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Abstract 

Background:  The carob tree (Ceratonia siliqua L.) is one of the most iconic tree species of the Mediterranean region, 
with valuable economic, ecological and cultural value. Carob has been exploited around the Mediterranean region 
since antiquity and has been regarded as an important component of natural habitats and traditional agroecosys‑
tems. Several studies have focused on its morphological, biochemical, and genetic diversity. However, less is known 
about the intraspecific variation of seed traits. In this regard, and as an overall objective, we intend to evaluate the 
amplitude and the expression of intraspecific variations of carob seed traits at different ecological scales ranging from 
individual trees to different geographical landscapes. In addition, we investigated how the climate along the study 
area affects the extent of carob seed variability. Using image analysis techniques, we measured seven traits related 
to the size and the shape of 1740 seeds collected from 18 populations of spontaneous C. siliqua distributed along a 
latitudinal transect in Morocco under different bioclimatic conditions.

Results:  The morphometric analysis of carob seed showed the effectiveness of adopted approach to highlight the 
amount and the amplitude of intraspecific variation according to geographic and climatic factors. Seed trait analysis 
revealed high intraspecific variability, explained by differences between and among carob populations and geo‑
graphic zones. Seed area, perimeter, length, and width showed the largest variability between geographic zones. 
However, circularity, aspect ratio, and seed roundness showed higher variability at the tree level. Finally, our results 
show that seed traits vary depending on altitude and climate condition.

Conclusions:  Revealing the amount and the structure of intraspecific traits variability of carob seed provides interest‑
ing insights to understand the mechanisms underlying trees adaptation to various environmental and ecological 
conditions. Therefore, intraspecific variation of seed traits should be integrated into trait-based functional ecology to 
assess plant species responses to environmental changes.
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Introduction
The carob tree (Ceratonia siliqua L., Leguminosae) is 
an evergreen, thermophilous, and dioecious Mediterra-
nean fruit tree (Quézel and Médail 2003), with some rare 
hermaphrodite and monoecious cases (Batlle and Tous 
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1997). The carob is a slow-growing and long-lived tree 
with high resistance to drought and limited resistance to 
extreme cold (Benmahioul et al. 2011; Tous et al. 2013). 
It has been exploited around the Mediterranean region 
since antiquity as a food and forage source (Zohary 2002). 
In fact, several authors have reported that the carob tree 
represents an important component of natural habitats of 
the Mediterranean region and its traditional agroecosys-
tems (Ramón-Laca and Mabberley 2004; Hmimsa 2009; 
Viruel et al. 2019). Previous archeological and historical 
studies (de Candolle 1883; Hillcoat et  al. 1980; Zohary 
2002) suggested an Eastern domestication center of the 
carob tree followed by human-driven dissemination to 
the Western parts of the Mediterranean region. How-
ever, recent phylogeographic evidence suggested a strong 
west–east genetic structuring and the presence of mul-
tiple domestication centers from native populations all 
over the Mediterranean basin. Consequently, four main 
genetic groups of C. siliqua are identified and correspond 
to South Morocco, the Iberian Peninsula, the Central 
Mediterranean, and the Eastern Mediterranean (Baumel 
et al. 2021). In addition, the increasing commercial value 
of carob has triggered more attention to this multipur-
pose tree. Carobs have been broadly grown for their 
fruits (commonly known as pods), which are nowadays 
highly used in the agro-food industry, in which the pulp 
represents the major part and is mainly used to produce 
syrups and powder (Bengoechea et al. 2008; El Batal et al. 
2011; Papaefstathiou et  al. 2018; Brassesco et  al. 2021). 
The seeds are the most valuable components of carob 
pods, accounting for 10 to 20% of their weight (Sidina 
et  al. 2009; Boublenza et  al. 2019). The gum extracted 
from the endosperm of carob seeds is extremely sought 
for pharmaceuticals and cosmetics products (Ayaz et al. 
2007; Stavrou et al. 2018).

