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Abstract 

Background:  Cardiac implantable electronic device (CIED) surgical site infections (SSIs) have been outpacing the 
increases in implantation of these devices. While traditional surveillance of these SSIs by infection prevention and con‑
trol would likely be the most accurate, this is not practical in many centers where resources are constrained. Therefore, 
we explored the validity of administrative data at identifying these SSIs.

Methods:  We used a cohort of all patients with CIED implantation in Calgary, Alberta where traditional surveillance 
was done for infections from Jan 1, 2013 to December 31, 2019. We used this infection subgroup as our “gold stand‑
ard” and then utilized various combinations of administrative data to determine which best optimized the sensitivity 
and specificity at identifying infection. We evaluated six approaches to identifying CIED infection using administrative 
data, which included four algorithms using International Classification of Diseases codes and/or Canadian Classifi‑
cation of Health Intervention codes, and two machine learning models. A secondary objective of our study was to 
assess if machine learning techniques with training of logistic regression models would outperform our pre-selected 
codes.

Results:  We determined that all of the pre-selected algorithms performed well at identifying CIED infections but the 
machine learning model was able to produce the optimal method of identification with an area under the receiver 
operating characteristic curve (AUC) of 96.8%. The best performing pre-selected algorithm yielded an AUC of 94.6%.

Conclusions:  Our findings suggest that administrative data can be used to effectively identify CIED infections. While 
machine learning performed the most optimally, in centers with limited analytic capabilities a simpler algorithm of 
pre-selected codes also has excellent yield. This can be valuable for centers without traditional surveillance to follow 
trends in SSIs over time and identify when rates of infection are increasing. This can lead to enhanced interventions for 
prevention of SSIs.
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Background
Surgical site infections (SSI) following cardiac implant-
able electronic device (CIED) implantation are hospital 
acquired infections (HAIs) that pose a substantial burden 
on our healthcare system [1, 2]. The annual rate of CIED 
implantations has increased over the past several dec-
ades due to the increasing need for pacemaker therapy in 
an aging population, and expanding indications for car-
diac resynchronisation therapy (CRT) and prophylactic 
implantable cardioverter defibrillators (ICDs). Notably, 
the rate of CIED infections is outpacing the increase in 
implantation rate [3].

CIED infections can include local infections such as 
pocket infections, but can also include more severe sys-
temic infections including bloodstream infections and 
infective endocarditis [4]. Randomized controlled trial 
data suggest relatively low baseline rates of CIED infec-
tion (i.e. approximately 1%) [5]. However, studies using 
large population-based observational data that better 
reflect everyday practice demonstrate CIED infection 
rates as high as 4% [6]. The consequence of CIED infec-
tion is increased patient morbidity and mortality. Addi-
tionally, CIED infections are associated with substantial 
medical resource use and costs due to repeat hospitaliza-
tions, multiple surgeries for device removal and possible 
re-implantation, and lengthy hospital stays for intrave-
nous antibiotics [7, 8].

Given the impact of these infections, it is essential to 
perform surveillance of CIED infections within health-
care systems. Surveillance has been identified as a core 
component for any Infection Prevention and Control 
(IPC) program by international health organizations, 
which may include post-operative patient surveillance in 
the outpatient, emergency departments or inpatient set-
ting, with detailed patient chart review, and tracking of 
microbiology results [9]. Unfortunately, comprehensive 
IPC surveillance programs for CIED infections can be 
costly and time-consuming, and require extensive human 
resources. Particularly in smaller centers without exten-
sive funding for IPC programs this type of robust surveil-
lance may not be practical.

An alternative method to identify CIED infections is 
the use of administrative data, which may be less expen-
sive and resource intensive. However, the validity of such 
data for infection surveillance has been questioned and 
may be dependent on the type of HAI for identification 
[10]. A systematic review of administrative data for SSI 
surveillance found that across 34 studies, sensitivity and 
positive predictive values (PPV) only performed moder-
ately, which may be due to pooling heterogeneous study 
populations undergoing very different surgical operations 
[11]. CIED infections were not one of the SSI included in 
that review.

Given the absence of studies assessing the use of 
administrative data for CIED infection surveillance, our 
study sought to validate administrative codes to robustly 
identify CIED infections compared to a gold standard 
of comprehensive IPC surveillance with chart review. A 
secondary objective was to determine the best adminis-
trative data approach for CIED infection identification 
using conventional selection of an unweighted set of pre-
selected codes, or machine learning methods [12].

