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Abstract 

The use of probiotics has been applied for a variety of fields (e.g., immune system, mental health, and heart). In this 
study, the feasibility of lysates from L. rhamnosus IDCC 3201 for cosmetic ingredients was evaluated.  More specifi‑
cally, enhanced ceramides production  in human epidermal keratinocytes by the lysates and its proposed machanism 
were investigated through in vitro and genome analysis. In results, enhanced spingomyelinase activity and thereby 
increased ceramides production by the lysates from L. rhamnosus IDCC 3201 was observed. Furthermore, it was found 
that the existence of glucosylceramdase in L. rhamonsus IDCC 3201 was attributed to enhanced ceramides produc‑
tion. Finally, it was verified that the lysates from L. rhamonsus IDCC 3201 was regarded as safe for its use as cosmetic 
materials. Thus, these findings have significant implications that might lead to the development of functional and safe 
cosmetic products from probiotics.
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Introduction
Recently, interest of skin health has been increased due to 
the escalating environmental stresses [1]. Especially, the 
most outer layer of the skin (stratum corneum) is thought 
to be a frotier of skin protection, and it is mainly com-
posed of corneocytes and lipids [2]. These lipids mainly 
include several types of cholesterols, fatty acids, and 
ceramides [3]. Among them, ceramides, a member of 
sphingolipid family, play an important role in skin barrier 
function (e.g., skin homeostasis). Typically, ceramides 
are converted from glucosylceramides and sphingomy-
elins by glucosylceramidase (GCase) and sphingomy-
elinase (SMase), respectively [4]. Many clinical studies 

showed that deficiency of ceramides is involved in atopic 
dermatitis (AD) and psoriasis directly or indirectly [5, 
6]. Thus, one of the stategies for heathy skin should be 
to strengthen skin barrier through increased ceramides 
level [7]. For example, general approach is to regulate 
exogenous and endogenous factors involved in ceramides 
synthesis such as vitamin C and vitamin D [8, 9].

Currently, probiotics have received considerable atten-
tion in cosmetic industry based on long-term uses of  fer-
mented broth for skin care [10, 11]. Consistent with this 
notion, lysates of Streptococcus thermophilus S244 not 
only increased ceramides level of healthy elderly women 
but also alleviated symptoms of AD patients [12, 13]. 
In addition, Lactobacillus rhamnosus strain promoted 
epidermal barrier formation in human skin model [14]. 
However, there was no direct evidence which compo-
nents of probiotics improve ceramides production in 
human skin and thereby skin barrier function.

In this study, enhanced ceramides production by 
lysates from L. rhamnosus IDCC 3201 and its machanism 
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were investigated through in vitro and genome analysis. 
For this, firstly, the lysate from a variety of bacteria that 
exhibited the highest SMase activity was screened. Sec-
ondly, ceramides production by the screened probiotic 
strain was evaluated in human epidermal keratinocytes 
(HEK). Then, genome and metabolome analysis of the 
selected strain was perfomed to propose the mechanism. 
Finally, safety of the strain was assessed to determine 
whether it produces toxic compounds in human skin. 
Thus, this study contributes to the development of func-
tional and safe cosmetic products from probiotics.

Materials and methods
Bacterial strains and preparation of bacteral lysates
L. rhamnosus IDCC 3201 from breast-fed infant’s feces 
[15] and Streptococcus thermophilus IDCC 2201 from 
home-made yogurt [16] were industrial strains, while the 
other bacterial strains were isolated from kimchi (Korean 
fermented food). All the strains were incubated in an 
in-house medium designed by Ildong Bioscience, cen-
trifuged, and freeze-dried to obtain cell density at  > 1010 
colony forming units (CFU)/g. Then, lyophilized strains 
were suspended in 500  mL of phosphate buffered solu-
tion (PBS) and was lysised physically by using a micro-
fluidizer (PicoMax MN400BF; Micronox, Seongnam, 
Korea) to preprare bacterial lysates.

