Agric Food Chem 67:2028–2035
- Yoon J-A, Kim B-G, Lee WJ, Lim Y, Chong Y, Ahn J-H (2012) Production of a novel quercetin glycoside through metabolic engineering of *Escherichia coli*. Appl Environ Microbiol 78:4256–4262
- 23. Rodriguez A, Martnez JA, Flores N, Escalante A, Gosset G, Bolivar F (2014) Engineering *Escherichia coli* to overproduce aromatic amino acids and derived compounds. Mol Cell Fact 13:126
- 24. Lütke-Eversloh T, Stephanopoulos G (2007) L-Tyrosine production by deregulated strains of *Escherichia coli*. Appl Microbiol Biotechnol 75:103–110
- Sprenger GA (2007) From scratch to value: engineering *Escherichia coli* wild type cells to the production of L-phenylalanine and other fine chemicals derived from chorismate. Appl Microbiol Biotechnol 75:739–749
- Xiao G, Déziel E, He J, Lépine F, Lesic B, Castonguay M-H, Milot S, Tampakaki AP, Stachel SE, Rahme LG (2006) MvfR, a key *Pseudomonas aeruginosa* pathogenicity LTTR-class regulatory protein, has dual ligands. Mol Microbiol 62:1689–1699

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.