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Abstract

Background: Determining the evolutionary relationships among the major lineages of extant birds has been one
of the biggest challenges in systematic biology. To address this challenge, we assembled or collected the genomes
of 48 avian species spanning most orders of birds, including all Neognathae and two of the five Palaeognathae
orders. We used these genomes to construct a genome-scale avian phylogenetic tree and perform comparative
genomic analyses.

Findings: Here we present the datasets associated with the phylogenomic analyses, which include sequence alignment
files consisting of nucleotides, amino acids, indels, and transposable elements, as well as tree files containing gene trees
and species trees. Inferring an accurate phylogeny required generating: 1) A well annotated data set across species based
on genome synteny; 2) Alignments with unaligned or incorrectly overaligned sequences filtered out; and 3) Diverse data
sets, including genes and their inferred trees, indels, and transposable elements. Our total evidence nucleotide tree (TENT)
data set (consisting of exons, introns, and UCEs) gave what we consider our most reliable species tree when using the
concatenation-based ExaML algorithm or when using statistical binning with the coalescence-based MP-EST algorithm
(which we refer to as MP-EST*). Other data sets, such as the coding sequence of some exons, revealed other properties of
genome evolution, namely convergence.

Conclusions: The Avian Phylogenomics Project is the largest vertebrate phylogenomics project to date that we are
aware of. The sequence, alignment, and tree data are expected to accelerate analyses in phylogenomics and other
related areas.
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Data description
Here we present FASTA files of loci, sequence align-
ments, indels, transposable elements, and Newick files of
gene trees and species trees used in the Avian Phyloge-
nomics Project [1-4]. We also include scripts used to
process the data. The 48 species from which we col-
lected these data span the phylogeny of modern birds,
including representatives of all Neognathae (Neoaves
and Galloanseres) and two of the five Palaeognathae or-
ders (Table 1) [5-7].

Explanation of various data sets used to infer gene and
species trees
Here we describe each locus data set in brief. Additional
details are provided in Jarvis et al. [1].

8295 protein-coding exon gene set
This is an exon-coding sequence data set of 8295 genes
based on synteny-defined orthologs we identified and se-
lected from the assembled genomes of chicken and
zebra finch [8,9]. We required these loci to be present in
at least 42 of the 48 avian species and outgroups, which
allowed for missing data due to incomplete assemblies.
To be included in the dataset, the exons in each genome
assembly had to be 30% or more of the full-length se-
quence of the chicken or zebra finch ortholog. Anno-
tated untranslated regions (UTRs) were trimmed off to
remove non-coding sequence, in order to infer a coding-
only sequence phylogeny. We note that 44 genes were iden-
tified with various problems such as gene annotation issues,
and we removed them in the phylogenetic analyses. How-
ever, we provide them here in the unfiltered alignments.

8295 protein amino acid alignment set
These are alignments of the translated peptide sequences
for the 8295 protein-coding gene data set.

2516 intron gene set
This is an orthologous subset of introns from the 8295
protein-coding genes among 52 species (includes out-
groups). Introns with conserved annotated exon-intron
boundaries between chicken and another species (±1
codon) were chosen. We filtered out introns with
length < 50 bp or intron length ratio > 1.5 between
chicken and another species or another species and
chicken. This filtering resulted in a conservative subset
of introns that could be reliably identified and aligned.

3679 UCE locus set
This is the ultraconserved element (UCE) data set with
1000 bp flanking sequence at the 3′ and 5′ ends. The
UCE dataset was filtered to remove overlap with the
above exon and intron data sets, other exons and introns
in the chicken genome assembly version 3, and
overlapping sequences among the UCEs. The source
UCE sequences used to search the genomes were deter-
mined from sequence capture probes [10-12] aligned to
each avian genome assembly. Unlike the exon and intron
data sets, we required that all 42 avian species and the
alligator outgroup contain the UCEs. We found this re-
quirement to be sufficient, because the central portions
of UCEs are highly conserved across all species.