Sphingomyelinase (SMase) activity
SMase activity was measured using a SMase assay kit 
(Abcam; # ab138876, Cambridge, UK). The principle of 
this assay kit was to quantify phosphocholine produced 
by the hydrolysis of sphingomyelin using colorimetric 
analysis at 655  nm. Briefly, 50 μL of sphingomyelin was 
incubated with lysates from five bacterial strains at 37 °C 
for 1 h. Then, color changes were detected using a micro-
plate reader (SpectraMax iD3; Molecular Devices, CA, 
USA). Then, SMase activity was calculated according to 
calibration curves with the absorbance values of known 
amounts of SMase standards.

Cell culture
Normal human epidermal keratinocyte (HEK) cells were 
purchased from PromoCell (Heidelberg, Germany). Cells 
were grown in growth medium 2, supplemented with 
bovine pituitary extract, epidermal growth factor, Insu-
lin, hydrocortisone, epinephrine, transferin and 0.06 mM 
of CaCl2 (PromoCell). After confluence for 3–5  days at 
37  °C with 5% CO2, cells were maintained by sub-cul-
turing the detached cells with a 0.25% trypsin–EDTA 
solution.

Cell viability assay
Cell viability of the HEK cells by tested bacterial lysates 
was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-di-
phenyltetrazolium bromide (MTT). Briefly, the HEK cells 
were cultured in 96-well plate and treated with the lysates 
of L. rhamnosus IDCC 3201 at cell densities ranging from 
1 × 107 to 5 × 108  CFU/mL for 24  h. Then, MTT was 
added to each 96-well and incubated at 37 °C for 90 min. 
After removal of MTT, 100 μL of dimethyl sulfoxide 
(DMSO) was added to dissolve formazan. The developed 
color was measured at 570 − 630 nm using a microplate 
reader (SpectraMax iD3).

Ceramides production
Ceramide contents in the suspension from the HEK cells 
were measured using an ELISA kit (Human Ceramides 
ELISA Kit; MyBioSource, CA). Briefly, The HEK cell 
culture suspension with SMase was treated to a 96-well 
plate which coated by human monoclonal antibody. The 
plate was incubated with biotin-labeled polyclonal anti-
body which is conjugated with avidin-peroxidase. Next, 
a chromogen solution was added into the plate for ELISA 
colormetric detection at 450  nm. Finally, amounts of 
ceramide were calculated according to caribration curve 
prepared with ceramides standards.

Real‑Time PCR
Gene expression for ceramides synthesis was investigated 
using real-time PCR. Total RNAs were isolated from 
HEK cells treated with either SMase (positive control) 
and bacterial lysates by a Trizol method. PCR reactions 
were performed using CFX Connect Real-Time PCR 
Detection System (Bio-Rad, Hercules, CA). The house-
keeping gene, GAPDH was used as a constitutive control 
for normalization. The specific primers used for real-time 
PCR are listed in Table 1.

Table 1  Sequence of the primers used in the study

Gene Strand Sequence(5’- 3’)

SMPD3 Forward ACA​TCG​ATT​CTC​CCA​CCA​ACA​CCT​

Reverse AAT​TCG​CAC​AAT​GCA​GCT​GTC​CTC​

CERS1 Forward ACG​CTA​CGC​TAT​ACA​TGG​ACAC​

Reverse AGG​AGG​AGA​CGA​TGA​GGA​TGAG​

CERS2 Forward CCG​ATT​ACC​TGC​TGG​AGT​CAG​

Reverse GGC​GAA​GAC​GAT​GAA​GAT​GTTG​

GAPDH Forward ACG​GAC​TTC​CTC​GGT​GAT​AC

Reverse CGG​TGA​CTG​TAG​CCA​TAT​TCG​
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Bacterial gene search for ceramides biosynthesis
The whole-genome sequencing of L. rhamnosus IDCC 
3201 was performed by a PacBio RSII instrument with an 
Illumina platform (Macrogen, Seoul, Korea). A sequence 
of nucleotides was generated by single molecule real-
time (SMRT) sequencing system. Contigs were con-
structed by pre-assembling seed reads, by generating a 
consensus sequence of the mapped reads, and by correct-
ing and filtering the reads. Finally, a consensus sequence 
with higher quality was obtained after error-correction of 
the constructed contigs by Pilon (version 1.21).

