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Abstract 

Endothelial dysfunction is directly involved in consequence of various metabolic syndromes such as diabetes and 
hypertension. In this study, we investigated the preventive effects of two ark clams [ark shell (AS, Scapharca subcre-
nata) and granular ark (GA, Tegillarca granosa)] on endothelial dysfunction induced by a high-fat diet. Wistar rats were 
divided into four groups as follows: control (normal diet), HF (high-fat diet), AS (high-fat diet + 5% AS powder), and 
GA (high-fat diet + 5% GA powder) for 12 weeks. AS and GA diets enhanced vascular reactivity of the rat thoracic 
aorta and significantly increased expression levels of vascular relaxation-related proteins (p-Akt-ser473 and p-eNOS-
ser1177). Ark clam supplement reduced endothelin-1 expression level, as compared to the HF group. Additionally, AS 
and GA showed a trend of improving insulin sensitivity compared to HF. Our results suggest that AS and GA enhance 
vascular reactivity and ameliorated endothelial dysfunction induced by a high-fat diet.
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Introduction
Vascular homeostasis is maintained by the endothe-
lial cells through manifold complex interactions with 
cells in the vessel wall. Endothelium normalizes vascu-
lar tone by balancing vasodilators and vasoconstrictors 
[1]. Failure of endothelial function is associated with a 
variety of metabolic syndrome including cardiovascular 
diseases [2], insulin resistance [3], and hypertension [4]. 
Nitric oxide (NO), the key regulator of the vasodilatory 
process, is generated from L-arginine through the cata-
lyzation of endothelial NO synthase [2]. Endothelial dys-
function reduces vascular NO productivity, resulting in 
various vascular diseases. Interestingly, there is evidence 

suggesting that the foods can alter endothelial function 
negatively or positively [5]. Supplements of some foods 
and nutrients improve an endothelial function [5, 6].

Ark clams, including ark shell (AS, Scapharca sub-
crenata) and granular ark (GA, Tegillarca granosa), are 
edible marine bivalve mollusks. AS and GA are widely 
consumed as foods in China and Korea. Ark clams are 
rich in free amino acids such as taurine, glycine, arginine, 
etc.[7]. Several free amino acids are recognized as useful 
nutrients for improving endothelial function [8–11]. In 
particular, taurine that is highly contained in ark clams 
was reported to have endothelial protective activity [8] 
and improved vascular function [9]. In addition, sev-
eral antioxidative and/or anticancer peptides have been 
isolated and identified from protein hydrolysates of GA 
muscle [12, 13]. We hypothesized that ark clams could 
help to prevent endothelial dysfunction. However, the 
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preventive effects of ark clams on endothelial dysfunction 
in an animal model has not yet been assessed.

The chronic high-fat (HF) diet induces endothelial 
dysfunction and insulin resistance leads to cardiovascu-
lar diseases and diabetes [14, 15]. The HF diet has been 
widely used for assessing the preventive effect of foods on 
endothelial dysfunction and insulin resistance [16, 17]. In 
this study, the ameliorative effects of AS and GA on HF-
induced endothelial dysfunction were evaluated.

Materials and methods
Materials and chemicals
AS and BC were purchased from the local market located 
in Boseong County, Korea. The ark clams were steamed 
for 3 min and the muscles obtained after shucking were 
dried by hot air dryer at 50 °C for 4 days. The dried mus-
cles were ground by a grinder and stored at − 20 °C until 
used.

Horseradish peroxidase (HRP)-conjugated goat anti-
rabbit immunoglobin was procured from Millipore Co. 
(Billerica, MA, USA). The antibodies of phosphorylated 
Akt-Sers73 (p-Akt-Ser473) and endothelin-1 (ET-1) were 
obtained from Santa Cruz Biotechnology (Santa Cruz, 
CA, USA). The antibodies for eNOS and phosphorylated-
eNOS-Ser1177 (p-eNOS-Ser1177) were procured from 
Cell Signaling (Danvers, MA, USA). Reagent salt, acetyl-
choline chloride (Ach), sodium nitroprusside dehydrate 
(SNP), and phenylephrine hydrochloride was purchased 
from Sigma–Aldrich Chemical Co. (St. Louis, MO, USA). 
Antibodies of insulin receptor substrate-1 (IRS1), phos-
phorylated IRS1 Serine307 (pIRS1ser307), and glucose 
transporter 4 (GLUT4) were procured from Upstate Bio-
tech, Inc. (Lake Placid, NY, USA). Rabbit anti-GAPDH 
polyclonal antibody was obtained from Ab Frontier 
(Seoul, Korea). All other chemical reagents and solvents 
used in this study were of analytical grade.

