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Can vegetation index track the interannual
variation in gross primary production of
temperate deciduous forests?
Fan Liu1,2, Chuankuan Wang1,2 and Xingchang Wang1,2*

Abstract

Background: Vegetation indices (VIs) by remote sensing are widely used as simple proxies of the gross primary
production (GPP) of vegetation, but their performances in capturing the inter-annual variation (IAV) in GPP remain
uncertain.

Methods: We evaluated the performances of various VIs in tracking the IAV in GPP estimated by eddy covariance in
a temperate deciduous forest of Northeast China. The VIs assessed included the normalized difference vegetation
index (NDVI), the enhanced vegetation index (EVI), and the near-infrared reflectance of vegetation (NIRv) obtained
from tower-radiometers (broadband) and the Moderate Resolution Imaging Spectroradiometer (MODIS),
respectively.

Results: We found that 25%–35% amplitude of the broadband EVI tracked the start of growing season derived by
GPP (R2: 0.56–0.60, bias < 4 d), while 45% (or 50%) amplitudes of broadband (or MODIS) NDVI represented the end
of growing season estimated by GPP (R2: 0.58–0.67, bias < 3 d). However, all the VIs failed to characterize the
summer peaks of GPP. The growing-season integrals but not averaged values of the broadband NDVI, MODIS NIRv
and EVI were robust surrogates of the IAV in GPP (R2: 0.40–0.67).

Conclusion: These findings illustrate that specific VIs are effective only to capture the GPP phenology but not the
GPP peak, while the integral VIs have the potential to mirror the IAV in GPP.
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Introduction
Gross primary production (GPP), i.e. total carbon (C)
fixed by vegetation photosynthesis, is the largest compo-
nent of the global C cycle (Beer et al. 2010). It is also
tightly related to many ecosystem functions, including
ecosystem and soil respiration (Baldocchi et al. 2018;
Janssens et al. 2001), vegetation growth (Körner 2015),
water loss through transpiration (Baldocchi 2020; Zhou
et al. 2014), etc. Due to the complex response of vegeta-
tion to climatic perturbations, there is a large inter-

annual variation (IAV) in global C budget (Ahlström
et al. 2015); and the IAV in GPP is still difficult to be ac-
curately estimated using current land surface models
(Piao et al. 2019; Xia et al. 2020), which in turn hindered
the prediction of future climate-C cycle feedback (Ryu
et al. 2019).
Remote sensing vegetation index (VI, often called

greenness), such as the normalized difference vegetation
index (NDVI) and enhanced vegetation index (EVI), are
widely used as direct proxies of GPP (Rahman et al.
2005; Wang et al. 2004; Zhou et al. 2001), or as key in-
puts in the light-use efficiency model for simulating GPP
(Running et al. 2004). A newly proposed index, the near-
infrared reflectance of vegetation (NIRv, the product of
NDVI and near-infrared reflectance), is demonstrated to
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be a good proxy of GPP at monthly to annual scales
across FLUXNET sites (Badgley et al. 2019; Wang et al.
2021). Compared with NDVI, the NIRv untangles the
confounding effects of background brightness and the
saturation in the dense canopy (Badgley et al. 2019;
Badgley et al. 2017). However, capturing the IAV and
long-term trends in GPP remains a challenge to satellite
data. The ability in surrogating annual GPP diverges
among VIs, and even varies with integrating or averaging
period of VI. For example, the annual mean VIs only ex-
plained the variations in GPP for deciduous broadleaved
forests by 9–50%, with a slightly better performance of
NIRv than NDVI and EVI (Huang et al. 2019). When
using the VI during growing season, the integral NDVI
was tightly correlated with GPP across vegetation types
(R2 = 0.80) (Park et al. 2016). In contrast, the growing-
season mean NDVI and EVI only explained <10% of the
GPP variations for the deciduous broadleaved forests in
the La Thuile dataset (Verma et al. 2014). Moreover,
considering the seasonal asynchrony between canopy
greenness and C uptake, different growing-season defini-
tions for VI (for example, the various thresholds of VI
magnitude) may change the VI-GPP relationship, which
has not yet been tested. Collectively, it is essential to
comprehensively evaluate the relationships between an-
nual GPP and different types of integrated or averaged
VIs with various definitions of growing-season.
Accurately modeling the canopy GPP phenology by VI

