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Abstract 

Background:  Soil erosion is one of the major threats in the Ethiopian highlands. In this study, soil erosion in the 
Muga watershed of the Upper Blue Nile Basin (Abay) under historical and future climate and land use/land cover 
(LULC) change was assessed. Future LULC was predicted based on LULC map of 1985, 2002, and 2017. LULC maps of 
the historical periods were delineated from Landsat images, and future LULC was predicted using the CA–Markov 
chain model. Precipitation for the future period was projected from six regional circulation models. The RUSLE model 
was used to estimate the current and future soil erosion rate in Muga watershed.

Results:  The average annual rate of soil erosion in the study area was increased from about 15 t ha−1 year−1 in 1985 
to 19 t ha−1 year−1 in 2002, and 19.7 t ha−1 year−1 in 2017. Expansion of crop cultivation and loss of vegetation caused 
an increase in soil erosion. Unless proper measure is taken against the LULC changes, the rate of soil loss is expected 
to increase and reach about 20.7 t ha−1 year−1 in 2033. In the 2050s, soil loss is projected to increase by 9.6% and 
11.3% under RCP4.5 and RCP8.5, respectively, compared with the baseline period. Thus, the soil loss rate is expected 
to increase under both scenarios due to the higher erosive power of the future intense rainfall. When both LULC and 
climate changes act together, the mean annual soil loss rate shows a rise of 13.2% and 15.7% in the future under 
RCP4.5 and RCP8.5, respectively, which is due to synergistic effects.

Conclusions:  The results of this study can be useful for formulating proper land use planning and investments to 
mitigate the adverse effect of LULC on soil loss. Furthermore, climate change will exacerbate the existing soil erosion 
problem and would need for vigorous proper conservation policies and investments to mitigate the negative impacts 
of climate change on soil loss.
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Introduction
Soil is an indispensable resource; however, it has been 
affected by human beings since the beginning of agri-
culture (Amundson et  al. 2015). Land use/land cover 
(LULC) and climate are expected to change in the future 
as a result of human activities (Field and Barros 2014) 
and expected to influence soil (Mengistu et  al. 2015; de 

Hipt et  al. 2019; Anache et  al. 2018; Berberoglu et  al. 
2020; Hu and Gao 2020). Soil erosion has become a sig-
nificant threat to terrestrial ecosystems, and it denotes a 
vital environmental risk (Sun et al. 2013).

Blue Nile basin is one of the most diversified and note-
worthy river basins in Ethiopia (Bewket and Teferi 2009; 
Melesse et  al. 2009; Demessie 2015; Yalew et  al. 2016; 
Gelete et al. 2019). Currently, the river basin faces severe 
environmental challenges, such as soil erosion, land deg-
radation, loss of soil fertility, and deforestation (Steen-
huis et  al. 2013; Demessie 2015; Mengistu et  al. 2015; 
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Haregeweyn et al. 2017; Tadesse et al. 2017; Wubie et al. 
2016; Yesuph and Dagnaw 2019).

In Ethiopia, soil erosion has been recognized as a seri-
ous environmental problem (Tamene and Vlek 2008; 
Haregeweyn et al. 2015, 2017). The loss of top fertile soil 
by water erosion creates severe limitations to sustainable 
agricultural land use, which leads to reduced soil produc-
tivity and food insecurity (Hurni et al. 2015).

Soil erosion jeopardizes the sustainability of agricul-
ture and leads to siltation of streams, lakes, dams, and 
reservoirs (Haregeweyn et  al. 2017; Yaekob et  al. 2020) 
and downstream ecosystems impacts (Fenta et al. 2016). 
As a result, it can have serious implications for irrigation 
agriculture and related investments in different parts of 
the country. Thus, soil erosion caused by water is a severe 
problem of the country both in its onsite (e.g., produc-
tivity loss, soil fertility loss) and off-site effects (e.g., silta-
tion) (Demessie 2015; Wagena et al. 2016; Berihun et al. 
2019; Chimdessa et al. 2019; Yaekob et al. 2020; Aneseyee 
et al. 2020; Belihu et al. 2020). The risk varies across dif-
ferent areas, depending on the watershed landscape, local 
climatic conditions, soil characteristics, land use, and 
soil and water conservation and management practices. 
Therefore, it is a potential threat to the national food 
supply.

Numerous studies in Ethiopia (e.g., Mengistu et  al. 
2015; Taye et  al. 2018; Tadesse et  al. 2017; Haregeweyn 
et al. 2017; Gelagay and Minale 2016; Molla and Sisheber 
2017; Hassen and Assen 2018; Miheretu and Yimer 2018; 
Anache et al. 2018; Ebabu et al. 2019; Berihun et al. 2019; 
Kidane et  al. 2019; Aneseyee et  al. 2020) reported that 
changes in climate and LULC could significantly affect 
the intensity of soil erosion at various spatiotemporal 
scales. For instance, Mengistu et al. (2015), reported the 
influence of temperature and precipitation on biomass 
production and soil organic carbon, thereby increasing 
soil erosion in the Abay river basin. An increase in pre-
cipitation levels and intensity will lead to intensified ero-
sion (Field and Barros 2014).

Similarly, studies on the soil erosion caused by climate 
and LULC change were conducted in the Upper Blue 
Nile river basin of Ethiopia (e.g., Steenhuis et  al. 2013; 
Demessie 2015; Mengistu et al. 2015; Wubie et al. 2016; 
Haregeweyn et  al. 2017; Moges and Bhat 2017; Tadesse 
et  al. 2017; Aneseyee et  al. 2020). For instance, a study 
by Moges and Bhat (2017) in Rib watershed, and Tadesse 
et  al. (2017) in Yezat watershed of the Upper Blue Nile 
basin, Ethiopia, showed that change in LULC of an area 
led to soil erosion. Mengistu et  al. (2015) in the Abay 
river basin reported that climate change leads to soil ero-
sion. These indicate that LULC change and changing pre-
cipitation patterns have an impact on soil erosion. Thus, 
to better understand the effects of LULC and climate 

change on soil erosion at a watershed level, a holistic and 
multidisciplinary approach is required. Modeling future 
soil loss rates due to climate and LULC change is an 
essential step (Mullan et al. 2012).

The effects of change in LULC and climate on soil 
erosion can be investigated by associating field meas-
urements of soil erosion variables with different LULC 
classes and climate data (Adugna and Abegaz 2016; 
Ebabu et al. 2019). However, measurement of soil erosion 
is often not possible over the required temporal and spa-
tial scale. Thus, field studies have to be complemented by 
soil erosion model simulation (Giri et al. 2015; Woznicki 
et al. 2016). Furthermore, results from soil erosion mod-
els have been used to predict impacts of climate and 
LULC change on soil erosion and as a scientific basis for 
soil erosion control and management at different scales 
(Addis and Klik 2015; Serpa et  al. 2015; Woldesenbet 
et al. 2018; Anache et al. 2018).

Some researchers have developed and used different 
LULC change models depending on their study objec-
tives and backgrounds. For instance, Araya and Cabral 
(2010) in Setúbal and Sesimbra, Portugal; de Oliveira 
Barros et  al. (2018) in Montes Claros, Brazil; Omrani 
et  al. (2017) in Luxembourg; Arsanjani et  al. (2013) in 
Tehran; Xie et  al. (2007) in China. Currently, the most 
widely used models in LULC change monitoring and pre-
diction in Ethiopia are cellular and Markov chain mod-
els in Ethiopia (e.g., Gidey et al. 2017; Gashaw et al. 2018; 
Hishe et  al. 2020; Kura and Beyene 2020; Fitawok et  al. 
2020; Mohamed and Worku 2020), and these models are 
verified in the Ethiopian context. Accordingly, the incor-
poration of GIS, CA–Markov model, climate model, and 
soil erosion models have been used to assess the effects of 
change in LULC and climate on soil erosion.

Studies including Maeda et  al. (2010) in Kenya; Plan-
goen et  al. (2013) in Thailand; Routschek et  al. (2014) 
in Saxony, German; Ferreira et al. (2015) in the south of 
Portugal; Mengistu et  al. (2015) in the Upper Blue Nile 
basin of Ethiopia; and Perović et  al. (2019) in Vranjska 
Valley of Serbia were conducted to evaluate the potential 
impacts of climate change on soil erosion using soil ero-
sion models with different scenarios. On the other hand, 
Sharma et  al. (2011) in India; Plangoen et  al. (2013) in 
Thailand; Ferreira et  al. (2015) in the south of Portugal; 
de Hipt et al. (2019) in Burkina Faso, applied soil erosion 
model to simulate the potential effects of LULC change 
on soil erosion. The combined and separate effect of the 
current LULC and climate change on soil erosion were 
evaluated by several studies (e.g., Ferreira et  al. 2015; 
Mengistu et  al. 2015; de Hipt et  al. 2019; Perović et  al. 
2019). Most of the studies focused on the separate effects 
of climate and LULC changes on soil erosion in differ-
ent parts of the world. Although some researches were 
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conducted on the combined and individual impacts of 
climate and land-use changes on soil erosion, the con-
text is not yet well understood in the Upper Blue Nile 
basin. In addition, the environmental impact of future 
climate and LULC are still contentious issues and unre-
solved problems and require further research (Simane 
et al. 2013; Demessie 2015). Hence, predicting the impact 
of future climate and LULC changes on soil erosion is 
very important to design appropriate land use planning 
and adaptation and mitigation measures under local and 
regional scales.