Carob tree has been the subject of many studies con-
cerning its ecology and distribution (Tous et  al. 2013; 
Baumel et al. 2018), phylogeny and evolution (Barracosa 
et al. 2008; Viruel et al. 2019), morphology (Sidina et al. 
2009; Naghmouchi et al. 2009), and biochemistry of pods 
and seeds (Haddarah et al. 2014; Boublenza et al. 2017). 
Despite the plethora of research on various aspects of 
carob, this tree needs further attention for its value as a 
genetic resource and its highly appreciated ecologic and 
economic benefits. However, this situation is threatened 
by the current global changes, including climate change 
and the increasing anthropogenic pressures on natural 
habitats. More importantly, the understanding of its seed 
trait variability according to environmental factors could 
bring new insights on carob responses to changes in envi-
ronmental conditions (Saatkamp et al. 2019). Thus, it will 
contribute to the consolidation of trait-based models tak-
ing into account the intraspecific variations (Albert et al. 

2010a, b), which represent a large fraction of the total 
trait variation (Kassout et al. 2019; Kuppler et al. 2020).

Seeds are an essential element determining the suc-
cess of flowering plants in their environment (Venable 
and Browns 1988; Saatkamp et al. 2014). Therefore, seed-
related traits have been recognized as important factors 
in the persistence, dispersal, and expansion of plant spe-
cies (Fricke et al. 2019; Beckman et al. 2020). Additionally, 
it was found that they are associated with germination 
capacity and, therefore, the success of growth and devel-
opment (Gholami et  al. 2009;  Baskin and Baskin 2014; 
Xu et  al. 2019). Hence, seed traits may determine plant 
strategies for adapting and colonizing different habitats 
(Lamberti-Raverot et al. 2019). In this regard, it has been 
shown that variations in seed size, mass, and morphol-
ogy are induced by changes in environmental conditions, 
and therefore, they exhibit different phenotypes as a 
response to their surrounding environments (Pluess et al. 
2005;  Moles and Westoby 2006; Fenner and Thompson 
2005). For instance, seed size increases with increasing 
rainfall or higher temperatures in low latitudes (Molina-
Montenegro et al. 2018; Wu et al. 2018). Yet, on a global 
scale, the interspecific seed size decreases by two or three 
orders of magnitude with latitude, from the equator 
to 60° N (Moles et  al. 2007). In addition, previous find-
ings show that seed size and shape respond to changes 
in climatic variables (De Frenne et  al. 2010; Soper Gor-
den et al. 2016), geographic gradients (Murray et al. 2004; 
Fenollosa et al. 2021), and changes in local factors such as 
water availability and soil pH (Fenner 1992; Tautenhahn 
et  al. 2008). Consequently, variations in seed-related 
traits can occur both within and between species (Moles 
and Westoby 2006; Wiwart et al. 2019), which seems to 
be the result of genetic differences and heterogeneous 
environmental conditions (Westoby et  al. 1992; Fenner 
and Thompson 2005; Moles et al. 2005). Therefore, seed 
morphological traits have been used to understand the 
taxonomic position of plant species (Minuto et al. 2006; 
Bacchetta et al. 2008, 2011; Pinna et al. 2014; Cervantes 
et al. 2019; Martín-Gómez et al. 2019) and to determine 
the impact of environmental factors on their phenotypic 
variability (Grime et  al. 1987; Fenner 1992; Cochrane 
et  al. 2015). Furthermore, they have been used to infer 
domestication events, geographic origin, and varietal 
diversity of crop species (Terral et  al. 2004, 2010, 2012; 
Wallace et al. 2019; Wiwart et al. 2019; Bonhomme et al. 
2021). However, the complexity of the ecological mecha-
nisms underlying the variation in seed traits makes it 
even more difficult to establish general rules of their vari-
ability according to environmental gradients (Fenner and 
Thompson 2005; Saatkamp et  al. 2019). Moreover, even 
though the well-known importance of within-species 
variation in the ecological and evolutionary processes 
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(Laforest-Lapointe et al. 2014), the intraspecific variation 
of seed traits is still a major concern in trait-based ecol-
ogy (Saatkamp et al. 2019; Kuppler et al. 2020).

Despite the increasing number of available publications 
on carob morphological traits (Naghmouchi et  al. 2009; 
Sidina et al. 2009; Boublenza et al. 2017), there is still a 
lack of information on the seed shape and size-related 
traits and their variations according to environmental 
factors. In this context, the aims of our study are to (1) 
characterize the intraspecific variability of seed traits 
along the geographic distribution of the carob tree in 
Morocco; (2) understand how trait variability is struc-
tured between and within carob populations, and (3) 
explore how seed traits vary depending on environmental 
factors, such as climate and altitude.