Methods
The study protocol was developed based on the modi-
fied Standards for Reporting of Diagnostic Accuracy 
(STARD) criteria, and recommendations on the design 
and reporting of administrative data validation studies 
[13, 14].

Study design and cohort
We identified a cohort of adults patients (i.e., 
age ≥ 18  years) in Calgary, Alberta who underwent de 
novo CIED implantation (including pacemaker (PM), 
ICD, or CRT) or generator replacement between January 
1, 2013 and December 31, 2019. Among these patients 
undergoing CIED surgery, those developing a CIED 
infection within one year of surgery were identified 
through manual chart review enabled through a formal 
IPC Surveillance program. CIED infections were adju-
dicated using the Centers for Disease Control and Pre-
vention/National Healthcare Safety Network (NHSN) 
standardized definitions for complex SSIs (i.e., deep or 
organ space) [15]. Superficial infections without involve-
ment of the device or leads were not included as these 
types of infections are not an indication for CIED system 
removal and lead extraction [16]. This study focused on 
complex SSIs following CIED implantation given the sub-
stantial burden to health system (I.e., hospitalization, pro-
longed antibiotics, re-operation for system removal and 
reimplantation).These “gold standard” CIED infections 
were then used to validate infections identified through 
administrative coding data from the International Classi-
fication of Diseases-10th revision in Canada (ICD-10-CA) 
and Canadian Classification of Health Intervention (CCI) 
administrative codes (ref https://​www.​cihi.​ca/​en/​cci-​cod-
ing-​struc​ture).

Data sources
Paceart™

CIED implantations were identified using the PaceArt™ 
database, which is a repository of all device-related 
clinical encounters for any patient followed within the 
province of Alberta, Canada. As comprehensive IPC 
surveillance for CIED infections is not readily avail-
able across the province, we limited the base cohort to 

https://www.cihi.ca/en/cci-coding-structure
https://www.cihi.ca/en/cci-coding-structure
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patients with CIED procedures performed within the 
Calgary zone. Calgary is an urban city with a population 
of approximately 1.5 million. Paceart™ contains infor-
mation regarding indications for device implantation, 
type of device, date of operation and basic demographic 
information. Repeat procedures were censored in the 
two-year period from index surgical date to avoid double 
counting patient encounters that may be attributed to a 
single CIED infection (e.g. for a patient who underwent 
de novo pacemaker implantation requiring a lead revi-
sion 2 months later, only the initial implant was counted 
as an index procedural date).

Infection prevention and control
Complex SSI cases were obtained via collaboration with 
Alberta Health Services (AHS) Calgary Zone Infec-
tion Prevention & Control (IPC) (one IPC department 
completes surveillance for Calgary zone). Superficial 
infections were not collected. All patients with CIED 
implantation are actively followed for one year to deter-
mine if they develop infection using various sources 
including hospital admissions, chart review, and micro-
biology data. This surveillance is performed by a trained 
Infection Control Professional with AHS who has access 
to patient charts. Case identification follows NHSN 
definitions for eligibility and complex infection crite-
ria. Infections that are identified are brought forth to a 
committee for case adjudication including the Infection 
Control Professional, Cardiac Electrophysiologists and 
Infectious Diseases physicians. Surveillance results are 
fed back to clinicians, and quality improvement strategies 
are implemented if CIED infection rates increase beyond 
acceptable levels. The importance of surveillance is rec-
ognized as an intervention which can lead to decreases 
in post-surgical infections. This IPC data set formed our 
reference (gold standard) CIED infection target variable, 
which was used to validate the administrative codes.

AHS analytics
AHS is a single health system that services the entire 
province of Alberta, Canada. We utilized AHS analyt-
ics data which provides healthcare information on all 
Alberta residents with an Alberta Health Care Insurance 
Plan (> 99% of provincial coverage) in order to obtain 
information from the Discharge Abstract Database 
(DAD) for our patients in Calgary. This data was utilized 
to provide information on all hospital admissions and 
their associated ICD-10-CA and CCI codes (Additional 
file  1) for our baseline cohort, for one year after their 
initial CIED implantation or generator replacement. We 
assumed that all patients with a complex CIED infec-
tion would present to the Emergency Department or be 

admitted to hospital for management and that essentially 
all patients would require removal of their device.

Statistical analyses
We identified the CCI codes published by Canadian Insti-
tute for Health Information (CIHI), which could poten-
tially be used to identify CIED procedures (Additional 
file 1). These administrative codes were used to identify 
potential CIED infection cases through AHS analytics 
data. All patients in the base cohort were followed for 
one year from their initial CIED implantation or genera-
tor replacement to determine if they had the “infection” 
codes in subsequent hospital admissions.