The purpose of this study was to analyze the impact 
of LULC and climate change on soil erosion in the 
Muga watershed. This study would help to plan and use 
appropriate land use planning, soil and water conserva-
tion practices, decision making and policy development, 
thereby reduce soil erosion in the study area and water-
sheds with similar settings. Moreover, applying the CA–
Markov chain model, climate model, and RUSLE model 

at the watershed level is the main contribution of this 
study in Ethiopia.

Materials and methods
Study area
This study was carried out at Muga watershed, located 
within 10° 05ʹ 00˝ N to 10° 43ʹ 48˝ N and 37° 49ʹ 12ʺ E 
to 38° 8ʹ 56ʺ E, in the Upper Blue Nile basin, Ethiopia 
(Fig.  1). The area coverage is about 423  km2 from the 
top of mount Choke to the watershed’s gauging sta-
tion. The watershed’s altitude varies from slightly over 
2384 m above mean sea level (a.s.l) in the southern part 
to 4088 m a.s.l. The study site has two distinctive seasons: 
a wet season from May to October and a dry season that 
extends from November to April.

Based on the records from 32  years (1985–2017) at 
nearby meteorological stations, the annual rainfall depth 
ranges from 1020.7 to 1165.52  mm. More than 85% of 
the rains fall during the wet season. The rainfall vari-
ability has significant impacts on agricultural production, 

Fig. 1  Map of the study area
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hydrological processes, and soil erosion (Simane et  al. 
2013). The mean monthly minimum and the maximum 
temperature are about 9.3  °C and 23.7  °C, respectively 
(Belay and Mengistu 2019).

The recent LULC map of the study area published in 
Belay and Mengistu (2019) shows that 74% of the water-
shed is covered by cultivated land, followed by grass-
land (11%) and shrub-bushland (9.8%), while forest land 
(2.3%) and urban areas (2.3%) covered a very small pro-
portion of the study area. The cultivated land and urban 
areas showed an increasing trend between 1985 and 2017 
(Belay and Mengistu 2019). Forest and shrub-bushlands 
are the most dominant in the upper escarpment of the 
watershed, while most of the cultivable lands and very 
small urban areas are found in the lower escarpment of 
the watershed.

According to the data obtained from the GIS depart-
ment of the Ethiopian Ministry of Water and Energy, the 
geology of the study area consists of tertiary extrusive 
and intrusive deposits. The soil of the watershed is domi-
nated by eutric vertisols (50.2%) and eutric cambisols 
(26.5%), followed by Haplic Luvisols (17.3%) and Haplic 
Nitisols (6%) (BCEOM 1998). Eutric Vertisols predomi-
nantly occurs in the lower parts of the study watershed.

Data sources and processing
The modeling of changing soil erosion requires past, pre-
sent, and future climate and land use data as model input. 
Thus, LULC and climate change scenarios were simu-
lated. The RUSLE model was used for this study to obtain 
the scenarios of soil erosion. The main components of 
the data set involved in the study were described in detail 
below.

Image processing and preparation of spatial drivers
To assess the impacts of LULC changes on soil erosion, 
LULC maps were prepared. Landsat Thematic Map-
per (TM) of 1985, Landsat Enhanced Thematic Mapper 
Plus (ETM+) of 2002, and Landsat Operational Land-
sat Imageries (OLI) of 2017 with path 169 and row 053 
images were among the spatial data sets used and pro-
cessed to generate LULC maps. For this study, the acqui-
sition years were selected based on a 15-year interval to 
easily visualize changes in spatiotemporal LULC patterns.

Furthermore, Landsat images were selected for years 
that align with anticipated significant LULC changes in 
the study area. Accordingly, the 1985 image is indicative 
of conditions after the collectivization of land resources 
with the promotion of Agricultural Producer Coopera-
tives in Ethiopia including the study watershed during 
the Dergue regime (Crewett et  al. 2008). The year 2002 
represents the period aftermath of the Dergue regime, 
and the year was selected to evaluate the redistribution of 

land to farmers. Finally, to include recent changes and the 
study area’s current biophysical status, the 2017 Land-
sat image was used. However, due to Landsat images’ 
accessibility and quality from USGS archives for the 
study watershed, a certain discrepancy in the time inter-
val (+ 2  year) was taken into account. The images were 
downloaded from the USGS website (http://​earth​explo​
rer.​usgs.​gov/) (Table 1).

The satellite imageries used in the study area were 
cloud-free and taken at the same season. The satel-
lite images have gone through several pre-processing 
stages, such as layer stacking, mosaic, geometric correc-
tion, radiometric enhancement, and sub-setting using 
the Earth Resource Data Analysis System (ERDAS) 
imagine®2015 and ArcGIS®10.4 software. All the satel-
lite data sets were projected to the Universal Transverse 
Mercator map projection system zone 37N and datum of 
World Geodetic System 84 (WGS84), which ensure con-
sistency between data sets during analysis.

In this study, unsupervised and supervised image clas-
sification techniques were used to classify the Landsat 
images used in the study. The unsupervised classifica-
tion was initially applied prior to the field survey using 
the visual interpretation method to differentiate various 
land use/cover types in the studied watershed. Unsu-
pervised classifications were carried out using Iterative 
Self-Organizing Data Analysis (ISODATA) clustering 
algorithm. The LULC maps of the study area were pro-
duced using the pixel-based supervised image clas-
sification with the maximum likelihood classification 
algorithm (Congalton and Green 2019). Supervised image 
classification is a recommended classification approach 
to achieve good results when adequate training data are 
available for the study area (Lillesand et  al. 2015; Con-
galton and Green 2019). First, about five LULC classes 
(grassland, cultivated land, shrub-bush land, forest, and 
urban area) were identified from the images. Then, about 
300 samples (60 samples per LULC class) were randomly 
selected from five LULC types as training points, whereas 
300 samples were used for accuracy assessment based on 
Lillesand et al. (2015) and Congalton and Green (2019). 
Besides, high-resolution data (SPOT images and Google 
Earth), topographic maps, and data from field observa-
tions and knowledge of the elderly were used.

Table 1  List of time series Landsat data used for the study

Satellite and 
sensor

Path/Row Acquisition 
date

Resolution Sources

Landsat 5 TM 169/53 15 April 1985 30 × 30 USGS

Landsat 7 ETM+ 169/53 08 March 2002 30 × 30 USGS

Landsat 8 (OLI) 169/53 02 January 2017 30 × 30 USGS

http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
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The accuracy assessments of all the classified images 
were conducted using ground control points collected 
from: (1) a topographic map, (2) Woody Biomass Inven-
tory and Strategic Planning Project data, (3) knowledge 
of elderly people, field data, and (4) Google Earth data 
sets on ERDAS IMAGINE environment. Ground control 
points were collected from each LULC type and used as 
a reference for the accuracy assessment. The classifica-
tion’s overall accuracy for the years 1985, 2002, and 2017 
is 85.7%, 87.9%, and 89%, respectively, with kappa values 
of 0.82, 0.86, and 0.86. The accuracy statistics and kappa 
coefficient values are well above the recommended values 
(Congalton and Green 2019).

In this study, the CA–Markov chain model was used to 
simulate and predict the future land cover map of 2033. 
Different sets of spatial and non-spatial data were used 
as input to the CA–Markov model. The simulation and 
prediction processes were performed using LULC maps 
of 1985, 2002, and 2017, roads and towns, distance to a 
river, slope, and elevation maps. The LULC maps of 1985, 
2002, and 2017 were mainly used to generate transitional 
matrix using the Markov chain process. Besides maps 
of a slope, road, settlement, and elevations maps were 
used to create transitional potential maps. The data sets 
were used in combination to predict future change in 
the LULC using the CA–Markov chain model. Potential 
land-use change drivers were identified through litera-
ture reviews (Bewket and Teferi 2009; Teferi et al. 2013; 
Gidey et al. 2017; Hishe et al. 2020) and field interviews 
with farmers, local farming experts, regional land bureau 
officials, and through spatial correlations.