To find bacterial enzymes involved in ceramides bio-
synthesis from probiotics, amino acid sequence of 
enzymes were collected: sphingomyelinase (EC 3.1.4.12); 
glucosylceramidase (EC 3.2.1.45); galactosylceramidase 
(EC 3.2.1.46), ceramides synthase (EC 2.3.1.24), and 
sphingolipid-4-desaturase (EC 1.14.19.17) [17] from 
UniProtKB database, and built hidden Markov mod-
els (HMMs), representing the conserved amino acid 
sequence patterns in these enzymes (Table  2). Then, 
genome of L. rhamnosus IDCC 3201 was targeted to 
search using the HMMsearch tool in HMMER package 
with the constructed profile of HMMs [18]. Finally, the 
candidate enzymes were verified using BLASTP tool in 
NCBI BLAST and HMMscan tool in HMMER pack-
age against SWISS PROT database and PFAM database, 
respectively.

Metabolites analysis
Bacterial lysates were diluted in ice-cold methanol to 
a final concentration of 80% with a vortex for 1 min on 
ice. After centrifugation at 13,000g for 10 min at 4 °C, the 
upper layer of the supernatant was collected, concen-
trated to dryness in a vacuum concentrator, and stored at 
− 80 °C prior to derivatization and analysis by GC–MS. 

The extract was derivatized with 30 µL of a solution of 
20  mg/mL methoxyamine hydrochloride in pyridine 
(Sigma, St. Louis, MO) at 30  °C for 90  min, and 50 µL 
of N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA; 
Sigma) was subsequently added at 60  °C for 30  min. A 
mixture of fatty acid methyl esters and fluoranthene was 
added to the extract as internal standards. The GC–MS 
analysis was conducted using a Thermo Trace 1310 GC 
(Waltham, MA) coupled to a Thermo ISQ LT single 
quadrupole mass spectrometer (Waltham, MA). A DB-
5MS column with 60-m length, 0.2- mm i.d. and 0.25-µm 
film thickness (Agilent, Santa Clara, CA) was used for 
separation. For analysis, the sample was injected at 300 °C 
and split ratio 1:5 with 7.5 mL/min helium split flow. The 
metabolites were separated with 1.5  mL constant flow 
helium with an oven ramp of 50 °C (2 min hold) to 180 °C 
(8 min hold) at 5 °C/min, to 210 °C at 2.5 °C/min, and to 
325 °C (10 min hold) at 5 °C/min. The mass spectra were 
acquired in a scan range of 35–650 m/z at an acquisition 
rate of 5 spectra per sec. The ionization mode was sub-
jected to electron impact, and the temperature for the ion 
source was set to 270 °C. The spectra were processed by 
Thermo Xcalibur software using automated peak detec-
tion, and the metabolites were identified by matching 
the mass spectra and retention indices of the NIST Mass 
spectral search program (version 2.0, Gaithersburg, MD). 
The metabolite data were then normalized based on the 
intensity of the fluoranthene internal standard.

Safety evaluation of Lactobacillus rhamnosus IDCC 3201
Genome analysis
The VFDB database was searched for virulence genes 
[19], and ResFider software (ver. 3.2) with the CARD 
database was searched for antibiotic resistance genes 
[20]. The search parameters were set to the identity 

Table 2  Information of ceramide biosynthesis genes

Gene Precursor Enzyme PFAM domain

degs Dihydroceramide Sphingolipid 4-desaturase PF00487 (FA_desaturase)

galc Galactosylceramide Galactosylceramidase PF02057 (Glyco_hydro_59)

gba Glucosylceramide Glucosylceramidase PF02055 (Glyco_hydro_30)
gba2 Glucosylceramide Non-lysosomal glucosylceramidase PF12215 (Glyco_hydro_116N)

sph Sphingomyelin Sphingomyelin phosphodiesterase PF03372 (Exo_endo_phos)

smpd1 Sphingomyelin Sphingomyelin phosphodiesterase PF00149 (Metallophos)

smpd2 Sphingomyelin Sphingomyelin phosphodiesterase PF03372 (Exo_endo_phos)

smpd3 Sphingomyelin Sphingomyelin phosphodiesterase PF03372 (Exo_endo_phos)

smpd4 Sphingomyelin Sphingomyelin phosphodiesterase PF14724 (mit_SMPDase)

enpp7 Sphingomyelin Sphingomyelin phosphodiesterase PF01663 (Phosphodiest)

cers1 Sphingosine Sphingoid base N-stearoyltransferase PF03798 (TRAM_LAG1_CLN8)

cers2 Sphingosine Very-long-chain ceramide synthase PF03798 (TRAM_LAG1_CLN8)

cers3 Sphingosine Very-long-chain ceramide synthase PF03798 (TRAM_LAG1_CLN8)
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of > 80% and coverage of > 80% for gene identification. 
Transposases and transferases were annotated using the 
protein–protein basic local search program (BLASTP) 
against the NCBI GenBank proteins. Prophage regions 
were identified using PHASTER web-based program 
[21].