Materials and methods
Study area and field sampling
Sampling in the field requires no authorization; the study 
populations are located in natural public areas outside 
protected natural areas. The species studied (Ceratonia 
siliqua L.) is not rare or protected.

Eighteen populations of spontaneous carob trees grow-
ing under natural conditions and distributed along a 
latitudinal gradient from the North to South region of 
Morocco were investigated (Additional file  1: Appendix 
S1). The field context includes a wide range of habitats 
and vegetation types across different bioclimatic stages, 
from sub-humid to semi-arid. At each population, five 
healthy and mature trees were randomly selected with a 
distance of at least 20 to 30 m from each other, to capture 
a range of genetic variations. Then from each tree, 1 kg 
of healthy pods was harvested from the four exposures 
(north, south, east, and west), in which 25 pods were ran-
domly taken, and then 20 seeds were randomly selected 
to undergo image analysis. It is noteworthy to men-
tion that instead of five, only three and four trees were 
selected, respectively, from Imi N’Tlit and Ouaouizeght 

populations (Additional file  1: Appendix S1). A total of 
1740 seeds were sampled and measured. The sampling 
procedure allows for a four-level hierarchical model, 
each level representing an organizational scale: (1) ‘the 
geographic zone’ between different geographic sampling 
zone (e.g., North, Center, and South); (2) ‘the population 
level’ between different populations; (3) ‘the tree level’ 
between different trees in the same population, and (4) 
‘the seed level’ between different seeds of the same tree.

The climate of each population was defined using five 
variables: mean annual temperature (MAT, °C), mean 
temperature of the coldest month (MTCM, °C), mean 
temperature of the warmest month (MTWM, °C) and 
the mean annual precipitation (MAP, mm), all extracted 
from the Worldclim database (Fick and Hijmans 2017), 
at a resolution of 30 arc-second (~ 1  km2). Altitude was 
recorded on each population as an environmental vari-
able, using a GPS (Garmin, GPSmap62).

Seed image analysis
Digital images of 20 seeds, collected from each tree, were 
captured with a flatbed scanner (Canon LIDE 120) at 
600  dpi resolution. Image analysis was performed using 
ImageJ (v. 1.53e) program (Rasband 2018). The measure-
ments were performed on each image containing 20 
seeds, which were placed in the scanner without touch-
ing one another (Additional file  2: Fig. S1). To enhance 
the contrast between carob seeds and the background, a 
blue-dark paper background was used. In the first step of 
image segmentation, 8-bit gray images were obtained. A 
thresholding procedure was then adopted to generate 
binary images, which were used for forwarding measure-
ment (Additional file 2: Fig. S1). Seven shape descriptors 
were measured using ImageJ and each one captures a 
ratio describing the variation in seed shape (Cope et  al. 
2012). These measurements are as follows: area (mm2), 
perimeter (mm), length (mm), width (mm), circularity, 
roundness, and aspect ratio (Table  1). Circularity is a 

Table 1  Summary statistics of the corresponding seed traits

One-way ANOVA tests result and coefficient of variation (CV%) per seed trait are given

Values labeled with “***” are statistically significant at P < 0.001; N, number of seeds used in the analysis; S.D., standard deviation; Min, minimum value; Max, maximum 
value

Variable (unit) N Mean S.D. Min–Max CV (%) F18, 1740

Area (mm2) 1740 55.28 10.25 30.32–89.39 18.54 125.67***

Perimeter (mm) 1740 29.31 2.86 21.86–41.21 9.74 129.75***

Width (mm) 1740 7.27 0.79 5.56–10.75 10.91 80.74***

Length (mm) 1740 9.83 1.03 6.05–12.48 10.43 85.42***

Circularity 1740 0.803 0.03 0.686–0.878 3.70 16.64***

Aspect ratio 1740 1.396 0.13 1.045–1.938 9.38 25.15***

Roundness 1740 0.722 0.07 0.516–0.957 9.20 25.01***
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ratio of area to perimeter measured as: 
Cir. = 4π ∗

(

area
perimeter2

)

 , with values increasing from 0.00 
to 1.00 and, respectively, moving from an elongated 
shape to a perfect circle shape. Aspect ratio is measured 
as: AR =

(Major axis)
(Minor axis) , reflecting the overall length-to-

width ratio of a seed. Roundness is measured as: 
Round. = (4∗area)

(π∗(major axis)
2
)
 , of which the value 1 indicates a 

completely round seed.