A digital elevation model (DEM) of 30  m resolution 
from the Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER) was used to prepare the 
watershed’s slope, elevation, and stream network of the 
study watershed. The watershed road network was also 
downloaded from OpenStreetMap (https://​www.​opens​
treet​map.​org/), and its geometric consistency was veri-
fied in QGIS software. The population data set for the 
study area was obtained from the Ethiopian Central Sta-
tistical Agency (CSA). Consequently, these data sets were 
produced using ArcGIS software and then exported to 
IDRISI Selva to run the potential transition maps. The 
list and sources of data sets used to analyze future land 
use map and RUSLE model in the Muga watershed is pre-
sented in Table 2.

Climate data
Two climate data sets: baseline and modeled climate 
data, were used in this study. The baseline climate data 
were used to estimate the baseline soil loss and validate 
the predicted climate scenarios. The rainfall data were 
compiled from seven meteorological stations operating 

within and around the study watershed from 1985 to 
2017; we obtained the data from the National Metrologi-
cal Agency (EMA) of Ethiopia.

Climate models were used to quantify the relative 
change in the current and future climate, often used as 
an input to the soil erosion models. The present study 
used six regional climate models (RCMs) with the driv-
ing model ICHEC-EC-EARTH under CORDEX (Coordi-
nated Regional Climate Downscaling Experiment)-Africa 
(Fick and Hijmans 2017; Shamir et  al. 2015). COR-
DEX-Africa provides projected climate outputs at a 
relatively higher spatial resolution (50  km). The models 
were: HadGEM2-ES, CSIRO-Mk3.6.0, GFDL-ESM2M, 
CanESM2, MIROC, and NorESM1-M, because these 
models are appropriate based on earlier research con-
ducted in other parts of Ethiopia (Alemseged and Tom 
2015; Teklesadik et al. 2017; Worku et al. 2018).

The representative concentration pathways (RCPs) sce-
narios RCP4.5 and RCP8.5 were considered for this study 
to drive the RUSLE model (Alemseged and Tom 2015). 
Policymakers usually focus on events occurring in the 
2050s compared to the events in the far future (Weber 
2006). Thus, the authors select climate change data from 
2018 to 2050 rather than the end of the century.

The CORDEX grid points were extracted using MAT-
LAB software. It is recognized that climate model out-
put data contain systematic errors and cannot be used 
immediately in soil and hydrological simulations (Chris-
tensen et  al. 2008; Teutschbein and Seibert 2010, 2012; 
Chen et al. 2016). Thus, the RCM climate data outputs in 
CORDEX-Africa under emission scenarios RCP4.5 and 
RCP8.5 were bias-corrected for this study.

Methods
Land use land cover prediction using CA–Markov chain 
model
Several LULC change models were developed (e.g., Veld-
kamp and Lambin 2001; Parker et al. 2003; Verburg et al. 
2004; Koomen and Stillwell 2007). Some of the most 
widely used LULC models include statistical models 
(regression) (Yalew et al. 2016), Cellular automata (CA), 
and Markov chains (Araya and Cabral 2010; Han et  al. 
2015; de Oliveira Barros et al. 2018; Munthali et al. 2020), 

Table 2  Data set sources and types

No Name of data Sources

1 Digital Elevation Model (DEM) (30 m) USGS

2 Soil data of the watershed MoWIE

3 Daily precipitation data from 1985 to 2017 National mete-
orological agency of 
Ethiopia

4 Road OpenStreetMap

https://www.openstreetmap.org/
https://www.openstreetmap.org/
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evolutionary models (neural networks) (Omrani et  al. 
2017), and multi-agent-based models (Xie et  al. 2007; 
Arsanjani et al. 2013). These approaches are often com-
bined to create an integrated model that determines the 
probabilities of LULC changes. Frequently, the choice of 
models depends on the study’s objective and the level of 
complexity required (Nainggolan et al. 2012).

The Markov Chain model of LULC change has been 
widely used to predict LU changes (Sang et al. 2011) and 
usually integrated with a cellular automata (CA) model 
with an agent-based model to express the human interac-
tion on the landscape (Xie et al. 2007; Ralha et al. 2013). 
This is due to its reliability and compatibility with many 
geospatial technologies (Halmy et  al. 2015). The reli-
ability and compatibilities of the CA and Markov chain 
model was checked in the Ethiopian context by Gidey 
et al. (2017), Gashaw et al. (2018) and Hishe et al. (2020). 
Thus, this study used the CA–Markov chain model inte-
grated with the multi-criteria evaluation to predict LULC 
of 2033 in the Muga watershed. The Markov chain model 
provides the probability and extent of LULC change, 
whereas the CA model operates on neighborhood inter-
actions and spatial distribution.

The complex interrelationships between the physi-
cal and human factors lead to the conversion from one 
land use type to another (Eastman 2012). Thus, with the 
CA–Markov model, a multi-criteria evaluation (MCE) 
technique was used to support land allocation decision 
process using different land use criteria (Al-Sharif and 
Pradhan 2014; Deng et al. 2015). The MCE is useful for 
studying the land use suitability for the possible conver-
sion of certain land use to another, revealing each crite-
rion’s influence and importance (Yalew et al. 2016; Gidey 
et al. 2017).

Preparation of suitability maps
LULC can be driven by a multitude of socio-economic 
and biophysical factors. The future change in LULC can 
be determined by the inherent change and external fac-
tors/spatial variables, such as the proximity to towns, 
distance from a river and city, elevation, slope, and areas 
suitable for each change in each class. A slope was con-
sidered as a constraint for cultivation and urban areas 
because steep slopes prohibit both cultivation and urban 
expansion.

An integrated evaluation procedure was used to gener-
ate potential transition maps based on biophysical and 
socioeconomic indicators. In this regard, more than five 
biophysical and socio-economic variables including ele-
vation, slope, distance to towns, and distance to roads 
were considered (Additional file 1: Fig. S2). The selected 
transition potential maps are in different units. Therefore, 
the maps were converted into a uniform measurement 

scale through standardization techniques for weighted 
overlay analysis (WOA) (Reshmidevi et  al. 2009; Zabihi 
et  al. 2015). Once all the maps were standardized, the 
weight for each criterion was calculated using the ana-
lytical hierarchy process (AHP) (Yalew et al. 2016; Gidey 
et al. 2017).

Consequently, specific weights were assigned to each 
factor (Hishe et  al. 2020) and used to compute suitable 
maps in IDRISI software. The relative weights for a group 
of factors were defined based on the authors’ knowledge 
and experience about the studied landscape, a review 
of the scientific literature, and the farmers’ and local 
experts’ opinions. The highest weight value is the most 
influential factor, while the lowest is a less important 
LULC change factor. After determining each criterion 
layer’s relative importance through a pairwise compari-
son matrix, these values were entered using IDRISI soft-
ware to produce associated weights and consistency ratio 
value.

Table  3 shows inputs to the pairwise comparison for 
the AHP analysis to determine weights. The weights 
produced from the AHP procedure using the inputs 
in Table 3 are between 0 and 1, where 0 denotes the no 
probability and 1 the high probability. The consistency 
ratio of the pairwise comparisons for the computation of 
criteria weights is shown in Table 3, which is an accept-
able range (Eastman 2012). Consequently, a weighted 
overlay analysis was performed using IDRISI software.

As shown in Table 4, the 1985–2002 transition matrix 
and the 2002 transition potential maps were integrated 
to simulate LULC map of 2017. The data were integrated 
using the CA model to simulate LULC of 2017. The 
same procedure was used to predict the LULC of 2033. 
The transition matrix from 2002 to 2017 and transition 
potential map of 2017 were integrated to run the predic-
tion for 2033.

Validation of LULC prediction model
Model calibration and validation are essential in predict-
ing future decadal changes, where no data sets are avail-
able for predicted data accuracy (Srivastava et  al. 2014; 
Singh et al. 2015). To validate the model, the actual LULC 
map of the year 2017 was compared with the 2017 map 
simulated by CA–Markov and based on the kappa sta-
tistics and a comparison of each simulated LULC class 
with the real class has been used. According to the CA–
Markov model’s required preparation, a calibration map 
for 2017 was prepared. The number of repetitions in the 
model was set equal to the number of years between 
the reference map and the map predicted by the model 
(15 years). The actual 2017 LULC map was then used as a 
reference map to compare with the 2017 simulated LULC 
map results. Accordingly, the analysis result has shown 
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consistency between the reference and the simulated 
LULC maps of 2017.

Furthermore, an attempt was also made to examine its 
accuracy using the kappa coefficient. The Kappa varia-
tions used to validate the CA–Markov model for LULC 
change predictions in this study were computing the 
kappa coefficient using a validated tool in IDRIS Selva 
software. Kappa statistics are used for testing accuracy 
are the traditional Kappa (Kstandard) or Kappa for no infor-
mation/ability (Kno), Kappa for location (Klocation), and 
quantity of correct cells (Kappa for quantity). Kappa vari-
ations have been strongly recommended and widely used 
to validate LULC change predictions (Pontius Jr 2002; 
Singh et al. 2015).