High and low variance introns and exons
These four data sets represent the 10% subsets of the
8295 exons and their associated introns when available
(i.e. from the same genes) that had the highest and lowest
variance in GC3 (third codon position) content across spe-
cies. To calculate GC3 variance, we first calculated GC3
for each ortholog in each species, and then we used the
correlation coefficient R to calculate variance in GC3 for
each species. Orthologs were ranked by their GC3 variance
and we selected the top and bottom 10% for analyses.

Supergenes
These are the concatenated sets of loci from various parti-
tions of the TENT dataset (exons, introns, and UCEs de-
scribed above), brought together using the statistical binning
approach. The statistical binning approach put together sets
of loci that were deemed “combinable”. Two genes were
considered combinable if their respective gene trees had no
pairs of incompatible branches that had bootstrap support
above a 50% threshold. Alignments of genes in the same bin
were concatenated to form supergenes, but boundaries of
genes were kept so that a gene-partitioned phylogenetic
analysis could be performed on each supergene.

Whole genome alignment
Whole genome alignments were first created by a
LASTZ +MULTIZ alignment [13,14] (http://www.bx.psu.
edu/miller_lab/) across all 48 bird species and outgroups
using individual chromosomes of the chicken genome as
the reference (initial alignment 392,719,329 Mb). They
were filtered for segments with fewer than 42 avian species
(>5 missing bird species) and aberrant sequence align-
ments. The individual remaining segments of the MULTIZ
alignment were realigned with MAFFT. We did not use
SATé +MAFFT due to computational challenges (too
much input/output was required).

Indel dataset
5.7 million insertions and deletions (indels) were scored as
binary characters locus by locus from the same intron,
exon, and UCE alignments as used in the TENT data set
on the principle of simple indel coding using 2Xread
[15,16] and then concatenated. Coding was verified using
GapCoder [17] and by visual inspection of alignments for a
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Table 1 Genomes used in the avian phylogenomics project

Species English name BioProject ID GigaScience

Acanthisitta chloris Rifleman PRJNA212877 http://dx.doi.org/10.5524/101015

Anas platyrhynchos Pekin Duck PRJNA46621 http://dx.doi.org/10.5524/101001

Antrostomus carolinensis Chuck-will’s-widow PRJNA212888 http://dx.doi.org/10.5524/101019

Apaloderma vittatum Bar-tailed Trogon PRJNA212878 http://dx.doi.org/10.5524/101016

Aptenodytes forsteri Emperor Penguin PRJNA235982 http://dx.doi.org/10.5524/100005

Balearica regulorum Grey Crowned-crane PRJNA212879 http://dx.doi.org/10.5524/101017

Buceros rhinoceros Rhinoceros Hornbill PRJNA212887 http://dx.doi.org/10.5524/101018

Calypte anna Anna’s Hummingbird PRJNA212866 http://dx.doi.org/10.5524/101004

Cariama cristata Red-legged Seriema PRJNA212889 http://dx.doi.org/10.5524/101020

Cathartes aura Turkey Vulture PRJNA212890 http://dx.doi.org/10.5524/101021

Chaetura pelagica Chimney Swift PRJNA210808 http://dx.doi.org/10.5524/101005

Charadrius vociferus Killdeer PRJNA212867 http://dx.doi.org/10.5524/101007

Chlamydotis macqueenii MacQueen’s Bustard PRJNA212891 http://dx.doi.org/10.5524/101022

Colius striatus Speckled Mousebird PRJNA212892 http://dx.doi.org/10.5524/101023

Columba livia Pigeon PRJNA167554 http://dx.doi.org/10.5524/100007

Corvus brachyrhynchos American Crow PRJNA212869 http://dx.doi.org/10.5524/101008

Cuculus canorus Common Cuckoo PRJNA212870 http://dx.doi.org/10.5524/101009

Egretta garzetta Little Egret PRJNA232959 http://dx.doi.org/10.5524/101002

Eurypyga helias Sunbittern PRJNA212893 http://dx.doi.org/10.5524/101024

Falco peregrinus Peregrine Falcon PRJNA159791 http://dx.doi.org/10.5524/101006

Fulmarus glacialis Northern Fulmar PRJNA212894 http://dx.doi.org/10.5524/101025

Gallus gallus Chicken PRJNA13342 N.A.