Statistical analysis
The output of digital image analysis was analyzed using 
R software v. 4.0.5 (R Core Team 2020). Descriptive 
analyses (e.g., mean, standard deviation) were used to 
highlight general trends in carob seed traits. To assess 
the amplitude of trait variability, the coefficient of vari-
ation was calculated as CV (%) = standard deviationtrait/
meantrait × 100 (Sokal and Braumann 1980). To evaluate 
the population’s and geographic zone’s differentiation in 
individual seed traits, a one-way ANOVA was conducted, 
and the mean values were compared using the Tukey 
HSD post hoc tests with a significance level of P = 0.05 
using the multicomp (Hothorn et  al. 2008) and agrico-
lae (Mendiburu and Yaseen 2020) R packages. ANOVA 
assumptions were tested with Shapiro–Wilk and Levene 
tests for normality and homoscedasticity. To determine 
the relationship between the geographic distance and 
seed traits variation among carob populations, Mantel 
tests and 999 permutations were undertaken using the 
Mantel() function in the vegan package (Oksanen et  al. 
2019). Trait distances were calculated as Euclidean dis-
tance using dis() function. Principal component analysis 
(PCA) was performed for inter-population comparisons 
of trait values, using FactoMiner R package (Lê et  al. 
2008). To quantify the trait variance across the stud-
ied hierarchical levels of geographic zones, populations, 
trees, and seeds, a variance decomposition procedure 
was used (Albert et  al. 2010b; Kassout et  al. 2019). The 
lme() function in the nlme package (Pinheiro et al. 2021) 
was used to fit a general linear model using the restricted 
maximum likelihood method (RMEL) across the studied 
levels, and then the varcomp() function in the ape pack-
age (Paradis et al. 2004) was used to extract the variance 
expressed at each level. To examine the relationships 
between seed traits, climate variables, and altitude, linear 
regression models were used and R2 allowed to evaluate 
the explanatory power of the regression models using 
lm() function.

Results
Variability in seed trait depending on geographic zone
Seed traits of Ceratonia siliqua showed substantial vari-
ation across the 18-studied populations (Fig. 1, Table 1). 

Among the seed traits, area is the most variable trait 
with a coefficient of variation of 18.54%, while circular-
ity is the least variable with a CV of 3.70%. Thus, width 
and length show an important variation with a CV of 
10.91% and 10.43%, respectively. Perimeter, aspect ratio, 
and roundness show less variation compared to other 
traits (Table 1). Except for perimeter, CV values vary in 
the same direction as the variance F ratio. For example, 
the area has a high CV value (18.54%) and a high F value 
(Table 1).

Considering the inter-population comparisons, all the 
studied seed traits show significant differences between 
carob populations, with F values ranging from 125.67 
for area to 25.01 for roundness (Table  1). Considering 
the geographic zone, populations located in the North 
region exhibit bigger seeds with high area, perimeter 
length, and width values (Fig.  1). However, populations 
located in the South region exhibited a high aspect ratio 
(AR > 1.39) and are wider compared to seeds from North 
(except Toughza and Afertane populations) and Center 
regions. Thus, seeds from populations located in the 
Center region show higher circularity values compared 
to most populations from the North and South regions 
(Fig. 1). Moreover, roundness values are higher in popu-
lations located in the Center and North regions (except 
for Toughza and Afertane populations) compared to 
populations in the South region (Fig. 1). Taking into con-
sideration mean values per geographic zone, significant 
differences were found between the North, Center, and 
South regions (Additional file 3: Fig. S2; Additional file 4: 
Appendix S2). However, Tukey’s HSD post hoc tests 
show that seeds width in the Center and South regions 
are not statistically different, thus for circularity between 
the North and South regions (Additional file  2: Fig. S1; 
Additional file  4: Appendix S2). Mantel tests show that 
the correlation of geographic with trait’s distances across 
the studied carob populations resulted in significant cor-
relations for all the studied traits, except for circularity 
(Additional file 5: Appendix S3).