In vitro analysis
Lactobacillus rhamnosus IDCC 3201 was evaluated for 
susceptibility to antimicrobials including ampicillin, van-
comycin, gentamicin, kanamycin, streptomycin, erythro-
mycin, clindamycin, tetracycline, and chloramphenicol 
(Sigma-Aldrich, St. Louis, MO), which are typically used 
to treat enterococcal infections [22]. Briefly, a single 
colony from plate was inoculated to MRS broth and pre-
incubated for 18 h. The cultured cells and antibiotic solu-
tion were mixed in 96-well plate to obtain the cell density 
of 5 × 105  CFU/mL, and the plate was then incubated 
at 37  °C anaerobically for 18  h. The optical density was 
observed using a microplate reader (BioTek, Winooski, 
VT). The minimal inhibitory concentrations (MICs) were 
determined compared to the cut-off values suggested by 
European Food Safety Authority (EFSA) [23].

Results and discussion
Screening of lactic acid bacteria with higher 
sphingomyelinase (SMase) acitivity
SMase is the key enzyme of sphingomyelin catabolism, 
converting into ceramides and phosphorylcholine [24]. 
Thus, decreased sphingomyelinase activity often leads 
to decreased ceramides level, resulting in skin troubles 
(e.g., atopic dermatitis) [25]. Here, various lactic acid 
bacteria were screened to obtain the strain(s), producing 

higher concentration of ceramides. For this, lysates from 
various lactic acid bacteria were prepared to observe 
whether the SMase increased. In particular, the lysates 
of tested strains used in this experiments were pre-
pared from cell desity at 5 × 107 CFU/mL. As a result, L. 
rhamnosus IDCC 3201 exhibited highest SMase activ-
ity 1.85 ± 0.03  mU/mL, while the other strains exhib-
ited only at 0.28–0.43  mU/mL (Fig.  1a). The value of L. 
rhamnosus IDCC 3201 was 3.4 times higher than those 
of other strains, such as L. mesenteroides, L. plantarum, 
L. casei, and S. thermophilus. Consequently, L. rhamno-
sus IDCC 3201 strain was selected as the best performer 
with regard to SMase activity.

Next, optimal cell density of L. rhamnosus IDCC 3201 
was evaluated to determine economically feasible con-
centration. The lysates from 1 × 107 to 5 × 1010 CFU/mL 
were loaded onto the substractes. In results, SMase activ-
ity was observed to increase up to 1.65 ± 0.09 mU/mL, as 
cell density increased (Fig. 1b). In contrast, in the view of 
efficiency of enzymatic activity (enzymatic unit/cell den-
sity), when cell density was the lowest as 1 × 107  CFU, 
enzymatic efficiency of SMase was highest (Fig.  1b). 
Thus, cell amount of 1 × 107  CFU/mL of L. rahmonsus 
IDCC 3201, showing the highest SMase efficiency was 
selected as optimal cell density for further study.

Enhanced ceramides production by L. rhamnosus IDCC 
3201
Ceramides, the major lipid consitituents in the upper 
epidermal layer play a role in maintaining skin bar-
rier integrity [26]. Thus, this layer prevents the skin 
from excess water loss and protects skin against various 
stimuli, including bacterial or microbial infection [8]. 