We used three different pre-defined algorithms to 
track infection. First, we searched a combination of ICD-
10-CA codes for infection including: infection following 
a procedure (T814), infection of an implantable cardio-
vascular or other device (T827, T857) or surgical pro-
cedure as the cause of an abnormal reaction (Y83), with 
the CCI codes listed in Additional file 1 which represent 
CIED procedures (Algorithm  1). Second, we assessed 
an approach from a recent publication using non-val-
idated ICD-10-CA codes to track infection: Infection 
of an implantable cardiovascular or  other device (T827, 
T857), infective endocarditis (I330, I339, I38,  I398), 
or cellulitis of the chest wall  or other unspecified site 
(L0330, L0339, L038, L039) (Algorithm 2) [8]. Third, we 
used an approach of only CCI codes related to implan-
tation/removal of CIEDs as follows 1.YY.54.^, 1.YY.54.
LA-NJ, 1.HZ.55.^, 1.HD.53.^, 1.HD.53.GR-JA, 1.HD.54.^, 
1.HD.54.GR-JA, 1.HD.55.^, 1.HD.55.GP-JB, or 1.HD.55.
GR-JA (Algorithm 3) [17]. For all three approaches above, 
we used standard epidemiological methods to calculate 
sensitivity, specificity, PPV, negative predictive value 
(NPV) and area under the receiver operating character-
istic (ROC) curve (AUC) metrics for the administrative 
code classification predictions.

An additional analysis was conducted where we 
trained a machine learning model to determine the 
most appropriate codes to identify infection rather 
than the traditional pre-identification of codes as out-
lined above. Logistic regression models were trained 
using Python and the scikit-learn library [17]. Due to 
the high class imbalance of the dataset (133:1 occur-
rence of infection) the class weights were scaled to be 
inversely proportional to frequency when training the 
model. L1 regularization was used on the model coef-
ficients during training for its feature selection capabil-
ity and to avoid overfitting the model [18]. Due to the 
limited number of infection examples a stratified cross 
validation strategy was applied to evaluate the models. 
A test set was not used because the primary aim was 
a comparison of the different approaches. The outer 
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cross validation loop consisted of five random stratified 
folds of the full dataset. The same strategy was used to 
evaluate the performance of the traditional approaches. 
For the logistic regression models a nested inner train-
ing loop consisted of a grid search for regularization 
strength using three stratified folds of the training data 
split.

Ultimately, we evaluated two logistic regression mod-
els: a model trained on ICD-10-CA and CCI codes 
with regularization C = 0.6 (ICD & CCI Model), as well 
as a model trained on only ICD-10-CA codes with a 
regularization C = 0.4 (ICD Model). Finally, we simply 
looked for the ICD-10-CA code T827 given its defi-
nition of “infection of an implantable cardiovascular 
device”.

Following validation of administrative codes, we com-
pared temporal trends between the CIED infections 
identified via gold standard IPC surveillance and those 
identified using the optimal administrative approach. 
Analysis was completed using Python version 3.9.12 
and Scikit-learn version 1.1.1. Ethics for this study 
was obtained from the University of Calgary Health 
Research Ethics Board (REB20-2186).

Results
Study cohort
Between January 1 2013 and December 31 2019, there 
were 3536 CIED procedures performed, and a total of 
5631 hospitalizations. Among these 3536 procedures, 
there were 42 infections (1.2%) identified through com-
prehensive IPC surveillance.

Baseline characteristics of the overall cohort and those 
with SSI’s can be found in Table  1. The most common 
procedure was PM insertion (72%). However, SSIs follow-
ing PM insertion only accounted for 45% overall. ICDs 
which accounted for 20% of all device implantations 
accounted for 36% of SSIs.