Structure and amount of intraspecific variation 
between and within geographic zones
Concerning the estimates of variance percentage across 
the studied hierarchical level (geographic zone, popula-
tion, tree, and seed), area, perimeter, width, and length 
had a higher portion of variance ratio at the geographic 
zone level. They also contained 43 to 56% of the total 
variance between geographic zones (Table 2). Moreover, 
they express a considerable amount of variance at the 
tree level compared to the population level, ranging from 
28% for width to 34% for length (Table  2). Thus, circu-
larity, aspect ratio, and roundness had higher values at 
the tree level, and express 24 to 43% of the total variance 
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Fig. 1  Boxplot of mean values of carob seed traits and their population and geographic provenances. A area, B perimeter, C width, D length, E 
circularity, F aspect ratio, G roundness. Levels connected by the same letter are not statistically different at P < 0.05 in Tukey HSD post hoc tests. 
Dashed lines represent the general mean value of the traits
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(Table 2). A small fraction of the variance was observed 
between seeds of the same tree (e.g., ‘the seed level’) for 
area and perimeter (4.4 and 5.37%, respectively). Gener-
ally, traits expressing the highest value in their percent-
age variances at the highest hierarchical level (geographic 
zone) also exhibited the highest value in F ratio (Table 1). 
Therefore, traits with a low F ratio express a high vari-
ance percentage at the tree hierarchical level (Table 1).

In the PCA analysis of seed traits, the first three princi-
pal components captured 99.83% of the variation in traits 
(Fig.  2, Additional file  6: Appendix S4). Therefore, the 

first two axes explained 60.07 and 38.02% of the total var-
iation, respectively (Fig. 2). The first PCA axis was found 
positively correlated with area, perimeter, width, length, 
and circularity, thus it discriminates between populations 
from North compared to populations from the Center 
and South regions (Fig.  2). The second axis was posi-
tively correlated with the aspect ratio and negatively with 
roundness and circularity, thus it represents a discrimi-
nant axis between populations from the South region 
compared to populations from the Center and most pop-
ulations from the North region (Fig. 2, Additional file 6: 
Appendix S4). The results of PCA analysis supported the 
discrimination of all carob populations based on shape 
descriptors and geographic origin.

Seed trait variations and environmental variables
The variation observed in seed shape traits appears 
to be driven by variation in altitude and climate vari-
ables (Fig.  3). With increasing altitude, area, perimeter, 
width, and length decreased (Fig.  3A), however, they 
show the opposite trends with increasing temperatures 
(MAT and MTCM). Hence, with increasing rainfall 
(MAP), width and roundness increases, contrary to the 
aspect ratio, which seems to decrease with increasing 
MAP and MTWM (Fig. 3C, D). Nonetheless, circularity 

Table 2  Estimated percentage variance across hierarchical levels 
(zone:population:tree:seed) and seed traits

The maximum values of variance per hierarchical level are in bold

Trait Geographic 
zone

Population Tree Seed Residual

Area 56.62 2.20 29.95 4.40 6.83

Perimeter 56.32 2.28 29.72 5.37 6.30

Width 43.49 3.06 28.27 0.00 25.17

Length 47.58 0.94 34.00 0.00 17.48

Circularity 8.13 3.06 24.86 0.00 63.95

Aspect ratio 13.81 1.40 43.29 0.00 41.51

Roundness 13.47 1.87 40.74 0.00 43.92
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Fig. 2  Principal component analysis biplot of axes 1 and 2 (98.08% of variability) of carob seed traits belonging to different geographic zone. L: 
length, W: width, Perim: perimeter, AR: aspect ratio, Cir: circularity, Round: roundness
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shows a positive and significant relationship with altitude 
and mean annual temperature of the warmest month 
(MTWM, Fig.  3E). Roundness seems to be sensitive to 
variation in MTWM, with a positive and significant rela-
tionship (Fig. 3E).