The Kappa coefficient for quality and location was 
computed. The statistics show that Kno is 0.8803, Klocation 
is 0.8270, and Kstandard is 0.8141 (overall). The K val-
ues are greater than 0.8, showing the model accuracy to 
predict future LULC change. In other words, the kappa 
coefficient result indicates the model’s ability to specify 
grid cell level location of future change is nearly perfect 
(Mondal et al. 2016). The result indicates that K values of 
0.80 and above are considered strong and reasonable to 
make plausible future projections (Yang et al. 2014; Gidey 
et  al. 2017). The LULC scenario was prepared for 2033, 
accounting for the implications of future land use on soil 
erosion due to the variation in C factor. Figure 2 shows 

Table 3  Factors and constraints considered and their weights for predicting LULC conditions in Muga watershed

Land use types Factors Factor weight Consistency Constraint 
and classes 
considered

Cultivated land Suitable areas for conversion to cultivation 0.420 0.04 Slope (> 15 to 58°)

Proximity to developed land 0.269

Distance to rivers 0.109

Elevation 0.201

Shrub-bushland Suitable areas for conversion to shrub-bushland 0.328 0.01 Slope (None)

Proximate to developed land 0.396

Elevation 0.206

Grassland Suitable areas for conversion to grassland 0.110 0.03 Slope (None)

Proximate to developed land 0.582

Elevation 0.309

Forest Suitable areas for conversion to forest 0.425 0.04 Slope (None)

Proximate to developed land 0.213

Elevation 0.080

Urban area Suitable areas for conversion to urban 0.160 0.01 Slope (> 13 to 58°)

Proximate to developed land 0.166

Distance to urban 0.417

Distance to roads 0.160

Elevation 0.090

Table 4  Markov chain transition probability matrix of land use land cover types for the period 2002–2017

The bold number indicates the total area of each LULC class that remained unchanged

LULC Probability of changing to 2017

Built-up Shrub-bushland Forest Cultivated land Grassland

Probability of changing from 2002

 Bulit-up 0.09 0.00 0.00 0.78 0.13

 Shrub-bushland 0.00 0.57 0.08 0.33 0.02

 Forest 0.00 0.43 0.54 0.03 0.00

 Cultivated 0.02 0.01 0.00 0.83 0.13

 Grassland 0.00 0.28 0.00 0.41 0.30
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the process for simulating the future LULC using CA–
Markov chain model.

Climate projection and bias correction
Climate projection  Climate scenarios have served as an 
essential tool in climate change research in the past and 
will likely continue to do so in the future. There are four 
greenhouse gas scenarios recently published in the fifth 
IPCC Assessment Report (AR5), called the representative 
concentration pathways named based on their possible 
range of radiative forcing values, such as (RCPs) 2.5, 4.5, 
6, and 8.5. In the present study, we selected two climate 
change scenario data (Representative Concentration Path-
ways: RCP4.5 and RCP8.5) that cover the entire range of 
radiative forcing from the newly available Coupled Model 
Intercomparison Project Phase 5 (CMIP5). The output of 
the RCM ensemble of the Coordinated Regional Climate 
Downscaling Experiment (CORDEX) for African domain 
projection was used as an input to the hydrological model.

RCP4.5 scenario is medium-term emission scenario at 
the stabilization level of about 4.5 w/m2 (about 650 ppm 
CO2 equivalent) not exceeding this value by the year 2100 

(Meinshausen et al. 2011; van Vuuren et al. 2011), suppos-
ing that all countries around the world undertake emis-
sion mitigation policies (Thomson et  al. 2011). RCP8.5 
scenario is the worst-case scenario in terms of green-
house gas emissions, with no clear climate policy. The 
RCP8.5 scenario shows a radiative forcing pathway lead-
ing to 8.5 w/m2 (greater than 1370 ppm CO2-equivalent) 
in 2100 (van Vuuren et  al. 2011). Climate scenario data 
sets consist of a historical run (1976–2005) and pro-
jection (2018–2050) with a spatial resolution of 0.44° 
based on the emission scenarios of RCP4.5 and RCP8.5. 
In this study, climate data up to 2050 (2018–2050) was 
used rather than considering the end of the century, as 
small and large dams (with a lifespan of 30 to 50 years) 
in the upper Blue Nile basin of Ethiopia, including the 
study watershed, has been studied, designed, and started 
to implement for irrigation and hydropower purposes, 
which will be affected by a changing climate in the short 
period of time; and policymakers often focus on what is 
happening sooner than what is happening in the distant 
future (Weber 2006).

Fig. 2  Schematic diagram for simulating the future LULC using CA–Markov chain model
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The CMIP5 data for two specific periods (historical and 
future periods) were downloaded from https://​esgf-​node.​
llnl.​gov/​proje​cts/​esgf-​llnl/. The grid points of the regional 
climate scenarios (daily precipitation and maximum and 
minimum air temperature data) were extracted using 
MATLAB software. The software was also used to con-
vert NetCDF files into text format, taking into account 
the spatial references of a particular weather station. 
Seven stations were used to extract the downloaded data: 
Bichena, Debre Work, Felege Birhan, Kuy, Rob Gebeya, 
Yetemn, and Yetnora. The models were: HadGEM2-ES, 
CSIRO-Mk3.6.0, GFDL-ESM2M, CanESM2, MIROC, 
and NorESM1-M, as these models are appropriate based 
on earlier research conducted in other parts of Ethiopia 
(Alemseged and Tom 2015; Teklesadik et al. 2017; Worku 
et al. 2018) (Table 5). In this study, the six models’ ensem-
ble mean was computed and used as input for the RUSLE 
model.

Bias correction of regional climate models simulation
The relatively low spatial resolution of GCMs and RCMs 
outputs systematic errors, such as estimation of climate 
variables (over or under), inaccurate estimates of sea-
sonal variations of precipitation (Christensen et al. 2008), 
and more wet-less days compared to observed data (Ines 
and Hansen 2006). As a result, the data from RCPs were 
bias-corrected to prevent over-or-under estimation and 
to ensure a realistic representation of the future climate. 
Because climate model output cannot be used as direct 
input data for hydrological simulations (Christensen et al. 
2008; Teutschbein and Seibert 2010, 2012; Chen et  al. 
2016), the model performance in simulating the observed 
precipitation and maximum and minimum temperature 
were assessed, and those with unacceptable time series-
based metrics results were bias-corrected. The historical 
RCMs and observed data were used for bias correction. 
Therefore, RCM outputs (precipitation) are typically 
adjusted to eliminate any bias (Maraun 2012; Teutsch-
bein and Seibert 2012).

Several bias correction techniques were developed to 
correct the bias, ranging from very simple to more com-
plex methods, such as quantile mapping (QM), general 

quantile mapping (GQM), power transformation (PT), 
and linear scaling (LS) (Teutschbein and Seibert 2012). 
They can be classified according to the degree of their 
complexity and simpler methods, such as scaling factors, 
and more sophisticated techniques, such as probability 
mapping. Although the RCM climate variables’ bias cor-
rection significantly improves hydrological modeling, 
there is a major drawback. All bias correction meth-
ods are based on the assumption of static model errors 
(Teutschbein and Seibert 2012). This means that the cor-
relation algorithm for current climate conditions and its 
parameters are considered valid even under the changing 
climate conditions.

According to Teutschbein and Seibert (2012) and Sisay 
et al. (2017), linear scaling is a simple technique and pro-
vides better efficiency in correcting the ensemble RCMs 
climatological biases. In this study, the linear scaling bias 
correction method was applied to adjust the raw ensem-
ble of climate scenarios (rainfall) output simulation data.

The linear scaling bias correction method was selected 
following a review of the study by Teutschbein and Seib-
ert (2010), which evaluated five bias correction methods 
for precipitation and showed that linear scaling is suit-
able for precipitation. The linear scaling method uses 
a correction factor for each month based on long-term 
historical RCM data and the observed data. Correction 
factors were applied for future climate scenarios of the 
RCP4.5 and RCP8.5 emissions. The bias correction was 
used to estimate and remove the bias correction in future 
RCMs output. The linear scaling bias correction method 
(V.1.0) Microsoft Excel file described by Shrestha (2015) 
was used in this study to adjust the climate model’s aver-
age value to observations appropriately.