Administrative data algorithms for CIED infection 
identification
All of the algorithms to identify infections utiliz-
ing administrative codes performed well. Sensitiv-
ity, specificity, PPV, NPV and AUC for each approach 
can be found in Table  2. Ranked based on AUC, the 
highest performing approach was the ICD/CCI code 
based logistic regression model with an average AUC 
of 96.8%. The ICD code only model followed closely 

Table 1  Baseline characteristics of the Paceart cohort and infection subgroup

PM, pacemaker; ICD, intracardiac device; CRT, cardiac resynchronization therapy

Total Paceart Cohort Infection Subgroup

Number of Patients & Device Implants (Total N) 3,536 42

Age In Years, Mean (SD) 73.6 (14.6) 67.0 (16.0)

Sex

 Male 2,253 (64%) 29 (69%)

Device Type

 PM N (% Total N) 2,551 (72%) 19 (45%)

 ICD N (% Total N) 722 (20%) 15 (36%)

 CRT N (% Total N) 263 (7%) 8 (19%)

Generator Replacement N (% Total N) 676 (19%) 4 (10%)

Table 2  Sensitivity, specificity, positive predictive value and negative predictive value for each approach

Average metrics ± 95% confidence interval based on fivefold cross validation

Area Under Curve (ROC) Sensitivity Specificity Negative 
predictive value

Positive predictive value

Algorithms (Traditional pre-selected codes)

 Algorithm 1 0.894 ± 0.04 0.833 ± 0.08 0.955 ± 0.005 0.999 ± 0.001 0.124 ± 0.016

 Algorithm 2 0.946 ± 0.064 0.906 ± 0.128 0.986 ± 0.001 0.999 ± 0.001 0.325 ± 0.049

 Algorithm 3 0.816 ± 0.13 0.669 ± 0.261 0.962 ± 0.004 0.997 ± 0.002 0.115 ± 0.04

Machine learning models

 ICD Model 0.961 ± 0.06 0.903 ± 0.129 0.987 ± 0.009 0.999 ± 0.001 0.378 ± 0.133

 ICD & CCI Model 0.968 ± 0.043 .9 ± 0.13 0.99 ± 0.004 0.999 ± 0.001 0.416 ± 0.047

Unique Code

 T827 0.936 ± 0.006 0.881 ± 0.009 0.991 ± 0.005 0.999 ± 0.0 0.428 ± 0.119
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behind with an average AUC of 96.1%. A visual repre-
sentation of each AUC can be found in Fig.  1. Trends 
in SSIs over time identified by administrative data using 
all included approaches as well as the “gold standard” 
cohort of SSIs identified by IPC can be seen in Fig.  2. 
All approaches overpredict the number of SSIs, as 
seen in the PPV metric. The improved proximity of 
the trendline profile and values to the gold standard 

is evident for the top performing models/algorithms. 
While sensitivity and specificity are excellent, the PPV 
is low. This is due to the fact that PPV is affected by the 
prevalence of the “disease,” in this case the CIED infec-
tion. When prevalence is low the PPV will also be low 
irrespective of the sensitivity and specificity. However, 
the sensitivity and specificity reflect the ability to dis-
criminate between a true positive and a true negative 
result. These characteristics are what is required to 
ensure a test or algorithm is useful for diagnosis [19].

The best performing machine learning model was 
comprised of 48 non-zero ICD and CCI codes, which 
are shown along with their weights in Table  3. Train-
ing with a high regularization strength of 0.1 reduces 
this list to the top 5 most predictive codes in order of 
importance: T827 (Infection and inflammatory reaction 
due to other cardiac and vascular device, implants and 
grafts), Y831 (Surgical operation with implant of artifi-
cial internal device as the cause of abnormal reaction of 
the patient, or of later complication, without mention 
of misadventure at the time of the procedure), 1IS53 
and 1IS53GR (Implantation of internal device, vena 
cava (superior and inferior), percutaneous transluminal 
approach), 1HZ53 (Implantation of an internal device, 
heart). The ROC curve for this model can be visual-
ized in Fig.  3. All trained logistic regression models 

Fig. 1  Plot of AUC metric for SSI classification with bars representing 
95% confidence

Fig. 2  Plot of yearly predicted and confirmed SSI per 100 CIED procedures in Calgary
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Table 3  Non-zero coefficients of ICD and CCI codes in best performing model

ICD or CCI Code Coefficient Description

T827 5.796482 Infection and inflammatory reaction due to other cardiac and vascular devices, implants and grafts

Z4501 4.644129 Encounter for adjustment and management of cardiac pacemaker

K635 3.679172 Polyp of colon

A41 − 3.49229 Other sepsis

Y831 2.765935 Surgical operation with implant of artificial internal device as the cause of abnormal reaction of the patient, or of later compli‑
cation, without mention of misadventure at the time of the procedure

I50 − 2.74143 Heart failure

1HZ53GRFU 2.560292 Implantation of internal device, heart NEC, cardiac resynchronization therapy defibrillator, percutaneous transluminal approach