Free amino acid analysis
The free amino acid content in the dried ark clam pow-
ders was determined by a Sykam S430 amino acid ana-
lyzer (GmbH, Eresing, Germany) [18].

Animal studies
Male Wistar rats (6  weeks old) were purchased from 
Damool Science (Daejeon, Korea). The rats were housed 
at room temperature (25 ± 1  °C), humidity (55 ± 5%), 
and light cycle (12  h; 6:00 to 18:00) and given ad  libi-
tum access to food and water. All rats were adapted 
for 1  week, randomly divided into 4 groups (n = 8), 
and treated with a special diet for 12  weeks as follows: 
Control (normal diet), HF (HF diet, 40% lard), AS (HF 
diet + 5% AS), and GA (HF diet + 5% GA). The animal 
experiment protocol was approved by the Committee 

on Animal Care and Use of Mokpo National University 
(MNU-IACUC-2015–032).

Assessment of vascular reactivity
The thoracic aorta ring was mounted in standard organ 
baths containing 10  mL of physiological salt solution 
and maintained at pH 7.4, temperature 37  °C, and con-
tinuously bubbled with 95% O2 and 5% CO2. The samples 
were constricted followed by re-equilibration two times 
using a high-potassium Krebs solution (80  mM KCl), 
then contracted to 1  µM phenylephrine and exposed to 
Ach (10–9 to 3 × 10–5 M) and SNP (10–10 to 3 × 10–5 M). 
Changes in tension were recorded by using a force–dis-
placement transducer (HugoSachs, Germany).

Western blotting
Protein of thoracic aorta and adipose tissue samples were 
extracted and determined by the Bradford assay [19]. The 
protein samples were separated on 10% polyacrylamide 
gel by SDS-PAGE and transferred to PVDF membranes. 
After treating with blocking buffer for 1 h, the membrane 
was reacted overnight with primary antibodies at room 
temperature. Follow by incubation with secondary anti-
bodies for 1 h and bands were visualized by the chemilu-
minescence reagent. The bands and their intensities were 
photographed and analyzed by ImageJ 1.50i software 
(MD, USA).

Immunohistological study
Samples were fixed in Bouin’s solution for 24  h, dehy-
drated in graded alcohol, and embedded in paraffin. 
Blocks were cut into 4  µm sections, deparaffined in 
xylene, and rehydrated in series of alcohol and distilled 
water. The slides were incubated for 10 min in the anti-
gen retrieval solution (microwave oven), blocked with 
3% H2O2 solution for 5 min, incubated with 10% normal 
goat serum for 30 min, and incubated with primary anti-
body (1:200) overnight at room temperature. The slides 
were incubated with the biotinylated secondary antibody 
(1:200) for 2.5  h at room temperature and followed by 
incubation with avidin–biotin-peroxidase for 30  min. 
The colors were developed by 0.1% DAB chromogen 
solution and the photographs were taken by microscopes 
(Olympus, BX43).

Statistical analysis
The data were expressed as a means ± S.E.M. using SPSS 
v12.0 (Chicago IL, USA). The statistical significance of 
mean was determined by ANOVA following the post-
hoc Tukey’s test. The P value of < 0.05 was considered 
significant.
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Results and discussion
Free amino acid content
The contents of taurine and free amino acids in the AS 
and GA powders are shown in Table 1. The AS powder 
showed higher total free amino acid content than the 
GA powder. Taurine was the most predominant in both 
AS and GA. The taurine content in the AS powder was 
higher than that in the GA powder. Additionally, free 
amino acids, including glutamic acid, glycine, arginine, 
alanine, β-alanine, and aspartic acid, were abundant in 
the dried AS and GA powders. Glutamic acid, glycine, 
and arginine in the AS powder and aspartic acid in the 
GA powder were more abundant. Ark clams have been 
found to be rich in taurine, a non-essential amino acid 
that has been reported to have various health-beneficial 
effects, including improvement of vascular endothelial 

function and hypertension [8, 9]. Moreover, glycine and 
arginine also enhance endothelial function by increas-
ing nitric oxide bioavailability [10, 11]. Therefore, taurine 
might be one of the key factors that contribute to the 
preventive effects of AS and GA on vascular endothelial 
dysfunction.