To verify the bias correction method and the improve-
ment obtained after bias correction, the average daily 
observed and simulated data (before and after bias cor-
rection) were again compared with the observed data by 
model evaluation statistical methods, such as the correc-
tion coefficient (r) and root mean square error (RMSE). 
Statistical results of the bias correction show that the 
bias correction significantly improves the simulated data 
as the RMSE values decrease, the SD values closer to 

Table 5  Regional Climate Models (RCMs) in the CORDEX-Africa used in this study

Institution RCM name Country

CSIRO-Commonwealth Scientific and Industrial Research Organization CSIRO-Mk3.6.0 Australia

NOAA GFDL: Geophysical Fluid Dynamics Laboratory GFDL-ESM2M USA

MOHC: Met Office Hadley Centre HadGEM2-ES United Kingdom

CCCma: Canadian Centre for Climate Modelling and Analysis CanESM2 Canada

NCC: The Norwegian Climate Centre NorESM1-M Norway

MIROC: Developed by the Japanese research community MIROC Japan

https://esgf-node.llnl.gov/projects/esgf-llnl/
https://esgf-node.llnl.gov/projects/esgf-llnl/
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observed data. The correlation coefficient between the 
observed and simulated data was significantly improved 
from 0.74 to 0.76 for rainfall data. It indicates that the 
bias-corrected values better represent the patterns 
of precipitation over the study watershed. This result 
showed that the bias correction result is acceptable and 
consistent with the results of previous studies (Gebre and 
Ludwig 2015; Sisay et  al. 2017). The two RCP scenarios 
(RCP4.5 and RCP8.5) were taken into account to estimate 
the rainfall erosivity factor.

Revised Universal Soil Loss Equation model
In the present study, we used the RUSLE model for ero-
sion modeling. RUSLE is the revised form of the USLE 
model (Wischmeier and Smith 1978), with substantial 
improvements in predicting the yearly amount of soil 
loss; and it was  revised by Nyssen et  al. (2009) to the 
Ethiopian conditions. The annual soil loss (A) of the study 
watershed was calculated by overlaying five raster layers 
using the following equation:

where A is the average annual soil loss per 
unit area (t  ha−1  year−1), R is rainfall erosiv-

ity (MJ  mm  ha−1  h−1  year−1), K is soil erodibility 
(t ha−1 MJ−1 mm−1), LS is the slope length and steepness 
factor, C is a cover and management factor, and P is the 
conservation practice factor. The procedures and tech-
niques we used for these factors are presented in the fol-
lowing sections.

Rainfall erosivity factor (R-factor) indicates the input, 
which represents the effect of rainfall intensity on soil 
erosion and requires in-depth, unceasing precipita-
tion data for its calculation (Renard and Freimund 1994; 
Angima et  al. 2003). The rainfall erosivity is calculated 
as the total storm energy multiplied by the maximum 
30  min intensity (Renard 1997). However, such data is 
not available for the study area, limiting the R factor spa-
tiotemporal application. Empirical relationships between 
measured rainfall amount and R-factor values widely 
used as an alternative approach (Hurni 1985; Nigussie 
et al. 2014; Mengistu et al. 2015). This method is widely 
used by previous researchers in Ethiopia and other coun-
tries (e.g., Bewket and Teferi 2009; Mengistu et al. 2015; 
Tamene and Le 2015; Duarte et  al. 2016; Gelagay and 
Minale 2016; Haregeweyn et al. 2017; Molla and Sisheber 
2017).

(1)A = R ∗ K ∗ LS ∗ C ∗ P

In the present study, the annual rainfall erosivity was 
calculated according to the method of Hurni (1985) to 
the Ethiopian highlands as the following equation:

where R is the rainfall erosivity factor (in 
MJ mm ha−1 h−1 year−1), and P is the mean annual rain-
fall (mm).

After accounting the R factor of the baseline (1985–
2017) and future period (2018–2050) using the math-
ematical equation, the R factor raster was created using 
the Inverse Distance Weighted (IDW) interpolation 
method in the Geostatistical Analysis extension of Arc-
GIS 10.4 software.

Soil erodibility factor (K-factor) represents soil vulner-
ability to erosion (Wischmeier and Smith 1978). Accord-
ing to the soil difference, the K value of an area is also 
different depending on the parameters of soil texture, 
organic matter content, and permeability (Renard 1997). 
The soil erodibility was determined from the available soil 
data of the Blue Nile river basin (scale 1:250,000), which 
was obtained from the Ministry of Water and Energy. In 
this study, we used the nomograph method to calculated 
the K value as proposed by Wischmeier et al. (1971)

where fp is the particle size parameter (unitless), pom 
is the percent organic matter (unitless), sstruc is the soil 
structure index (unitless), fperm is the profile-permeability 
class factor (unitless), psilt is the percent silt (unitless) and 
pclay is the percent clay (unitless).

In Eq. 3 the factor (1.292) is needed to convert K-factor 
from the imperial to the international system units (i.e., 
SI metric units) (Streile et  al. 1996). The soil structure 
index, Sstruc, is 4 for blocky, platy, or massive soil, 3 for 
medium or coarse granular soil, 2 for fine granular soil, 
and 1 for very fine granular soil (Mengistu et  al. 2015). 
The profile-permeability class factor, fperm, is 1 for very 
slow infiltration, 2 for slow infiltration, 3 for slow to mod-
erate infiltration, 4 for moderate infiltration, 5 for moder-
ate to rapid infiltration, and 6 for rapid infiltration (Streile 
et al. 1996). In general, Eq. 3 can help capture relative dif-
ferences in erodibility between soil types and help appro-
priate the resistance to erosion of different soils under 
consideration (Ganasri and Ramesh 2016). The soil type 
and soil erodibility map of the watershed is presented in 
Fig. 3.

Topographic factor (LS-factor) refers to the effect of 
topography on soil erosion. The slope length (L) and 
slope gradient (S) factors are joined in a single index, 

(2)R = −8.12+ 0.562P

(3)Kfact = (1.292) [2.1 ∗ 10−6f 1.14p (12− pom)+ 0.0325 (Sstruc − 2) + 0.025 (fperm − 3)]

in which fp = psilt(100− pclay)
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Fig. 3  Soil type (a) and soil erodibility factor map (b) of Muga watershed

Fig. 4  Slope length and steepness factor (LS-factor) map of Muga watershed
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LS-factor, to describe the topographic factor for soil loss. 
The slope length refers to the distance from the point 
of origin of overland flow to the point, where either the 
slope gradient declines enough in which sedimentation 
starts or the runoff water enters a well-defined channel 
(Renard 1997). The LS factor represents (Fig. 4) the ratio 
of soil loss per unit area on-site to the corresponding loss 
from a 22.13  m long experimental plot with a 9% slope 
(Renard 1997). Higher slope lengths may increase the 
overland flow and lead to more land surface soil erosion 
(Moore and Burch 1986a). Moreover, higher slope gradi-
ents also promote the runoff rate and bring out more soil 
erosion.

In this study, the L factor was computed following 
Eq.  (4) proposed by Moore and Burch (1986a; b). The 
algorithm (Eq.  5) recommended by Desmet and Govers 
(1996) was used to calculate the S factor. It is based on 
flow accumulation and slope steepness. The slope steep-
ness (S) factor was calculated for high (> 9%) and low 
slope land (< 9%) from the slope angle. Finally, the L 
and S factor were multiplied to derive the LS factor for 
the study watershed using the Spatial Analysis Tool Map 
Algebra Calculator in the ArcGIS 10.4 environment and 
the spatial variability of the slope length steepness factors 
(Renard 1997):

where L and S indicate slope length and steepness fac-
tor (dimensionless); λ is the slope length (in meter), cell 
size is the size of the grid cell (for this study 30 m); m is 
an adjustable slope length exponent to β; while β repre-
sents the rill to interrill erosion ratio; and θ is the slope 
angle (in degrees).

(4)
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(5)

S =

{

10.8 ∗ sin θ + 0.03, where slope gradient < 9%

16.8 ∗ sin θ − 0.5, where slope gradient ≥ 9%

The study area’s topography is steep with non-uniform 
terrain on the upper parts of the watershed, whereas 
the area’s lower escarpment is gentle and uniform. The 
combined steeper and longer slopes resulted in larger 
cumulative runoff volumes with high velocity and erosive 
power.

Cover management factor (C-factor) represents the 
effect of vegetation and the cover on the amount of soil 
erosion (Bewket and Teferi 2009; Haregeweyn et  al. 
2017). The individual values of C vary between 0 for a 
completely non-erodible condition, and 1 implies con-
ditions more erodible than those normally experienced 
under unit plot conditions, which can occur for condi-
tions with very extensive tillage, and C is strongly related 
to land use.

In Ethiopia, satellite-derived images are a good proxy 
for land cover on relatively large basins and watershed 
levels and were applied in the Upper Blue Nile basin of 
Ethiopia (Bewket and Teferi 2009; Mengistu et  al. 2015; 
Molla and Sisheber 2017; Taye et al. 2018). In this study, 
C values were determined based on the most recent 
(2017) and predicted future (2033) land use data, as sug-
gested in the literature (Table 6).