Z9500 − 2.49368 Presence of cardiac pacemaker

1HZ55 2.484518 Removal of device, heart NEC

I25 2.328524 Chronic ischemic heart disease

Z950 2.304491 Presence of cardiac pacemaker

2NK70BA 1.828463 Inspection, small intestine, using endoscopic per orifice (or via stoma)

T81 1.564795 Complications of procedures, not elsewhere classified

1HD55 1.499127 Removal of device, endocardium

N189 1.459065 Chronic kidney disease, unspecified

T8279 1.440367 Infection and inflammatory reaction due to other and unspecified cardiac and vascular devices, implants and grafts

1IS53 1.412757 Implantation of internal device, vena cava (superior and inferior)

1YY87 − 1.34526 Excision partial, skin of surgically constructed sites

Y832 − 1.21964 Surgical operation with anastomosis, bypass or graft as the cause of abnormal reaction of the patient, or of later complication, 
without mention of misadventure at the time of the procedure

I44 − 1.19129 Atrioventricular and left bundle-branch block

T810 1.143426 Haemorrhage and haematoma complicating a procedure, not elsewhere classified

L022 1.066629 Cutaneous abscess, furuncle and carbuncle of trunk

1IS53GRLF 0.981519 Implantation of internal device, vena cava (superior and inferior), non-tunnelled central venous catheter, percutaneous translu‑
minal approach

1HZ53 0.978848 Implantation of internal device, heart NEC

E119 0.851433 Type 2 diabetes mellitus without complications

T821 − 0.81777 Mechanical complication of cardiac electronic device

1HB55LAJA 0.723747 Removal of device, epicardium, of pacemaker/defibrillator leads and open approach

N39 − 0.5671 Other disorders of urinary system

T813 0.562346 Disruption of wound, not elsewhere classified

I4800 − 0.55427 Paroxysmal atrial fibrillation

1HZ55GPFS 0.449912 Removal of device, heart NEC, cardioverter/defibrillator, percutaneous transluminal approach

2NK70BABJ 0.435566 Inspection, small intestine, using endoscopic per orifice (or via stoma) and colonoscope

1GV52 − 0.35724 Drainage, pleura

1IS53GR 0.328088 Implantation of internal device, vena cava (superior and inferior), percutaneous transluminal approach

R57 − 0.22109 Shock, not elsewhere classified

N17 − 0.21512 Acute kidney failure

1HB55 0.162474 Removal of device, epicardium

1HZ53GRNM 0.149551 Implantation of internal device, heart NEC, single chamber rate responsive pacemaker, percutaneous transluminal approach

B956 0.134421 Staphylococcus aureus as the cause of diseases classified elsewhere

Z515 − 0.12278 Encounter for palliative care

I42 0.110606 Cardiomyopathy

T82 − 0.09459 Complications of cardiac and vascular prosthetic devices, implants and grafts

1HB55LA 0.087532 Removal of device, epicardium, of pacemaker/defibrillator leads

1NM87BA 0.07593 Excision partial, large intestine, endoscopic per orifice approach

1YY87LA − 0.05065 Excision partial, skin of surgically constructed sites, using open (excisional) approach

I48 − 0.04421 Atrial fibrillation and flutter

1GV52HA − 0.00726 Drainage, pleura, using percutaneous (needle) approach
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prioritized T827 as the most important indicator of SSI 
regardless of regularization.

Discussion
We found that between January 1, 2013 and Decem-
ber 31, 2019 there were a total of 3,536 CIED implanta-
tions including generator replacements in Calgary zone. 
Of these, 42 (1.2%) developed a complex SSI. While PM 
insertions were the most common CIED procedure, ICD 
and CRT implantation accounted for a disproportionately 
greater amount of SSIs compared to their implantation 
rate, which is consistent with previous literature [8]. We 
found that administrative data was able to perform very 
well (AUC > 90%) at identifying SSIs post CIED implan-
tation, including both pre-selected ICD/CCI code algo-
rithms and a machine learning approach. Trends in SSIs 
were similar between the traditionally collected data, and 
the best performing administrative data approaches.