phenology is another significant question, as the GPP
phenology is important for understanding changes in the
C sequestration, surface energy and water balances
(D’Odorico et al. 2015). The relationship between VI
(NDVI or EVI) and GPP phenology diverges across de-
ciduous forest ecosystems (D’Odorico et al. 2015), with
the root mean square error of the linear model between
VI and GPP phenology across site-years varying from 1–
3 weeks in the literature (Balzarolo et al. 2019; Gonsamo
et al. 2012; Peng et al. 2017a; Peng et al. 2017b). Gener-
ally, the relationship between VI and GPP phenology in
autumn is weaker than that in spring for deciduous for-
ests (D’Odorico et al. 2015; Gonsamo et al. 2012; Yin
et al. 2020), and EVI may outperform NDVI (Yin et al.
2020). Nevertheless, NIRv has been rarely used to cap-
ture the GPP phenology (Yin et al. 2020). Therefore, it is
imperative to compare the abilities of various VIs for
capturing GPP phenology. Furthermore, most studies
use the same inflection point (i.e., the change of curva-
ture) to define both VI and GPP phenology. However,
the seasonal variations in VI and GPP are asynchronous,
as VI responds differently to greenness, wetness and
brightness dynamics (D’Odorico et al. 2015). For in-
stance, the NDVI phenology based on the midpoint
method agrees with the GPP phenology based on the
start of slope point method better than does the NDVI

phenology based on the start of slope point method
(D’Odorico et al. 2015). To date, less work has been de-
voted to changing the definition of VI phenology to
match with GPP phenology.
Whether the summer peak of VI can surrogate that of

GPP is also a pending question, although we have
known that the annual peak growth of vegetation is crit-
ical in characterizing the capacity of ecosystem produc-
tion (Huang et al. 2018). As a pivotal physiological
metric, the GPP peak based on eddy covariance (EC)
dominates the IAV in GPP across the northern hemi-
spheric ecosystems (Xia et al. 2015; Xu et al. 2019; Zhou
et al. 2016; Zhou et al. 2017). In contrast, the NDVI peak
plays a less important role than NDVI phenology in
regulating the IAV in the integral NDVI (a proxy of
GPP) for the broadleaf forests in northeastern China
(Zhou 2020). Huang et al. (2018) reported that the glo-
bal NDVI peak and modeled GPP peak did not change
consistently after 1998 when charactering the long-term
trend of vegetation growth. These discrepancies imply
that the NDVI peak may not be an efficient surrogate of
GPP peak. Although the EVI and NIRv are more sensi-
tive to canopy variation in the dense vegetation than
NDVI (Badgley et al. 2017; Huete et al. 2002), the rela-
tionship between the EVI or NIRv peak and GPP peak
has rarely been explored.
The broadband VIs based on near-surface remote

sensing have the advantages of high temporal resolution
and little influences of the atmospheric perturbations
(Liu et al. 2019a; Richardson et al. 2013). The seasonal
broadband NDVI has been showed to be more related to
GPP than Moderate Resolution Imaging Spectroradi-
ometer (MODIS) NDVI in a Scots pine of Finland
(Wang et al. 2004). However, the broadband VIs-GPP
relationships at the interannual scale are still poorly
evaluated.
In this study, the NDVI, EVI, and NIRv obtained from

tower-radiometers and MODIS were used to track the
IAV in GPP measured with the EC method in a temper-
ate deciduous forest, Northeast China. We aimed to ad-
dress the following questions: (1) How the VI type and
definition of growing-season compromise the VI-GPP
(flux) relationship? (2) Does the match between VI and
GPP phenology vary with VI type and definition of
phenology (definition threshold of VI magnitude) ? (3)
Can the VI peak track the IAV in GPP peak?