Fig. 1  Enhanced sphingomyelinase (SMase) activity by the lysates from L. rhamnosus IDCC 3201. a SMase activities of a variety of lactic acid 
bacteria. b Cell density-dependent SMase activity from L. rhamnosus IDCC 3201. The efficiency of enzymatic activity is expressed as enzymatic 
activity divided by cell density. The data represent means ± standard deviations from triplicate experiments
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Here, ceramides production was investigated whether 
enhanced SMase activity by L. rhamnosus IDCC 3201 
affects ceramides production in HEK cells. Prior to inves-
tigating the impact of lysates of L. rahmonsus IDCC 
3201, cytotoxicity of HEK by the lysates was assessed. 
As a result, no significant reduction of cell proliferation 
was observed at cell density, ranging from 1 × 107 to 
5 × 108  CFU/mL for 24  h (Fig.  2). Furthermore, to sub-
stantiate that increased SMase activity is responsible for 
enhanced ceramides production, lysates of L. rhamno-
sus IDCC 3201 and lactic acid bacteria tested in Fig.  1 
were treated in HEK cells. Overall, increased ceramides 
production is correlated with increased SMase activ-
ity (R2 = 0.77, Fig.  3) to some degree. Ceramides con-
centration by L. rhamnosus IDCC 3201 was 1.7—5.2 
times higher than those by other lactic acid bacteria. 
More specifically, 1153.5 ± 334.5  pg/mL of ceramides 
was measured in HEKs treated by L. rhamnosus IDCC 
3201, while 651.1 ± 72.9, 417.9 ± 55.8, 216.8 ± 69.3, and 
626.2 ± 216.5  pg/mL of ceramides were measured in 
HEKs by L. mesenteroides, L. plantarum, L. casei, and 
S. thermophilus, respectively (Fig.  3). The observation 
that HEK cells treated with the lysates of L. rhamnosus 
showed higher production of ceramides, might be due to 
the induction of higher SMase activity (Fig.  1). To vali-
date this notion, real-time PCR was performed to ana-
lyze the expression levels of SMPD3, CERS1 and CERS2 
responsible for ceramides synthesis: SMPD3 coding for 
sphingomyelin phosphodiesterase 3; CERS1 for ceramide 
synthase 1; CERS 2 for ceramide synthase 1. In results, 
the expression level of SMPD3 was significantly increased 
in response to L. rhamnosus IDCC 3201, but not in L. 
plantarum. More specifically, each strain exhibited 35% 
and 11.4% increase of SMPD3 expression, respectively 

Fig. 2  Cytotoxic effect of L. rhamnosus IDCC 3201 on keratinocytes. 
Cell viability was measured by MTT-assay. The data represent 
means ± standard deviations from triplicate experiments

Fig. 3  Enhanced ceramides production by the lysates from L. 
rhamnosus IDCC 3201. Produced ceramides concentration was 
measured using an ELISA kit. The contents of ceramides were as 
follows: control, 21.4 pg/mL; SMase (10 µg/mL), 2189.2 pg/mL; L. 
mesenteroides, 651.1 pg/mL; L. plantarum, 417.9 pg/mL; L. casei, 
216.8 pg/mL; S. thermophilus, 626.2 pg/mL; L. rhamnosus 1153.5 pg/
mL. The data represent means ± standard deviations from triplicate 
experiments

Fig. 4  RT-PCR and metabolome analysis. a Enhanced SMPD3 expression level in HEK treated by the lysates of L. plantarum and L. rhamnosus 3201. b 
Increased abundance of glycerate and serine in L. rhamnosus IDCC 3201 in comparison with L. plantarum strain
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(Fig. 4a). Based on the results, it was concluded that com-
parative higher production of cermides by L. rhamno-
sus IDCC 3201 was due to the up-regulation of SMPD3 
rather than CERS1 or CERS2. As a conclusion, it is 
expected that lysates of L. rhamnosus IDCC 3201 con-
tribute to the improvement of the skin barrier through 
the increased level of ceramides.