AS improved vascular reactivity
Previous studies have reported that HF causes obesity 
and leads to endothelial dysfunction [14]. To investigate 
the potential effects of AS on endothelial dysfunction, 
arterial segments were collected, and vascular reactiv-
ity was determined. As shown in Fig.  1a, the HF group 
showed a significant decrease in endothelium-dependent 
relaxation induced by Ach, as compared to the control 
group. Consistent with our results, previous studies have 
reported that HF impairs vasorelaxation response to Ach 
in the rat aorta [14]. The AS supplement significantly 
increased endothelium-dependent relaxation in the HF 
diet-fed rat. The half-maximal response concentration 
(EC50 value) of Ach in the control, HF, and AS groups 
were 10.9 ± 5.0, 18.0 ±3.1, and 13.5 ±1.7  nM, respec-
tively. In addition, the maximal vasorelaxant effect of 
Ach in the control, HF, and AS groups were 91.7 ± 1.0, 
76.4 ± 2.2, and 84.0 ± 1.4%, respectively. All groups also 
exhibited dose-dependent relaxation induced by SNP, the 
NO donor. However, there was no significant difference 
in EC50 value and the maximal vasorelaxant effect of 
SNP among all groups, indicating that there was no sig-
nificant difference in endothelial-independent relaxation. 
The EC50 value of SNP in the control, HF, and AS groups 
were 6.8 ± 1.1, 8.0 ± 1.2, and 6.4 ± 1.2 nM, respectively. 
The maximal vasorelaxant effect of SNP in the con-
trol, HF, and AS groups were 98.4 ± 1.0, 98.0 ± 1.3, and 
98.16 ± 0.7, respectively. These results suggest that AS 
improves vascular reactivity by ameliorating HF-induced 
endothelial dysfunction.

Ameliorative effects of AS and GA on endothelial 
dysfunction
Acetylcholine induces vascular relaxation by activating 
the calmodulin-binding domain of eNOS to produce NO 
[20]. The reduction of NO is the main characteristic of 
endothelial dysfunction [21]. Thus, the expression of NO-
generated proteins were evaluated. As expected, the HF 

Table 1  Free amino acid content of cockle powder and raw 
egg yolk

a  Data collected from the report by Nimalaratne et al. Food Chemistry 129: 
155–161 (2011)

Component Ark shell 
(AS) 
(mg/100 g)

Granular 
ark (GA) 
(mg/100 g)

Raw egg yolka 
(mg/100 g)

Taurine 1339 811

Glutamic acid 366 258 117

Glycine 314 55 25

Arginine 307 102 158

Alanine 276 251 63

Aspartic acid 198 387 50

β-Alanine 141 115

Lysine 33 24 87

Leucine 28 13 74

Valine 22 14 66

Tyrosine 22 10 69

Isoleucine 17 8 39

Phenylalanine 16 5 34

Threonine 15 21 47

Serine 15 11 60

Histidine 12 6 15

Methionine 8 3 16

γ-Amino-n-butyric acid 2 3

Total 3265 2138 976

(See figure on next page.)
Fig. 1  Concentration–response curves of Ach-induced endothelium-dependent relaxation a and SNP-induced endothelium-independent 
relaxation b in the phenylephrine-contracted thoracic aorta of the control, HF, and AS groups. The western blot analysis of endothelial 
dysfunction-related proteins in thoracic aorta tissue and its relative intensities, p-Akt ser473 (c), p-eNOS-Ser1177 (d), and p-eNOS Thr495 (e). 
Immunohistochemistry staining of ET-1 in the thoracic aorta sample using antibody against ET-1 and visualized with peroxidase displaying different 
staining intensity (brown color) (f ) and their immune positivity expressed as area % (g). Data are expressed as mean ± SEM (n = 8). #P < 0.05 vs. 
Control, *P < 0.05 vs. HF
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diet reduced the expression of p-Akt ser473 and p-eNOS-
Ser1177 compared to the control (Fig. 1c, d). The AS and 
GA supplement increased expression levels of p-Akt 
ser473 and p-eNOS-Ser1177 in the HF-fed rat (Fig.  1c, 
d) and expressions of those proteins were even higher 
than expressions of those proteins in control. However, 
the different expression levels of p-eNOS Thr495 among 
the groups were not observed (Fig. 1e). Previous studies 
reported that the NO production is upregulated by the 
eNOS activity via modulation of p-eNOS-Ser1177 and 
p-Akt ser473 [22, 23], whereas p-eNOS-Thr495 is a nega-
tive regulator and associated with a decreased enzyme 
activity [24]. The rise in the expression level of p-eNOS-
Ser1177 in AS and GA diet resulted in the amplified 
enzymatic activity of eNOS which was led to increased 