Materials and Methods
Site description
The study was conducted at the Maoershan Forest Eco-
system Research Station of Northeast Forestry Univer-
sity, Northeast China with a continual monsoon climate
(45 °24 ' N, 127 °40 ' E, 400 m a.s.l.). The mean (± stand-
ard deviation) air temperature and precipitation were 2.0
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± 0.8 °C and 676 ± 206 mm, respectively, across 2008
−2018 (Liu et al. 2021b). A 48-m-high tower was set up
at the low-part of the sidewall of a valley (Fig. 1). The
vegetation around the flux tower was a 70-year-old tem-
perate deciduous broadleaved forest with ~20 m high
canopy in average (Liu et al. 2021b). The maximum can-
opy leaf area index estimated by the litterfall collection
varied from 5.8 to 6.5 m2 m-2 during 2012−2018 (Liu
et al. 2021a). The major tree species are Betula platy-
phylla, Ulmus japonica, and Fraxinus mandshurica.

Instrument configuration and flux calculation
An open-path EC system (LI-7500, Li-Cor Inc., Lincoln,
NE, USA; CSAT3, Campbell Scientific Inc., USA) was
installed at the 36 m height to measure the vertical tur-
bulent flux of CO2. The original data were recorded at a
frequency of 10 Hz with a datalogger (CR3000, Campbell
Scientific Inc., USA). An 8-level profile of CO2/H2O
concentrations (0.5, 2.0, 4.0, 8.0, 16.0, 20.0, 28.0, and
36.0 m above the ground surface) was measured by the
AP100 (Campbell Scientific Inc., USA) to calculate the
storage flux of CO2 (Wang et al. 2016).
Half-hourly net ecosystem exchange of CO2 (NEE)

was calculated as the sum of eddy flux (Fc) and storage
flux (Fs). The Fc data were processed with the flux meas-
urement standard procedures, including despiking, time-
lag removing, planar-fit tilt correction, frequency re-
sponse correction, density effect and surface heating cor-
rection, and quality control (Aubinet et al. 2012). The Fs
was calculated by the 2-min mean 8-level profile within
each 30 min to minimize the underestimation of the
magnitude of the Fs (Wang et al. 2016). The early-
evening maximum respiration method was used to filter
the nighttime NEE (van Gorsel et al. 2009). There were
eight large gaps (>15 days) due to instrument

malfunction etc.: March 3 to April 21 and July 13 to July
30 in 2010, January 17 to March 20, April 22 to May 11,
June11 to June 25, August 11 to August 27, and Novem-
ber 9 to December 11 in 2013; August 27 to October 25
in 2017. The gaps of daytime NEE during growing sea-
son months (May−September) was filled by the monthly
Michaelis-Menten type light response curve (Falge et al.
2001). The light response curve for September in 2017
cannot be fitted, and the parameters for another year
(2018) with similar air temperature to September in
2017 was used to fill the gap. The ecosystem respiration
was fitted with moisture-modified empirical
temperature-respiration model (Noormets et al. 2008)
for the growing season, and with Lloyd-Taylor model
(Lloyd and Taylor 1994) for the non-growing season.
We extrapolated nighttime respiration into the daytime
to estimate the GPP (Liu et al. 2021b; Reichstein et al.
2005). The footprint of CO2 flux was 800−1200 m dur-
ing the daytime along the valley (90% signal).

Broadband vegetation index calculation
A net radiometer (CNR1 or CNR4, Kipp & Zonen, the
Netherlands) was installed at the 48 m height of the
tower to measure the incoming and outgoing radiation
(W m-2), including solar (short-wave, 300–2800 nm) and
long-wave radiation (4.5–42 μm). The CNR1 was oper-
ated from 2008 to 2015, and the CNR4 was operated
since 2015; The bias of CNR1 relative to CNR4 was re-
moved by a linear model. The incident and reflected
photosynthetically active radiation (PAR, 400–700 nm,
μmol m-2 s-1) were measured by a pair of light quantum
sensors (PQS1 or PARLITE, Kipp & Zonen, the
Netherlands). The footprint of hemispherical radiome-
ters was 176 m radially (90% signal). The drift of radi-
ometers was calibrated by the manufacturer in 2015. All