Gavia stellata Red-throated Loon PRJNA212895 http://dx.doi.org/10.5524/101026

Geospiza fortis Medium Ground-finch PRJNA156703 http://dx.doi.org/10.5524/100040

Haliaeetus albicilla White-tailed Eagle PRJNA212896 http://dx.doi.org/10.5524/101027

Haliaeetus leucocephalus Bald Eagle PRJNA237821 http://dx.doi.org/10.5524/101040

Leptosomus discolor Cuckoo-roller PRJNA212897 http://dx.doi.org/10.5524/101028

Manacus vitellinus Golden-collared Manakin PRJNA212872 http://dx.doi.org/10.5524/101010

Meleagris gallopavo Turkey PRJNA42129 N.A.

Melopsittacus undulatus Budgerigar PRJNA72527 http://dx.doi.org/10.5524/100059

Merops nubicus Carmine Bee-eater PRJNA212898 http://dx.doi.org/10.5524/101029

Mesitornis unicolor Brown Mesite PRJNA212899 http://dx.doi.org/10.5524/101030

Nestor notabilis Kea PRJNA212900 http://dx.doi.org/10.5524/101031

Nipponia nippon Crested ibis PRJNA232572 http://dx.doi.org/10.5524/101003

Opisthocomus hoazin Hoatzin PRJNA212873 http://dx.doi.org/10.5524/101011

Pelecanus crispus Dalmatian Pelican PRJNA212901 http://dx.doi.org/10.5524/101032

Phaethon lepturus White-tailed Tropicbird PRJNA212902 http://dx.doi.org/10.5524/101033

Phalacrocorax carbo Great Cormorant PRJNA212903 http://dx.doi.org/10.5524/101034

Phoenicopterus ruber American Flamingo PRJNA212904 http://dx.doi.org/10.5524/101035

Picoides pubescens Downy Woodpecker PRJNA212874 http://dx.doi.org/10.5524/101012

Podiceps cristatus Great Crested Grebe PRJNA212905 http://dx.doi.org/10.5524/101036

Pterocles gutturalis Yellow-throated Sandgrouse PRJNA212906 http://dx.doi.org/10.5524/101037

Pygoscelis adeliae Adelie Penguin PRJNA235983 http://dx.doi.org/10.5524/100006

Struthio camelus Common Ostrich PRJNA212875 http://dx.doi.org/10.5524/101013
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Table 1 Genomes used in the avian phylogenomics project (Continued)

Taeniopygia guttata Zebra Finch PRJNA17289 N.A.

Tauraco erythrolophus Red-crested Turaco PRJNA212908 http://dx.doi.org/10.5524/101038

Tinamus guttatus White-throated Tinamou PRJNA212876 http://dx.doi.org/10.5524/101014

Tyto alba Barn Owl PRJNA212909 http://dx.doi.org/10.5524/101039

Listed are the scientific species name, English name, BioProject ID in the NCBI database for each genome (http://www.ncbi.nlm.nih.gov/bioproject), and GigaScience
deposited genome sequences and raw reads. Full details are in [1,2].
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small subset of data. Intron indels were scored on align-
ments that excluded non-avian outgroups (48 taxa), UCE
indels were scored on alignments that included Alligator
(49 taxa), and exons were scored on alignments that in-
cluded all non-avian outgroups (52 taxa). Individual introns
of the same gene were scored independently to avoid creat-
ing artifactual indels between concatenated intron or whole
genome segments, whereas exons were concatenated as
complete unigenes before scoring. For exons, indels >30 bp
were excluded to avoid scoring missing exons as indels.