NO content in vascular endothelial cells. Our results sug-
gest, at least in part, that AS and GA increase vascular 
reactivity by improving endothelial dysfunction through 
enhancing Akt-induced eNOS phosphorylation at its 
active site. ET-1 is a strong vasoconstrictor produced 
in vascular endothelial cells. Failure of the physiologi-
cal balance between NO and ET-1 causes endothelial 
dysfunction [22, 25]. Interestingly, immunohistochem-
istry staining of ET-1 brown spots in the thoracic aorta 
(Fig. 1f ) and their percentage of the area (Fig. 1g) showed 
that AS and GA groups have significantly diminished 
ET-1 expression levels compared to the HF group. As 
the physiological balance between NO and ET-1 is con-
sidered important in endothelial function, AS and GA 
may ameliorate endothelial dysfunction by decreasing 
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Fig. 2  Western blot analysis of insulin signaling-related proteins in adipose tissue and relative intensities, Akt2 (a), IRS1 (b), pIRS1ser307 (c), and 
GLUT4 (d), in the adipose tissues of rats, fed the diets containing 5% AS and GA powder (w/w) for 12 weeks. Values were expressed as mean ± SEM 
(n = 8)
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ET-1 and improving phosphorylation of NO-produc-
tion-related proteins, and may lead to increased vascular 
relaxation.

Effects of AS and GA on insulin sensitivity
Endothelial dysfunction has been reported to be associ-
ated with insulin resistance in diabetes [26]. Insulin bind-
ing to its specific receptor stimulates the phosphorylation 
of IRS and activates the IRS/PI3K pathway that regulates 
glucose uptake in metabolic tissues and controls NO 
release from endothelial cells [26]. Phosphorylation of 
IRS proteins on tyrosine residues activates insulin sign-
aling and stimulates the translocation of GLUT4. On 
the other hand, serine phosphorylation of IRS proteins 
causes insulin resistance [27]. The HF diet showed lower 
expression levels of IRS1, Akt2, and GLUT4 and higher 
expression levels of pIRS1ser307, as compared to the con-
trol (Fig.  2). Similar to our results, it was demonstrated 
that HF induced insulin resistance by impairing insulin 
signaling [28]. AS and GA showed a trend of improv-
ing insulin signaling by increasing of IRS1 and GLUT4 
expression (Fig.  2b, d) and by decreasing pIRS1ser307 
expression (Fig. 2c). However, significant differences were 
not observed. The protein expression level of Akt2, a 
signaling protein in the IRS/PI3K pathway [29], was sig-
nificantly increased in the AS group compared to the HF 
group (Fig. 2a).

Here we found that AS and GA enhance vascular activ-
ities and ameliorate endothelial dysfunction by increasing 
the expression levels of vascular relaxation-related pro-
teins and suppressing ET-1 protein expression. Moreover, 
AS and GA appeared to have the potential to improve 
insulin sensitivity. Protein hydrolysates of AS and GA 
have been reported to have in vitro anti-angiogenic, anti-
oxidant, and acetylcholinesterase inhibitory activities 
[30–32]. Taurine was known to have endothelial protec-
tive activity and improve vascular function by the res-
toration of redox homeostasis [8]. Additionally, glycine 
and L-arginine have the ability to prevented endothe-
lial dysfunction [10, 11]. In addition to free amino acids 
including taurine, other components in the clams such 
as minerals and betaine may contribute to the preven-
tion effects of AS and GA on endothelial dysfunction 
[33, 34]. Betaines are known to convert homocysteine, 
which is reported to have adverse effects by disturbing 
endothelial function, to methionine as a methyl donor 
[35]. It was reported that both ark clams contain a high 
amount of betaines [34]. Even though the mechanisms to 
prevent endothelial function by AS and GA are not clear, 
our study provides evidence that AS and GA increase 
vascular reactivity and improved HF-induced endothelial 
dysfunction.
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