Conservation practice (P-factor) reflects the effects 
of support practices, such as terracing and contour till-
age, to reduce the rate of soil erosion (Renard 1997). The 
higher the P factor, the less effectively the practice facili-
ties deposition to take place close to the source. It is pri-
marily used to assess the effects of conservation measures 
implemented on soil loss (Mengistu et al. 2015). Our field 
visits indicated that soil and water conservation activi-
ties are not widely practiced in the study area. However, 
farmers commonly use stone bunds and contour farm-
ing to protect the soil from erosion. Still, they are poorly 
maintained as implementation was carried out in a top-
down approach, and there was no map of conserved 
areas in the sub-watershed. In areas where contour plow-
ing is widely practiced, Hurni (1985) suggested using P 
values of 0.9 and 0.8 for agricultural and non-agricultural 
lands, respectively. Thus, we used a similar method in the 
present study to assign P values to the study area for the 
baseline period (2017) and future scenario (2033).

Table 6  C-factor and P-factor values for the respective land use/land cover classes of Muga watershed, Upper Blue Nile Basin, Ethiopia

Land use/land cover classes C factor P factor

Grassland 0.05 (Hurni 1985; Bewket and Teferi 2009) 0.8 (Hurni 1985; Adugna et al. 2015)

Cultivated land 0.15 (Hurni 1985; Adugna et al. 2015) 0.9 (Bewket and Teferi 2009; 
Adugna et al. 2015; Taye et al. 2018)

Shrub-bushland 0.02(Mengistu et al. 2015) 0.8 (Hurni 1985)

Forest 0.05 (Molla and Sisheber 2017) 0.8 (Hurni 1985)

Urban area 0.05 (Moges and Bhat 2017) 0.8 (Hurni 1985)
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Finally, the annual soil loss was estimated on a cell-
by-cell basis of multiplying the five RUSLE factors using 
Eq.  (1). As Landsat images and ASTER-DEM used in 
this study had 30 m spatial resolution, all the raster maps 
were resampled to 30 × 30 m cell size and re-projected to 
UTM Zone 37° N, WGS 1984 datum. Table 6 shows the C 
values and the P values derived from LULC information 
for the baseline and future period. The workflow of the 
methodology used in this study is shown in Fig. 5

Results
Land use/land cover change in Muga watershed
The produced LULC maps of the Muga watershed for 
the three reference years (1985, 2002, and 2017) are pre-
sented in Fig. 6. The trend analysis made for the two con-
secutive periods, 1985–2002 and 2002–2017, showed 
spatiotemporal changes in LULC classes.

The magnitude and extent of LULC change for the 
study watershed between 1985 and 2017 were obtained 
from Belay and Mengistu (2019). The LULC change 
between 2017 and 2033 were calculated (Table  7). The 
predicted LULC map for 2033 is shown in Additional 
file  1. As shown in LULC map of 2033, cultivated land 

remains a dominant land use type, which accounts for 
about 76.8% of the study watershed. From 2017 to 2033, 
the areal coverage of grassland decreased by 35.4%, while 
urban  area, shrub-bushland, forest, and cultivation area 
would increase by 2.9%, 10.4%, 6.8% 3.8%, respectively. It 
should be noted that the decline of grassland area from 
2017 to 2033 is probably due to the conversion of grass-
lands to cultivated land and shrub-bushland, as shown in 
Table 7.

Future climate
In Muga watershed, compared with 1985–2017 
(1086.6 mm), the mean for RCMs ensemble (2018–2050) 
showed an increase in mean annual rainfall of 1272.9 mm 
(RCP4.5) and 1307.0  mm (RCP8.5). The result showed 
that the average rainfall erosivity is expected to increase 
from 602.6  MJ  mm  ha−1  h−1  year−1 (1985–2017) to 
707.3 and 726.4  MJ  mm  ha−1  h−1  year−1 for the period 
2018–2050, under RCP4.5 and RCP8.5, respectively. It is 
expected to increase by 17.15% and 20.27% under RCP4.5 
and RCP8.5, respectively. This result agrees with previ-
ous studies (Conway and Schipper 2011; Kassie et  al. 

Fig. 5  Workflow of the methodology developed in this study
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2014; Abera et al. 2018; Fentaw et al. 2018) that predicted 
increasing precipitation in other parts of Ethiopia.

Impacts of land use/land cover changes on soil erosion
LULC change in the area may increase or decrease soil 
erosion. The LULC dynamics of the Muga watershed 
from 1985 to 2017 was studied by Belay and Meng-
istu (2019). In the present study, to assess the impact 

of LULC change on soil erosion, the values of C and 
R factors were changed, while the other factors (i.e., 
soil erodibility, conservation practice factor, and slope 
length and slope steepness) kept constant.

The results of the study show that the average 
annual rate of soil erosion in the Muga watershed was 
increased from approximately 15 t  ha−1  year−1 in 1985 
to 19  t  ha−1  year−1 in 2002, and 19.7  t  ha−1  year−1 in 
2017 (Table  8). The study results also indicate that if 
the LULC changes are not managed, the soil loss rate 
is expected to continue in 2033, which is expected to 
reach 20.7  t  ha−1  year−1 in 2033. Areas with soil ero-
sion rates over 15 t  ha−1  year−1 during the study years 
were widely distributed on the upper and steep areas of 
the watershed, while those with an erosion rate of less 
than 10  t  ha−1  year−1 was mainly concentrated in the 
gentle areas of the lower and upper part of the water-
shed (Fig.  7). Increasing some types of LULC, such as 
cultivable land in steep areas and irrigated agriculture, 
will accelerate soil erosion by reducing soil cover in the 
future.

The validation and consistency of the model output 
was compared with the quantitative outputs of previous 

Fig. 6  Classified LULC maps for 1985, 2002, and 2017 in the Muga watershed

Table 7  Area and proportion of each land use categories in the 
Muga watershed

Reference (2017) Future (2033) Change 
(2017–
2033)

Area (ha) % Area (ha) % (%)

Grassland 4862.7 11.4 3143.2 7.4 − 35.4

Cultivated land 31,438.4 74.0 32,624.7 76.8 3.8

Urban area 1008.7 2.4 1038.3 2.4 2.9

Forest 1015.1 2.4 1084.2 2.6 6.8

Shrub-bushland 4170.5 9.8 4605.0 10.8 10.4

Total area 42,495.4 100.0 42,495.4 100.0
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experimental observations and similar empirical stud-
ies conducted in Ethiopia, mainly in the northwest-
ern highlands. In addition, selected field observations 
were carried out. In supporting this process, the color 
printed model output soil erosion severity map was 
taken in the field to check the reality on the ground. 
Consequently, the estimated rate of soil loss and the 
spatial patterns are generally realistic as compared with 
the findings in the field and from the results of previous 

studies (Hurni 1983a, b, 1985; Bewket and Teferi 2009; 
Mengistu et al. 2015).

The relative contribution of each LULC type to soil 
erosion was assessed in the study watershed, and the 
result showed noticeable differences among LULC types 
in 1985, 2002, 2017, and 2033. The highest mean annual 
soil erosion rate was predicted on cultivated land (e.g., 
18  t  ha−1  year−1 in 1985, 19  t  ha−1  year−1 in 2002, and 
21.7 t ha−1 year−1 2017).

Table 8  Estimated mean annual soil erosion rate of each land use land cover type and the entire watershed in 1985, 2002, 2017, and 
2033 in Muga watershed

Year Mean annual soil erosion rate (t ha−1 year−1) Entire 
watershed

Grassland Cultivated land Urban area Forest Shrub-bushland

1985 8.0 18.0 11.0 3.0 7.5 15.0

2002 12.0 19.0 12.0 8.5 12.0 19.0

2017 14.2 21.7 10.4 11.2 11.9 19.7

2033 13.6 25.0 6.5 9.1 13.0 20.7

Fig. 7  Estimated annual soil loss map of the study area in 1985 (a), 2002 (b), 2017 (c), and 2033 (d)
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Although the area under cultivation is expected to 
decrease by 2033, the average annual rate of soil ero-
sion is expected to be higher than 1985, 2002, and 2017. 
The causes of the higher soil loss estimated from culti-
vated land may be related to the encroachments of slop-
ing plowing in mountainous areas of the watershed, as 
the expense of expansion of urban areas into cultivation. 
The results of this study suggest that the rate of soil loss 
in shrub-bushland areas will be higher than in grassland 
and urban area in the future (2033), which may be due to 
the scanty vegetation and the steepness of the area, where 
the shrub-bushland area is located. This indicates that in 
the year 2033, the area of shrub-bushland is expected 
to have less capability to protect the soil from erosion 
than in the year 2017. Thus, future LULU changes under 
the business as usual scenario, with increasing LULC 
changes in the study area (i.e., expansion of cultivated 
land) contributing to more soil erosion, which is antici-
pated to increase further with higher precipitation. It is 
estimated that in 2033 there will be higher rates of soil 
erosion in cultivated, followed by grassland and shrub-
bushland, which are the key areas to prevent soil erosion 
in the Muga watershed in the future.