Fig. 1 A map of study area with the location and photo image of eddy-flux tower. The four squares and the circle represent the four pixels of
MODIS and the reflective footprint of the radiometers installed on the tower (90% of signal), respectively. The vegetation map of China adopted
from Su et al. (2020)
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the radiation data were sampled every 5 s, and averaged
every 30 min and stored in a CR1000 datalogger (Camp-
bell, Scientific, Inc., Logan, UT, USA). We calculated the
broadband VIs, i.e., NDVI (NDVIB), EVI (EVIB) and
NIRv (NIRvB) as:

NDVIB ¼ rNIR−rPAR
rNIR þ rPAR

ð1Þ

EVIB ¼ 2:5� rNIR−rPARð Þ
rNIR þ 2:4� rPAR þ 1

ð2Þ

NIRvB ¼ NDVIB � rNIR ð3Þ

rPAR ¼ PARout

PARin
ð4Þ

rNIR ¼ SOLRout−PARout

SOLRin−PARin
ð5Þ

where rNIR and rPAR are the albedo of near-infrared
and photosynthetically active radiation, respectively.
PARout, PARin, SOLRout, and SOLRin are the reflected
and incident PAR and solar radiation, respectively. The
reflectance of blue band cannot be obtained by the
broadband radiometers, we used the two band EVIB to
substitute for the traditional EVI with blue band (Rocha
and Shaver 2009). A moving window approach that
assigned the 50th percentile of the values around noon
(10:00–14:00 local time) within a 3-d window to the cen-
ter day was used to smooth the broadband VI time
series (Liu et al. 2019a; Sonnentag et al. 2012).

MODIS vegetation index calculation
The MODIS product of 500-m surface reflectance data
(MOD09A1) was obtained from ORNL DAAC
(ORNL DAAC 2018; Vermote 2015), which was an 8-d
composite by selecting observations with favorable view-
ing geometry and minimal cloud cover. The MODIS
VIs, i.e., NDVI (NDVIM), EVI (EVIM) and NIRv (NIRvM),
were calculated using band 1 (red, 620–670 nm), band 2
(NIR, 841–876 nm), and band 3 (blue, 459–479 nm):

NDVIM ¼ rNIR−rRED
rNIR þ rRED

ð6Þ

EVIM ¼ 2:5� ðrNIR−rREDÞ
rNIR þ 6� rRED−7:5� rBLUE þ 1

ð7Þ

NIRvM ¼ NDVIM � rNIR ð8Þ

where rNIR, rRED and rBLUE are the reflectance of near-
infrared, red and blue bands, respectively. The quality
control of MOD09A1 removed all data that were flagged
as cloud, cloud shadow or cirrus cloud, and the view
zenith angle was constrained to < 60°.

Phenology, summer peak and vegetation index
“production” estimation
A double-logistic model (Eq. 9) was used to fit the time
series of GPP and VI (Fig. 2) and define the start and
end of growing season (SOS and EOS). The SOS and
EOS of GPP (SOSGPP and EOSGPP) were defined as the
25% of the maximum daily GPP in spring and autumn,
respectively, because of the highest correlation with the
IAV in GPP (Liu et al. 2021b). Considering the seasonal
asynchrony between VI and GPP, the SOS and EOS of
VI (SOSVI and EOSVI) were defined from 10% to 50% of
amplitude at 5% intervals to compare with SOSGPP and
EOSGPP. The growing season lengths of GPP and VI
were calculated as the number of days from SOS to
EOS. Additionally, the inflection point of curvature
change was also used to test the relationship between
phenology parameters defined by VI and GPP. Because
the relationships between the VI and GPP phenology ex-
tracted from the change of curvature method, and be-
tween integral VI and annual GPP were much weaker
than that for the threshold-method (Figs. A1–2), we
then only focused on the threshold method.

f tð Þ ¼ aþ b
1þ e c−tð Þ=d −

g
1þ e e−tð Þ= f ð9Þ

where a is the background GPP or VI, b and g are the
amplitudes of GPP or VI in spring and autumn, respect-
ively; c and e are the midpoints for spring and autumn
(day of year), respectively; d and f are the transitions
curvature parameters.
It has been reported that the summer peak of GPP

dominated the IAV in GPP across the northern hemi-
spheric ecosystems (Xia et al. 2015; Zhou et al. 2016;
Zhou et al. 2017), thus the peaks of VI were also com-
pared with that of GPP. The integral and mean VIs, the
proxies of “production” (Zhou 2020), were calculated as
accumulating and averaging the fitted VI values across
the growing season defined by different thresholds.