Transposable element markers
These are 61 manually curated presence/absence loci of
transposable elements (TEs) present in the Barn Owl
genome that exhibit presence at orthologous positions in
one or more of the other avian species. The TE markers
were identified by eye after a computational screening of
3,671 TguLTR5d retroposon insertions from the Barn
Owl. For each TguLTR5d locus, we conducted BLASTn
searches of TE-flanking sequences (1 kb per flank)
against the remaining avian species and generated multi-
species sequence alignments using MAFFT [18]. Redun-
dant or potentially paralogous loci were excluded from
analysis and the remaining marker candidates were care-
fully inspected using strict standard criteria for assigning
presence/absence character states [19-21].

FASTA files of loci datasets in alignments
We provide the above loci data sets as FASTA files of both
unfiltered and filtered sequence alignments. The alignments
were filtered for aberrant over- and under-aligned se-
quences, and for the presence of the loci in 42 of the 48
avian species. All multiple sequence alignments were per-
formed in two rounds. The first round was used to find
contiguous portions of sequences that we identified as aber-
rant, and the second round was used to realign the filtered
sequences. We used SATé [22,23] combined with either
MAFFT [18] or PRANK [24] alignment algorithms, de-
pending on the limitations of working with large datasets.
Alignments without and with outgroups are made available.

Filtered loci sequence alignments
Exon loci alignments
These are filtered alignments of exons from 8295 genes.
Of these 8295, there were 42 genes that were identified
to have annotation issues and we removed them from
the phylogenetic analyses (the list is provided in the file
FASTA_files_of_loci_datasets/Filtered_sequence_alignments/
8295_Exons/42-exon-genes-removed.txt). Two more genes
were removed because a gene tree could not be esti-
mated for them. The first round of alignment was per-
formed using SATé + PRANK, and the second round
was performed using SATé +MAFFT. Before align-
ment, the nucleotide sequences were converted to
amino acid sequences, and then reverted back to nu-
cleotide sequences afterwards.
8295 Exons

� 42-exon-genes-removed.txt: list of 42 genes removed
due to various issues

� pep2cds-filtered-sate-alignments-noout.tar.gz: DNA
alignments (Amino acid alignments translated to
DNA) without outgroups

� pep2cds-filtered-sate-alignments-original.zip: DNA
alignments (Amino acid alignments translated to
DNA) with outgroups included

8295 Amino Acids

� pep-filtered-sate-alignments-noout.tar.gz: Amino
acid alignments with outgroups removed

� pep-filtered-sate-alignments-original.zip: Amino acid
alignments with outgroups included
Intron loci alignments
These are filtered alignments of introns from 2516
genes. Both rounds of alignment were performed using
SATé +MAFFT, because SATé + PRANK was too com-
putationally expensive on long introns.
2516 Introns

� introns-filtered-sate-alignments-with-and-without-
outgroups.tar.gz: Includes both alignments with and
without outgroups
UCE loci alignments
These are alignments of UCEs and their surrounding
1000 bp from 3769 loci after filtering. Both rounds of
alignment were performed using SATé +MAFFT.

http://dx.doi.org/10.5524/101038
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3769 UCE + 1000 flanking bp

� uce-probes-used.fasta.gz: Probes targeting UCE loci
shared among vertebrate taxa.

� uce-raw-genome-slices-of-probe-matches.tar: Probe +
flank slices around locations matching probes
targeting UCE loci.

� uce-raw-lastz-results-of-probe-matches.tar: LASTZ
results of mapping probes onto genome assemblies.

� uce-assembled-loci-from-probe-matches.tar: UCE loci
assembled from probe + flank slices from each genome.

� uce-filtered-alignments-w-gator.tar.gz: UCE
individual alignments without outgroups

� uce-filtered-alignments-without-gator.tar.gz: UCE
individual alignments with outgroups

Supergenes generated from statistical binning
These are concatenated alignments for each of our 2022
supergene alignments. We note that although super-
genes are concatenated loci, we estimated supergene
trees using partitioned analyses where each gene was put
in a different partition. Thus, we also provide the bound-
aries between genes in text files (these can be directly
used as partition input files to RAxML).