As shown in Fig.  7 and Table  9, the percentage areas 
under low to medium-level soil erosion were decreased 
between 1985 and 2033. In contrast, the portion of 
areas under high and very high soil erosion classes was 
increased during the same periods, but this change is 
relatively low. The increase in the areas with high and 
very high soil erosion rates between 1985 and 2033 may 
be due to the conversion of some parts of the watershed 
with low and moderate erosion classes into the range 
of high and very high erosion. Between 1985 and 2017, 
there was an upward trend in the area occupied by severe 
and very severe erosion classes, while the severe erosion 
category is expected to decline in 2033. It was also found 
that the area classified as very severe erosion is uniform 
in 2017 and 2033.

Impacts of climate change on soil erosion
Rainfall amount and rainfall erosivity under RCP4.5 and 
RCP8.5 for the study area showed an increasing trend, 
which is anticipated to affect soil loss negatively. Increas-
ing rainfall will lead to an increase in annual rainfall ero-
sivity, which increases the annual rate of soil loss. Thus 
we analyzed the average annual rate of soil erosion from 
the watershed by modifying climatic data during the 
study period to assess the relationship between soil ero-
sion and climate change in 2017 and 2050.

In this study, we simulated the future rate of soil ero-
sion due to changes in climatic conditions that may 
increase the risk of soil and land degradation in the Muga 
watershed, which can also affect agricultural productivity 
and livelihoods of the local community. The results are 
shown in Table 10 and Fig. 8. The results show that the 
average annual rate of soil loss in the Muga watershed in 
2050 under RCP4.5 and RCP8.5 will be 21.6 t ha−1 year−1 
and 22.2  t  ha−1  year−1, respectively, which is equiva-
lent to an annual soil loss of 917,900.6  t  year−1 and 
960,396.0  t  year−1, respectively. Therefore, the rate of 
soil erosion is predicted to increase by 9.7% and 12.7% 
under RCP4.5 and RCP8.5, respectively, compared to the 
reference period. This means that the mean annual soil 

Table 9  Annual soil erosion risk classes and area coverage under land use/land cover map of 198,2002, 2017, and 2033 in Muga 
watershed

Soil erosion intensity class and rate 
of soil loss

Study period

1985 2002 2017 2033

Area (ha) % Area (ha) % Area (ha) % Area (ha) %

Low (0–5 t ha−1 year−1) 19,138.9 45.0 18,343.9 43.2 17,679.0 41.6 17,412.5 41.0

Moderate (5–20 t ha−1 year−1) 12,717.4 29.0 12,217.4 28.7 12,618.5 29.7 12,205.5 28.7

High (20–50 t ha−1 year−1) 6700.4 15.8 7051.3 16.6 6977.5 16.4 7437.1 17.5

Very high (50–100 t ha−1 year−1) 3148.6 7.4 3737.8 8.8 3972.3 9.3 4250.3 10.0

Severe (100–150 t ha−1 year−1) 529.5 1.2 814.5 1.9 834.9 2.0 783.6 1.8

Very severe (> 150 t ha−1 year−1) 260.5 0.6 330.5 0.8 413.2 1.0 406.4 1.0

Table 10  Annual soil erosion risk classes and area coverage 
under RCP4.5 and RCP8.5 in Muga watershed

Soil severity categories and 
rate of soil erosion

2050 (RCP4.5) 2050 (RCP8.5)

Area (ha) % Area (ha) %

Low (0–5 t ha−1 year−1) 15,904.1 37.4 15,526.2 36.5

Moderate (5–20 t ha−1 year−1) 13,677.6 32.2 13,864.7 32.6

High (20–50 t ha−1 year−1) 7041.0 16.6 7097.8 16.7

Very high (50–100 t ha−1 year−1) 4273.5 10.1 4346.7 10.2

Severe (100–150 t ha−1 year−1) 1083.5 2.5 1136.0 2.7

Very severe (> 150 t ha−1 year−1) 515.9 1.2 524.2 1.2

Total area 42,495.4 100.0 42,495.4 100.0
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erosion rate in the Muga watershed showed an increasing 
trend in the future compared to the reference period due 
to climate change.

Recognizing the soil loss response helps to know the 
rate of soil erosion changes with climate change, which 
helps to identify priority areas for implementing soil 
management measures in the study watershed. Increased 
soil erosion due to climate changes can affect the water-
shed’s local ecosystems and can cause hydrological 
changes in streams originating from the watershed.

Comparing LULC and climate change, as shown in 
Table 11, climate changes are expected to have a higher 
impact on soil erosion than LULC change in the future. 
Figure 8 shows a map of soil erosion in the Muga water-
shed in 2050 by averaging six RCMs under RCP4.5 and 
RCP8.5. The figures show that high soil losses are con-
centrated on the watershed’s upper escarpment, where 
cultivation and other human activities are carried out on 
the steep slopes of Choke Mountain.

Combined impacts of future land use/land cover 
and climate change on soil erosion
In addition to assessing the individual impacts of future 
LULC and climate change, the combined and synergistic 
effects of these changes on soil erosion were also evalu-
ated in the Muga watershed. By replacing the two fac-
tors of rainfall erosivity (R) and cover management factor 
(C), and keeping all other factors constant in the RUSLE 
model, soil erosion was predicted using future LULC 

and climate change scenarios: 2033 LULC map and cli-
mate scenarios under RCP4.5 and RCP8.5 in 2050. The 
magnitudes and rates of mean annual loss of soil under 
future LULC and climate change scenarios are presented 
in Table 11.

The highest soil erosion rate for the study watershed 
is predicted when LULC change is combined with cli-
mate change under the RCP8.5 scenario, which is esti-
mated about 22.8  t  ha−1  year−1. Similarly, the average 
annual rate of soil loss under RCP4.5 is estimated about 
21.6  t  ha−1  year−1. Therefore, changes in LULC under 
RCP4.5 and RCP8.5 scenarios showed a slight variation 
in annual soil loss rates. It should also be noted that the 
ranges of relative change in average annual soil loss rates 
for the future period due to climate change are larger 
than LULC change. Table  11 shows that soil erosion 
in the Muga watershed appears to be more sensitive to 
future climate changes than future LULC changes. The 
magnitude of the soil loss rates is expected to increase in 
the future due to the synergy effects of climate and LULC 
changes. As it is shown in Table 11, the combined effects 
of LULC and climate change on soil loss rate are expected 
to increase in the future period.

LULC changes are expected to exacerbate the rate of 
soil loss by 5%, while climate change is also predicted to 
increase the rate of soil loss by approximately 9.7% and 
12.7% under RCP4.5 and RCP8.5, respectively. When 
LULC and climate change act together, the average 
annual soil loss rate increases to 13.2% and 15.7% under 

Fig. 8  Soil erosion severity level in 2050 under RCP4.5 (a) and RCP8.5 (b)
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RCP4.5 and RCP8.5, respectively, which is higher than 
the individual effects of LULC and climate change. Thus, 
the combination of modeled LULC and climate change 
is expected to have a substantial impact on soil erosion 
in the future. Increasing average annual soil erosion 
rates caused by LULC and climate change will signifi-
cantly impact land use planning and implementation in 
the Muga watershed. Besides, as the LULC types change, 
adverse effects may be intensified.

Discussion
Soil erosion prevention patterns varied considerably 
depending on location and time. Globally, as environ-
mental change accelerates, more frequent and intense 
changes in LULC associated with a higher frequency of 
extreme climate events will increase soil degradation and 
make the ecosystem less resilient to natural disturbance 
(Cramer et al. 2018; Guerra et al. 2020). The results of the 
study show a spatial and temporal variability in soil ero-
sion rate due to climate dynamics and changes in LULC. 
According to Zhou et  al. (2008), a soil vegetation cover 
of more than 78% greatly reduce erosion by water. The 
results of this study show that less than 5% of the study 
watershed is covered with forest; hence, the study water-
shed is sensitive to soil erosion. Furthermore, the expan-
sion of cropland at the expense of forest and shrubland 
reduced the protection and soil organic matter of the soil 
and exposed it to the impact of climate change thereby 
accelerated soil erosion rate (Wijitkosum 2012).

The results of future climate projection showed that the 
mean annual precipitation in the watershed is expected 
to increase by 17.15% and 20.27% under RCP4.5 and 
RCP8.5, respectively, compared to the historical period of 
1985–2017. This result agrees with previous studies (e.g., 
Conway and Schipper 2011; Kassie et  al. 2014; Abera 
et al. 2018; Fentaw et al. 2018) that predicted the increase 
in precipitation in the other parts of Ethiopia.