Genome and metabolome analysis for elucidating 
a proposed mechanism
To elucidate a mechanism of enhanced ceramides pro-
duction by L. rhamnosus IDCC 3201, information of 
enzymes that can synthesize ceramides in microorgan-
isms was collected (Table 1). Among 13 genes, L. rham-
nosus IDCC 3201 harbored galc and gba, which encodes 
for galactosylceramidase and glucosylceramidase, respec-
tively. According to the gene annotation analysis using 
homology search, only gba gene was determined to be 
responsible for ceramides production from glucosylcera-
mide, that is abundant in human keratinocytes [4]. Previ-
ous studies reported that the lack of glucosylceramidase 
encoded by the gba gene disturbed ceramides produc-
tion and caused the failure of formation of competent 
skin barrier [9]. Thus, the increased ceramides in HEK 
cells was due to the expression of glucosylceramidase or 

increased SMase activity in the lysates of L. rhamonsus 
IDCC 3201. In order to specify the possible effects of 
lysate components on the enhanced ceramides produc-
tion, we analyzed the metabolites present in the culture 
supernatants of L. rhamnosus and L. plantarum using 
GC-TOF mass spectroscopy. As shown in Fig.  4b, we 
found that abundances of glycerate and serine increased 
in the L. rhamnosus culture compared to L. plantarum. 
The first step of de novo synthesis of ceramides begins 
with the condensation of palmitate and serine, produc-
ing 3-keto-dihydrosphingosine. In this process, serine 
metabolism regulates ceramides and sphingolipid syn-
thesis [27]. In addition, 3-phosphoglycerate, as one of the 
glycerate derivatives, is a precursor for the serine synthe-
sis, supporting the notion that the increased glycerate 
and serine in the L. rhamnosus culture would induce the 
ceramides synthesis [28]. Finally, the reasons of enhanced 
ceramides production can be summarized by 1) indirect 
effect of components of the lysates (i.e., glycerate and 
serine) and 2) direct effect of glucosylceramidase on cer-
mides production (Fig. 5).

Safety evaluation of L. rhamnosus IDCC 3201
Genome analysis of L. rhamnosus IDCC 3201 indicated 
that the size of the genome was approximately 3.05 Mbps 

Fig. 5  Proposed mechanism for enhanced ceramides production by the lysates from L. rhamnosus IDCC 3201. Preparation of unanimated L. 
rhamnosus IDCC 3201 and its components consist of exopolysaccharides, supernatant, cell wall fragments, bacterial lysates, enzymes, and various 
metabolites. Among them, an enzyme, glucosylceramidase converts glucosyceramides into ceramides in HEKs. In addition, the metabolites such as 
glycerate and serine promote ceramide synthesis in HEKs
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with a GC content of 46.71% and 2,821 functional genes 
(Additional file 1: Tables S1 and S2) (Fig. 6). Furthermore, 
L. rhamnosus IDCC 3201 does not have any toxigenic 

gene or virulence factor. According to the MIC tests, L. 
rhamnosus IDCC 3201 was susceptible to all of the anti-
biotics except for gentamycin and kanamycin (Table  3). 

Table3  MICs of L. rhamnosus IDCC 3201 against a variety of antibiotics

n.r. not required

AMP ampicillin, VAN vancomycin, GEN gentamicin, KAN kanamycin, STR streptomycin, ERY erythromycin, CLI clindamycin, TET tetracycline, CHL chloramphenicol
a EFSA (European Food Safety Authority), 2018. EFSA Journal, 16(3), 5206
b S: Susceptible
c R: Resistant

AMP VAN GEN KAN STR ERY CLI TET CHL

Cut-off value
(μg/mL)a

4 n.r 16 64 32 1 4 8 4

L. rhamnosus
IDCC 3201

1/Sb 512–1024 32/Rc 128/R 32/S  < 0.125/S  < 0.125/S 0.25/S  < 0.125/S

Fig. 6  Circular map of the chromosome of L. rhamnosus IDCC 3201. The whole genome was used for searching the genes responsible for 
ceramides production, antibiotic resistance, virulence, mobile elements, and prophage regions. Marked characteristics are shown from outside to 
the center, mobile elements (transposases, dark red; intact prophage region, dark blue), CDS on forward strand, CDS on reverse strand, RNA genes 
(tRNAs orange; rRNAs, red; other RNAs, green), GC content (black) and GC skew (light green/orange)
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These resistances should be intrinsic and not be trans-
ferable to skin microbes due to the absence of antibiotic 
resistance gene. Typically, many Lactobacillus species are 
shown to be tolerant to aminoglycoside antibiotics intrin-
sically due to the absence of cytochrome-mediated trans-
port [29, 30]. In conclusion, L. rhamnosus IDCC 3201 
strain is regarded as safe for its use as cosmetic materials.
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