� supergene-alignments.tar.bz2: supergene alignments
with partition files showing genes put in each bin
and their boundaries in the concatenated alignment

Unfiltered loci sequence alignments
These are individual loci alignments of the above data
sets, before filtering.
Amino.Acid.unfiltered

� pep-unfiltered-alignments-original.zip: unfiltered
SATé + Prank alignments used for the filtering step

Exon.c123.unfiltered:

� pep2cds-unfiltered-alignemtns-original.zip:
unfiltered SATé + Prank alignments used for the
filtering step

Intron.unfiltered

� introns-unfiltered-alignments-original.zip: intron SATé
alignments before filtering with outgroups included

� introns-unfiltered-alignments-noout.zip: intron SATé
alignments before filtering with outgroups included

UCE.unfiltered

� uce-unfiltered-alignments-w-gator.tar.gz: UCE
alignments before filtering with alligator outgroup
WGT.unfiltered

� These are uploaded as part of the comparative genomics
paper [2] data note [25], and a link is provided here
https://github.com/gigascience/paper-zhang2014.

FASTA files of concatenated datasets in alignments
We provide FASTA files of concatenated sequence align-
ments of the above filtered loci datasets. These are
concatenated alignments that were used in the ExaML
and RAxML analyses [3].

Concatenated alignments used in ExaML analyses

� Exon.AminoAcid.ExaML.partitioned
� Exon.c123. ExaML.partitioned
� Exon.c123. ExaML.unpartitioned
� Exon.c1.ExaML.unpartitioned
� Exon.c2.ExaML.unpartitioned
� Exon.c12.ExaML.unpartitioned
� Exon.c123-RY.ExaML.unpartitioned
� Exon.c3.ExaML.unpartitioned
� Intron
� TEIT.RAxML
� TENT + c3.ExaML
� TENT + outgroup.ExaML
� TENT.ExaML.100%
� TENT.ExaML.25%
� TENT.ExaML.50%
� TENT.ExaML.75%
� WGT.ExaML

Concatenated alignments used in RAxML analyses
UCE concatenated alignments with and without the alligator

� uce-filtered-alignments-w-gator-concatenated.phylip.gz
� uce-filtered-alignments-without-gator-concatenated.

phylip.gz

Clocklike exon alignment
Concatenated c12 (1st + 2nd codons) DNA sequence
alignments from the 1156 clocklike genes were used for
the dating analyses. These are alignments of the first and
second codon positions of clock-like genes among the
8295 exon orthologs:

� c12.DNA.alignment.1156.clocklike.zip
� c12.DNA.alignment.1156.clocklike.txt
� c12.DNA.alignment.clocklike.readme.txt
� c12.DNA.alignment.clocklike.txt.zip

High and low variance exons and their associated introns

� High variance exons:

https://github.com/gigascience/paper-zhang2014
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Exon.heterogeneous.c123
Exon.heterogenous.c12

� Low variance exons:
Exon.homogeneous.c123.
Exon.homogenous.c12

� High variance introns: These are heterogenous introns

concatIntronNooutMSAlow.fasta.gz

� Low variance introns: These are homogenous introns

concatIntronNooutMSAhigh.fasta.gz

Indel sequence alignments
This is a concatenated alignment of indels from exons, in-
trons, and UCEs. A README file describes the content.

Transposable element markers

� owl_TE_marker_Table.txt

Species and gene tree files
Species trees (Newick format) were generated with ei-
ther RAxML, an improved ExaML version for handling
large alignments, or MP-EST* [4]. We deposit both the
maximum likelihood and bootstrap replicate trees.