Testing the consistency between vegetation index and
GPP
The R2 of linear regression was performed to assess the
consistency of long-term trends between VI and GPP, and
the mean bias and absolute deviation (MAD) were used to
assess the differences in absolute date between VI and
GPP phenology. A positive (negative) bias of VI phenology
means that it is later (earlier) than GPP phenology.

Bias ¼

XN

i¼1

VI phenology−GPP phenologyð Þ

N
ð10Þ
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MAD ¼

XN

i¼1

j VI phenology−GPP phenology j

N
ð11Þ

where N is the number of years (11 in this
study). The relative importance of summer peak and
growing season length to the IAV of “production”
(GPP or integral VI) was quantified with a multiple
linear regression analysis (Grömping 2006) based on
variance decomposition, and then was compared be-
tween integral VI and GPP.

Results
Relationships between vegetation indices and annual GPP
The relationship between growing-season integral VI
and annual GPP was markedly affected by VI type but
not the definition threshold of VI magnitude (Fig. 3).
Among the six tested VIs, the integral EVIM performed
best for tracking the IAV in GPP, with a narrow range
of R2 (0.60–0.67), followed by the integral NIRvM (R2 =
0.52–0.63). The integral NDVIB defined by the nine
thresholds explained 44%–60% of the IAV in GPP, and
the relationships between integral NDVIB defined from
30% to 50% threshold and annual GPP were highly con-
servative (R2 = 0.58–0.60). Nevertheless, the integral
NDVIM only explained 23%–39% of the change of annual

Fig. 2 Seasonalities of gross primary production and vegetation indices during 2008–2018. NDVIB: broadband normalized difference vegetation
index, EVIB: broadband enhanced vegetation index, NIRvB: broadband near-infrared albedo of vegetation, NDVIM: MODIS normalized difference
vegetation index, EVIM: MODIS enhanced vegetation index, NIRvM: MODIS near-infrared reflectance of vegetation
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GPP, while the integral EVIB and NIRvB could not track
the IAV in GPP (P > 0.05). The growing-season mean VIs
performed generally poorly compared with their integra-
tions (Fig. 3b). Moreover, defining the growing season by
combining different thresholds of spring and autumn
phenology did not improve the R2 (Fig. A3).
Partitioning the annul GPP into growing season length

and GPP peak, the IAV in GPP was predominated by
GPP peak (69%), followed by growing season length
(19%). Using the VIs integrated across the growing sea-
son defined by the optimal thresholds as a proxy of
GPP, only the NIRvM reflected the contributions of sum-
mer peak (69%) and growing season length (14%) to the

“production” accurately. However, the other VIs overes-
timated or underestimated the contributions of summer
peak and growing season length to “production” (Fig. 4).

Comparisons of phenological metrics estimated by
vegetation indices and GPP
The relationships between VI and GPP phenology chan-
ged with VI type, definition threshold, and season (Fig.
5). All the SOS and EOS defined by GPP and VI had no
advanced or delayed trends during 2008–2018 (Figs. A4
and A5). In spring, the broadband VIs performed better
than MODIS VIs in capturing the IAV of SOSGPP, with
the corresponding R2 of 0.20–0.60 and 0–0.35. Among