Discussion
The diversity of seed traits reflects a series of plant strate-
gies to deal with stressful environmental conditions (Fen-
ner and Thompson 2005). Therefore, seed-trait functional 
ecology provides a new opening forward to the establish-
ment of an integrative and comprehensive framework in 
trait-based ecology (Saatkamp et  al. 2019). Accordingly, 
taking into consideration intraspecific seed trait variation 
in trait-based studies could greatly consolidate the under-
standing of individual plant species responses to environ-
mental gradients (Saatkamp et  al. 2019) and, therefore, 
the effects of individuals on ecological processes (Kup-
pler et al. 2020). In this study, using non-destructive and 
reputable image analysis approaches, our results revealed 
a substantial intraspecific variation in seed-related traits 
of the remarkable Mediterranean tree Ceratonia siliqua. 
Moreover, seed traits showed a differential extent of vari-
ation across the studied ecological scales, from individual 
trees to geographic zone, suggesting that C. siliqua has 
adopted different functional strategies in response to 

heterogeneous environmental conditions found from 
local to regional scale. Thus, along its distribution area 
in Morocco, our results highlighted the effects of climate 
and altitude on carob seed variability. Our results pro-
vide new evidence of seed trait variability between and 
within carob populations along environmental gradients 
and, therefore, contributes to the ongoing concomitant 
efforts of the seed-trait functional ecology (Saatkamp 
et al. 2019).

Considering the results obtained from analyzing seed 
traits, the significant differences found between carob 
populations and the important magnitude of variation 
(e.g., CV%) strongly suggest a high level of phenotypic 
variability and, therefore, a substantial intraspecific vari-
ation (Albert et  al. 2010a; Kassout et  al. 2019). Overall, 
carob seeds coming from the North region are bigger 
and larger compared to seeds from the Center and South 
regions. Differently, seeds from the South show higher 
aspect ratios and lower roundness values than other 
populations from the North and Center. Thus, circu-
larity values are higher in carob populations from the 
Center region compared to the North and South regions 
(Fig.  1, Table  1). These results confirmed with a clear 
discrimination between carob populations from differ-
ent geographic regions (Fig. 2). The phenotypic variation 
found in seeds suggests that carob populations respond 
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differently to biotic and/or abiotic factors within their 
environments (Sultan 2000). The heterogeneous and 
changing environmental conditions found along the sam-
pling gradient may have affected the expression and the 
magnitude of the observed variation (Vázquez et al. 2017; 
Kassout et  al. 2019). Hence, the significant relationship 
between trait variability and geographic distance (Addi-
tional file  5: Appendix S3) reflects the effects of con-
trasting environmental conditions found among carob 
populations on seed trait variability. Therefore, the pop-
ulation genetic structure of Moroccan carob trees high-
lights clear discrimination between populations from the 
South and those from the North region (Baumel et  al. 
2021), which could also explain the observed pattern of 
seed variation and differentiation. Baumel et  al. (2021) 
identified four main regions as the ancestral area of the 
carob evolutionary history, in which South Morocco and 
North Morocco with the Iberian Peninsula are two major 
areas. These findings, together with the strong climatic 
gradient alongside the North–Center–South transect, are 
likely contributing to shape the variability of carob seeds. 
In addition, the clear discrimination of carob popula-
tions according to their geographic origins is consistent 
with the Mediterranean biogeographic refugia of plants 
described in Morocco (Medail and Diadema 2009), 
which has probably played a crucial role in the radiation 
of plants including thermophilous species such as the 
carob and the olive tree.

Variance partitioning shows a substantial amount of 
intraspecific trait variation (ITV) of carob seeds across 
the studied ecological levels (Table  2). These findings 
contribute to increasing evidence showing that intraspe-
cific trait variation is consistent within species (Fajardo 
and Piper 2011; Kassout et al. 2019; Kuppler et al. 2020) 
and sustain its relevant contribution to the overall trait 
variation (Albert et  al. 2010a; Violle et  al. 2012). The 
observed intraspecific variation can arise from genetic 
variability or phenotypic plasticity affected by differ-
ences in environmental conditions (Violle et  al. 2012). 
The carob tree is a slow-growing species (Batlle and 
Tous 1997) and will experience different sorts of stress-
ful environmental conditions. Thus, it shows substantial 
genetic variability (Viruel et al. 2019) that may contribute 
to the observed seed trait variation. Therefore, the vari-
ation expressed in each of the studied ecological scales 
will have been affected by genotype, phenotypic plas-
ticity (Geber and Griffen 2003; Albert et al. 2010a), and 
potential differences in phenology, land use, and history 
of the study area. However, several studies pointed to the 
predominance of environmental factors in the expression 
of intraspecific variability (Jung et al. 2014; Siefert et al. 
2015; Kassout et al. 2019, 2021; Kuppler et al. 2020). Par-
titioning of the variance in carob seeds shows that area, 