Newick files for 32 species trees using different genomic
partitions and methods

� Exon.AminoAcid.ExaML.partitioned.tre
� Exon.c123.ExaML.partitioned.tre
� Exon.c123.ExaML.unpartititoned.tre
� Exon.c123-RY.ExaML.unpartitioned.tre
� Exon.c12.ExaML.partitioned.tre
� Exon.c12.ExaML.unpartitioned.tre
� Exon.c1.ExaML.unpartitioned.tre
� Exon.c2.ExaML.unpartitioned.tre
� Exon.c3.ExaML.unpartitioned.tre
� Exon.RAxML.heterogenous.c123.tre
� Exon.RAxML.heterogenous.c12.tre
� Exon.RAxML.homogenous.c123.tre
� Exon.RAxML.homogenous.c12.tre
� Intron.RAxML.heterogenous.tre.txt
� Intron.RAxML.homogenous.tre.txt
� Intron.RAxML.partitioned.tre
� Intron.RAxML.unpartitioned.tre
� Intron.MP-EST.binned.tre
� Intron.MP-EST.unbinned.tre
� TEIT.RAxML.tre
� TENT + c3.ExaML.tre
� TENT + outgroup.ExaML.tre
� TENT.ExaML.100%.tre
� TENT.ExaML.25%.tre
� TENT.ExaML.50%.tre
� TENT.ExaML.75%.tre
� UCE.RAxML.unpartitioned.tre
� WGT.ExaML.alternative.tre
� WGT.ExaML.best.tree

Newick files of the 11 timetrees (chronograms)

� Chronogram01.TENT.ExAML.tre
� Chronogram02.TENT.ExAML.max865.tre
� Chronogram03.TENT.ExAML.Allig247.tre
� Chronogram04.TENT.ExAML.no-outgroup.tre
� Chronogram05.TENT.ExAML.no-outgroup.max865.tre
� Chronogram06.TENT.MP-EST.tre
� Chronogram07.WGT.ExAML.alternative.tre
� Chronogram08.WGT.ExAML.best.tre
� Chronogram09.Intron.ExAML.unpartitioned.tre
� Chronogram10.UCE.RAxML.tre
� Chronogram11.Exon.c123.RaXML.partitioned.tre

Newick file downloads of gene trees (species abbreviated
with 5-letter names)

� ML (bestML) gene trees
� Bootstrap replicates of ML gene trees
� ML (bestML) supergene trees used in MP-EST analyses
� Bootstrap replicates of supergene trees used in

MP-EST analyses
� Partition files showing which loci make up which

bins for MP-EST analyses

List of scripts used in avian phylogenomics project
We also deposit the key scripts used in this project in
GigaDB, which include:

� Script for filtering amino acid alignments
� Script for filtering nucleotide sequence alignments
� Script for mapping names from 5-letter codes to full

names
� Scripts related to indel analyses

We provide readme files in the script directories de-
scribing the usage of the scripts.

Availability and requirements
Project name: Avian Phylogenomic Project scripts
Project home page: https://github.com/gigascience/
paper-jarvis2014; also see companion paper home
page for related data https://github.com/gigascience/
paper-zhang2014
Operating system: Unix

https://github.com/gigascience/paper-jarvis2014
https://github.com/gigascience/paper-jarvis2014
https://github.com/gigascience/paper-zhang2014
https://github.com/gigascience/paper-zhang2014
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Programming language: R, Perl, python
License: GNU GPL v3.
Any restrictions to use by non-academics: none

Availability of supporting data
Other data files presented in this data note for the
majority of genomes are available in the GigaScience
repository, GigaDB [26] (Table 1), as well as NCBI
(Table 1), ENSEMBL, UCSC, and CoGe databases.
ENSEMBL: http://avianbase.narf.ac.uk/index.html UCSC:
(http://genome.ucsc.edu/cgi-bin/hgGateway; under verte-
brate genomes) CoGe: (https://genomevolution.org/wiki/
index.php/Bird_CoGe).

Additional file

Additional file 1: Full author list.
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