Fig. 3 Determination coefficient (R2) of the regression of annual gross primary production (GPP) against the integral vegetation indices (VIs) or
mean VIs for the growing-season defined by different thresholds. NDVIB: broadband normalized difference vegetation index, EVIB: broadband
enhanced vegetation index, NIRvB: broadband near-infrared albedo of vegetation, NDVIM: MODIS normalized difference vegetation index, EVIM:
MODIS enhanced vegetation index, NIRvM: MODIS near-infrared reflectance of vegetation
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the tested thresholds for each broadband VI, the 45% of
NDVIB amplitude, 35% of EVIB amplitude, and 50% of
NIRvB amplitude showed the largest R2 (0.46, 0.60, and
0.54), with the positive biases of 5, 4, and 9 d, respect-
ively. However, the SOS derived by the three MODIS
VIs was poorly consistent with SOSGPP, regardless of the
threshold.
In autumn, the relationships between EOSVI and

EOSGPP were relatively insensitive to the definition
threshold of EOSVI. The EOS of MODIS VIs generally
had a higher R2 than that of broadband VIs (0.1–0.73
versus 0–0.76). The 35% of NDVIM amplitude (R2 =
0.73, bias = 6 d) and the 30% of NDVIB amplitude (R2 =
0.70, bias = 7 d) had the tightest relationship with
EOSGPP for the MODIS and broadband VIs, respectively.
Although the 15% of EVIB amplitude and the 10% of
NIRvB amplitude also had high R2 (0.64 and 0.76), the
biases were very large (15 and 28 d).

Comparisons of summer peaks of vegetation indices and
GPP
The peaks of GPP and NDVIM significantly increased by a
rate of 0.30 g C m-2 yr-2 (2%) and 0.004 yr-1 (0.4%), re-
spectively, whereas the peaks of the other tested VIs had
no significant trends (Fig. 6). Surprisingly, the peaks of VIs
had very weak relationships with GPP peak (Fig. 7). The
peaks of NIRvM and NDVIM were weakly consistent with
GPP peak across the 11 years (R2 = 0.39 and 0.31,

respectively), while the peaks of the other VIs could not
track the IAV in GPP peak (R2 < 0.01).

Discussion
Tracking the variation in annual GPP by vegetation index
Our results indicated that the integral NIRvM was a ro-
bust proxy of the IAV of GPP among the six tested VIs,
which was inaccordance with previous studies (Baldoc-
chi et al. 2020; Wang et al. 2021). However, the moder-
ate tight relationship between NDVIM and GPP did not
support using the integral NDVIM as the proxy of GPP
(e.g. Verma et al. 2014; Wylie et al. 2003; Zhou 2020).
Changing the definition threshold of VI growing-season
had little influence on the relationship between the inte-
gral VI and GPP at our site, because the IAV of GPP
was predominated by GPP peak (which was poorly
reflected by the tested VIs) rather than GPP phenology
(Fig. 5; Xia et al. 2015; Zhou et al. 2016). However, for
those sites with a larger contribution of GPP phenology
than GPP peak, the definition threshold of growing sea-
son may be of significance.
The discrepancies in the IAV of the integral VI and

GPP may be attributed to the differences in their sea-
sonal trajectories. First, the weak ability of VI for charac-
tering the summer peak (Fig. 7) reduced the relationship
between the integral VI and GPP (Shi et al. 2017). Sec-
ond, the rapid change of species composition may alter
the VI-GPP relationship because of the species-specific
optical properties (Mbow et al. 2013; Musavi et al.

Fig. 4 Relative importance of the growing season length (GSL) and summer peak to the interannual variation in gross primary production (GPP)
or integral vegetation index (VI). NDVIB: broadband normalized difference vegetation index, EVIB: broadband enhanced vegetation index, NIRvB:
broadband near-infrared albedo of vegetation, NDVIM: MODIS normalized difference vegetation index, EVIM: MODIS enhanced vegetation index,
NIRvM: MODIS near-infrared reflectance of vegetation
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2017). Over the 11 years, the litterfall mass of the pion-
eer species B. platyphylla decreased by 17%, while that
of the two mid-successional species, U. japonica and F.
mandshurica, increased by 28% and 24%, respectively
(Calculated from Sun et al. 2021). Third, the photosyn-
thetic rate was sensitive to environmental factors, so the
GPP was not always high when the VI was high (Nagai
et al. 2010). Additionally, the methods of gap filling and
flux partitioning (Falge et al. 2001; Lasslop et al. 2010;
Reichstein et al. 2005; Tramontana et al. 2020) may also