length, width, and perimeter expressed an important 
amount of variation between geographic zones. Differ-
ently, the aspect ratio, roundness, and circularity indicate 
higher variation at the tree level (Table 2). These results 
indicate that intraspecific variations may be observed 
and expressed at multiple levels, from the geographical 
to the individual level (Evangelista et al. 2019). Moreover, 
these findings suggest that some seed traits (e.g., area and 
width) are more variable depending on large-scale varia-
tions in environmental factors, such as climate; however, 
other traits (e.g., aspect ratio) are more sensitive to varia-
tions in local-scale conditions found at the individual tree 
level (Messier et al. 2010). For instance, in the widespread 
wild olive trees in Morocco, Kassout et al. (2019) showed 
that ecophysiological leaf-related traits express important 
variability depending on the large-scale gradient of arid-
ity. In contrast, hydraulic conductance traits (e.g., vessel 
lumen size) were largely controlled by variations in local 
conditions, such as water availability and vegetation type 
(Kassout et al. 2021). Fenollosa et al. (2021) revealed high 
inter-population variability in seed traits of Carpobrotus 
edulis according to both geographic and local conditions. 
Furthermore, within-individual tree variation in seed 
traits may be found to be relevant (Fenner and Thomp-
son 2005), and the spatial and temporal environmental 
changes could have a significant effect on the expression 
of such variability within and among carob populations 
(Herrera 2017). In our study, variation expressed at the 
tree level, which is larger than the variation expressed at 
the population level (Table 2), could be interpreted by the 
importance of genetic diversity found among carob trees 
(Baumel et al. 2018).

Concerning the environment–traits relationship, our 
results demonstrated that variations in altitude and 
climate variables within our sampling area have a sig-
nificant effect on the variation in carob seed traits. We 
found that seed size-related traits (e.g., area, width, and 
length) decreased with increasing altitude and tempera-
tures (MAT, MTCM). In other words, at lower altitudes 
and higher mean annual temperatures, seeds are big-
ger and wider. These findings are in agreement with the 
‘energy constraints” hypothesis (Qi et al. 2014) assuming 
that morphological traits can be negatively correlated 
with elevation, as a result of low seeds development in 
high elevation and low temperature. Thus, previous find-
ings showed that variation in seed traits could be driven 
by geographical or environmental variables (Jesús et  al. 
2017; Mojzes et  al. 2018). On a large geographic scale, 
Soper Gorden et  al. (2016) showed that climate is the 
dominant factor explaining between-species variabil-
ity in seeds size. Likewise, the aridity gradient found in 
our study could play an important role in trait varia-
tion patterns (Kassout et  al. 2021). Indeed, we found 
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that increasing aridity (low MAP and high MTWM) 
has a significant effect on seeds’ shape (e.g., circularity, 
roundness). It is clear that carob seeds produced under 
arid conditions have different phenotypes (e.g., high AR) 
compared to those found under humid conditions. Con-
sequently, the observed variability in seed traits related 
to environmental conditions could be explained by the 
conjoint effect of climate variability, water, and nutrient 
availability (Baraloto and Forget 2007; Souza et al. 2010).

Conclusions
Digital image analysis has made it possible to reveal sub-
stantial intraspecific variations of seed traits in C. sili-
qua along a geographic latitudinal gradient in Morocco. 
The variation in environmental variables could explain 
the observed trends of seed trait variation along with 
the studied ecological scales. Our results show that seed 
traits of carob populations exhibit different phenotypes 
according to their geographic origin. Therefore, the pre-
sent study represents a step forward in the understanding 
of intraspecific variation in seed traits along the envi-
ronmental conditions. This will help in implementing 
more comprehensive and mechanistic trait-based mod-
els to understand plants’ potential distribution and their 
responses to global change.
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