Muga watershed also showed significant dynamics in 
LULC from 1985 to 2017. The results of the study show 
that LULC changes played a significant role in increasing 

the soil erosion rate in the study watershed. This finding 
coincides with previous research conducted in the Upper 
Blue Nile basin (e.g., Gessesse et  al. 2015; Gelagay and 
Minale 2016; Moges and Bhat 2017; Tadesse et al. 2017), 
who reported that LULC change was a responsible fac-
tor for the increased soil erosion in their respective study 
areas.

Table  8 shows the estimated soil loss in 1985, 2002, 
2018, and 2033. The estimated average soil loss was 
increased due to LULC dynamics that occurred between 
1985 and 2017. This shows that LULC has a signifi-
cant impact on soil loss by water erosion. The results 
of this study show that the average annual rate of soil 
loss in the Muga watershed (19.0  t  ha−1  year−1 in 2002, 
19.7  t  ha−1  year−1 in 2017, and 20.7  t  ha−1  year−1 in 
2033) was substantially higher than the average soil 
loss of Upper Blue Nile basin (16 t  h−1  year−1) reported 
by Mengistu et  al. (2015), and Fenta et  al. (2021) who 
reported 16.5  t  ha−1  year−1 average soil loss rate for 
Ethiopia.

This study also shows that about 25% of the study 
watershed has a soil loss rate of 20  t  ha−1  year−1 and 
above, which is higher than the tolerable soil loss limits 
estimated for Ethiopia. Tolerable soil loss rates suggested 
for Ethiopia is 12  t  ha−1  year−1 (Hurni 1983b). Accord-
ing to Khosrokhani and Pradhan (2014), the rate of soil 
formation in tropical areas is generally slow, and soil loss 
of more than 1  t  ha−1  year−1 is regarded as irreversible 
soil erosion. However, soil loss of 1 t  ha−1  year−1 or less 
is considered as an acceptable soil erosion rate. The pre-
dicted average soil loss for the study year exceeds the 
tolerable soil erosion rates of 12  t  ha−1  year−1 and the 
estimated soil formation rate of 2 t ha−1 year−1 for Ethio-
pia (Hurni 1983b), which can affect soil productivity.

In the presents study, the average annual rate of soil loss 
varies with LULC types, with cultivated land being  the 
main contributor (about 18  t  ha−1  year−1 in 1985, 
19 t ha−1 year−1 in 2002, and 21.7 t ha−1 year−1 in 2017), 
followed by grasslands and shrub-bushlands (Table  8). 
The lowest soil loss rates were observed in forest and 

Table 11  Mean annual soil loss (t ha−1 year−1) of Muga watershed under current and future land use/land cover and climate

(a) Baseline period (land use/land cover in 2017 and baseline climate), (b) impacts of land use/land cover change, (c) combined impacts of future land use/land cover 
(2033) and climate change under RCP4.5, (d) combined impacts of future land useland cover and climate change under RCP8.5, (e) only impacts of future climate 
change under RCP4.5, (f ) only impacts of climate change under RCP8.5

Model input (a) (b) (c) (d) (e) (f)

LULC 2017 2033 2033 2033 2017 2017

Climate 1985–2017 1985–2017 RCP 4.5 (2018–
2050)

RCP 8.5 (2018–
2050)

RCP 4.5 (2018–
2050)

RCP 8.5 
(2018–
2050)

Mean annual soil erosion 
(t ha−1 year−1)

19.7 20.7 22.3 22.8 21.6 22.2
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urban areas (Table 8). This is due to vegetation cover and 
the corresponding low C-factor values (Zhou et al. 2008). 
The highest rates of soil loss on cultivated land indicated 
that land conversion from natural vegetation (e.g., forest 
and shrub-bushland) to cultivated land would exacerbate 
land degradation due to soil erosion.

Similarly, Fenta et  al. (2021) estimated an average 
annual soil loss rate of 36.4 t ha–1 year–1 from cultivated 
land for Ethiopia’s highlands. This is twice the overall 
average rate of soil loss (16.5 t ha–1 year–1), they reported 
for the whole highlands of Ethiopia. Contrary to our 
research results, Taye et  al. (2018) reported the highest 
soil loss rate of 38.7  t  ha–1  year–1 from grassland com-
pared with 7.2 t ha–1 year–1 from cropland.

Studies showed that rainfall is one of the most sensitive 
factors for soil erosion (Zhang and Nearing 2005; Her et al. 
2019; Berberoglu et al. 2020; Borrelli et al. 2020; Ciampa-
lini et al. 2020; Eekhout and De Vente 2020). The present 
study results show an increase in the future period’s annual 
rainfall erosivity compared to the baseline. The RCP8.5 
scenario is expected to have the highest amount of erosiv-
ity factor and will have the highest erosion rate, followed 
by RCP4.5 in 2018–2050. The rate of soil erosion under 
RCP4.5 and RCP8.5 is expected to increase by 9.7% and 
12.7%, respectively, compared to the baseline period.

The spatial distribution of soil erosion in the Muga 
watershed is shown in Fig.  8. As shown in Table  8, the 
areas with moderate and very high-intensity soil erosion 
rate are mainly occupied in the study watershed, ranging 
from 19.7 t ha−1 year−1 under LULC of 2017 and climate 
of 1985–2017 to 22.3 t ha−1 year−1 under LULC of 2033 
and RCP4.5 and 22.8 t  ha−1  year−1 under LULC of 2033 
and RCP8.5, respectively.

The results of this study are consistent with the results 
in the Upper Blue Nile basin of Ethiopia (e.g., Bewket 
and Teferi 2009; Mengistu et al. 2015). However, the rate 
of soil erosion in the study area is lower than the value 
previously reported by Yesuph and Dagnaw (2019) for 
Beshillo catchment of the Blue Nile Basin, Ethiopia, 
which is 37 t ha−1 year−1. According to Kouli et al. (2009), 
soil loss rates above 10 t ha−1 year−1 will not reverse for 
50 to 100 years. Considering this threshold, the total area 
of the study watershed, where the risk of soil erosion 
exceeds the soil loss tolerance is expected to be 19,348 ha 
and 21,057  ha in the 2050s under RCP4.5 and RCP8.5, 
respectively.

The future scenario shows that LULC combined with 
climate change substantially increases the average soil 
erosion by 2070s globally (Borrelli et al. 2020). The results 
of this study also showed that when projected land use 
is combined with simulated climate change, the mean 
annual soil erosion rate is expected to increase by 13.2% 
under LULC map of 2033 and RCP4.5 and 15.7% under 

LULC map of 2033 and RCP8.5 compared with the 
baseline.

The results of this study showed that the trend of 
soil erosion increased during the years of study and is 
expected to continue in the future due to LULC and cli-
mate change. As a result, it affects agricultural productiv-
ity and hydrological process in the study watershed. Thus, 
there should be appropriate land management strate-
gies that take into account the future LULC and climate 
change to manage these ecological processes, because the 
LULC and climate change have a profound impact on the 
ecosystem of the Muga basin.

Conclusion
The study demostrated the impacts of LULC and climate 
changes on soil erosion using an integrated approach 
of CA–Markov chain, climate and soil erosion mod-
els. The outcomes indicate that soil erosion rate in 
the Muga watershed shows an increasing trend from 
19.7  t  ha−1  year−1 in 2017 to 20.7  t  ha−1  year−1 in 2033 
due to LULC change. Furthermore, by the 2050s, the 
rainfall erosivity factor may increase, which can lead to 
more soil erosion rate. Hence, the soil loss rate in Muga 
watershed is projected to increase to 22.0  t  ha−1  year−1 
and 22.8 t ha−1 year−1 under RCP4.5 and RCP8.5 scenar-
ios, respectively, due to higher erosive power of the future 
intense rainfall. When the combined effect of LULC and 
climate change considered, the average annual soil loss 
rate was increased by 13.2% and 15.7% under RCP4.5 and 
RCP8.5, respectively, which is much higher than the indi-
vidual effects of LULC and climate change. The change 
in soil erosion rate showed a spatial variation, hence the 
upper escarpment of the watershed which consists of 
steep slopes is highly vulnerable to soil erosion hazard.

The outcome of this investigation would be imperative 
in the decision and implementation of appropriate soil 
and water conservation methods and local climate adap-
tion strategies within the study area and for deducing the 
changes in the future. Likewise, the results obtained from 
this study can be used by local and regional government 
agencies, developers and policymakers to diminish the 
rate of soil loss in the study watershed. Integrated use of 
CA–Markov chain, climate, and soil erosion models have 
demonstrated to provide relevant information about the 
impacts of LULC and climate change on soil erosion at a 
watershed level.
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