Our findings are consistent with previous recent work 
done on validating administrative data for SSIs. Prior 
work done on SSIs following hip and knee replacement 
found that pre-selected ICD code algorithms using 
administrative data were able to achieve sensitivity > 80% 
and specificity close to 100% compared to a gold stand-
ard of SSI collection [20, 21]. Previous studies exploring 
HAIs in general have examined the use of administrative 
data to identify these infections. The results have been 

inconsistent with some studies reporting that admin-
istrative data using ICD codes was of limited benefit in 
identifying HAIs [22]. The previously mentioned system-
atic review [11] which encompassed 57 studies, includ-
ing 34 looking specifically at SSIs, found a wide range of 
sensitivity for using ICD codes to identify HAI ranging 
from 10 to 100% and PPV from 11 to 95% suggesting that 
administrative data was extremely variable at identify-
ing infections [11]. However, it is important to note that 
many of those studies were done using ICD-9 revision 
codes as opposed to the more granular ICD-10 codes [23] 
which likely improve the yield of administrative data at 
identifying infections. Our current findings in corrobora-
tion with the aforementioned recent studies on SSIs do 
suggest that administrative data can be an effective tool 
at identifying SSIs.

There is very little literature available validating the use 
of administrative data for identification of SSIs follow-
ing CIED implantation and comparing the use of pre-
selected ICD/CCI codes and machine learning. A recent 
study by Mull et al. did use a unique method of combin-
ing structured and text data in Veterans Health Facilities 
electronic medical records in order to identify SSIs fol-
lowing CIED implantation [24]. In their validation logis-
tic regression model they were able to achieve an AUC of 
90%. However, this type of work would rely on the avail-
ability of data via an electronic medical record system 
which is not always available at centers. Furthermore, 
the results have limited generalizability as collected data 
fields may vary depending on the electronic medical sys-
tem deployed in a particular healthcare system.

Machine learning is becoming increasingly recog-
nized as an important tool for infection identification 
and control. A review of 52 studies looked at the ability 
of machine learning technique to detect or predict sep-
sis, HAIs (including SSIs) and other infections. However, 
they found that understanding and interpretability of the 
models was rarely addressed [25]. Our study provides a 
clear application and interpretation of a machine learning 
approach for identifying SSIs following CIED implanta-
tion contributing to the literature. Our study also dem-
onstrated that one unique code T827 still had a very high 
AUC (> 90%), and therefore in situations where it may not 
be practical to compute a weighted total of 48 codes this 
could be a simpler alternative. Nevertheless, validation of 
administrative codes to identify CIED infection lays the 
foundation to adapt these algorithms in clinical practice. 
Potential applications include fully automated or semi-
automated surveillance supplemented by traditional IPC 
methods [26]; however, implementation will depend on 
local health system needs, acceptability and resources.

Fig. 3  ROC curve for highest performing machine learning model 
(ICD & CCI Model)
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Our study has several additional strengths. First, our 
results are generalizable as the current study validates 
the use of widely available administrative data—ICD-10 
and CCI codes, for identification of SSIs following CIED 
implantation. In settings that do not use CCI codes for 
procedural reporting, our study provides several algo-
rithms based on ICD-10 codes alone. Second, our work 
compares different methods of more traditional pre-
selected data codes and machine learning approaches to 
logistic regression in order to identify the most optimal 
way to use administrative data for infection detection. 
Several algorithms had comparable test characteristics, 
which provides options for implementation depending 
on the needs and resources of regional health systems. 
For example, the algorithms using only ICD-10 codes 
would be applicable outside Canada, where CCI codes 
are not available. Finally, our study is facilitated by the 
availability of comprehensive IPC surveillance for CIED 
infections s which provides a “gold standard” to use for 
validation of the administrative data.

The limitations of this work must also be considered. 
The number of identified infections was very small given 
that the availability of the gold standard infection data 
was restricted to one city. However, this population-
based study included a cohort of all CIED implantations 
from a large regional health zone comprised of urban, 
community and rural hospitals, which improves the 
external validity of our study. Another limitation was that 
IPC surveillance identified infections within one year 
post procedure. While most infections would occur dur-
ing this timeframe any infections that occurred very late 
(beyond one year) would have been missed.

Conclusions
While traditional IPC surveillance is the current gold 
standard for identifying CIED infections, this compre-
hensive approach requires substantial time and resources, 
which may not be feasible, especially in smaller hospital 
centers. The current study validates a method using admin-
istrative data for accurate identification of complex SSIs 
following CIED implantation. While the best performance 
came from the machine learning models, pre-selected ICD 
codes also performed very well (AUCs > 90%). At centers 
with limited data analytic capacity where machine learn-
ing applications and validation would not be feasible, the 
more traditional approach of pre-selected ICD-10 codes 
could be used to track SSIs and trends over time. Our find-
ings set the foundation for more accessible surveillance of 
CIED infections and identification of outlier infection rates 
compared to historic trends, which can lead to targeted 
interventions for prevention of SSIs.
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