introduce uncertainties in the VI-GPP relationship. Fi-
nally, improving the cloud screening and considering the
fraction of diffuse radiation is imperative for accurately
modeling GPP (Badgley et al. 2019; Huang et al. 2019).
The solar-induced chlorophyll fluorescence (SIF) can
improve the accuracy of GPP retrievals (Li and Xiao
2020; Lu et al. 2018; Yang et al. 2017). However, the SIF
products are noisy and long-term SIF products are lack-
ing, VIs are still the most widely used indicator of GPP
(Lu et al. 2018).

Fig. 5 Determination coefficient (R2) of the regression, mean bias and mean absolute deviation (MAD) of the phenology estimated from
vegetation indices (VI) against that from gross primary production (GPP). SOS: start of growing season, EOS: end of growing season. NDVIB:
broadband normalized difference vegetation index, EVIB: broadband enhanced vegetation index, NIRvB: broadband near-infrared albedo of
vegetation, NDVIM: MODIS normalized difference vegetation index, EVIM: MODIS enhanced vegetation index, NIRvM: MODIS near-infrared
reflectance of vegetation
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Fig. 6 Interannual variation in the summer peaks of gross primary production (GPP) and vegetation indices. NDVIB: broadband normalized
difference vegetation index, EVIB: broadband enhanced vegetation index, NIRvB: broadband near-infrared albedo of vegetation, NDVIM: MODIS
normalized difference vegetation index, EVIM: MODIS enhanced vegetation index, NIRvM: MODIS near-infrared reflectance of vegetation
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The difference in spatial scale can also explain the
mismatch between integral VI and GPP. The field of
view of radiometers was constant, which was determined
by the installation height. The limited height of tower
resulted in a small viewing area (the radius of viewing
field was 176 m). The EC footprint varied 10–100 times
of the measurements height with atmospheric stability,
wind speed, etc. (Schmid 2002). Marcolla and Cescatti
(2018) suggested that radiometers should be taken about
6–15 times higher than turbulent flux ones, which was
difficult to achieve. The four MODIS pixels matched
better with EC footprint than the radiometers, but it was
impossible to match completely. Additionally, the uncer-
tainty caused by mixed-signals of MODIS is also a po-
tential reason for the difference in MODIS VI and GPP
by EC.

Characterizing the GPP phenology and summer peak by
vegetation index
The six tested VIs had different abilities in capturing the
IAV of SOSGPP and EOSGPP, which was consistent with
previous studies (e.g. D’Odorico et al. 2015; Gonsamo
et al. 2012; Zhao et al. 2020). In spring, the broadband
VIs outperformed the MODIS VIs. This may be a result
of the high uncertainty of SOS estimations by the
MODIS VIs time series with a coarse temporal reso-
lution and cloud contamination, since the phenology

diverged between overstory and understory at our site
(Liu et al. 2019b). Conversely, in autumn with more
sunny days, the narrow band MODIS VIs were more
sensitive to the changes of vegetation features than
broadband VIs during leaf senescence period (Elvidge
and Chen 1995). Among the three broadband VIs, the
NDVIB was sensitive to background influences, thus was
less satisfactory than EVIB and NIRvB (Chang et al. 2019;
Yin et al. 2020). Contrary to the spring, the NDVI per-
formed better than EVI and NIRv for both broadband
and MODIS VIs in autumn. The low solar zenith angle
in autumn at our mid-latitudinal site may introduce un-
certainties for EVI (Sesnie et al. 2012).
The choice of threshold had little effect on the general

trend of phenology (Figs. A4–5; Keenan et al. 2014), but
changed both the relationships and absolute differences
between VI and GPP phenology over the 11 years. In
physiology, the mismatch between VI and GPP phen-
ology is mainly attributed to the time lag between can-
opy greenness and C uptake. The VI (canopy greenness)
generally occurred ahead of GPP in spring and persisted
after cessation of GPP in autumn (Lu et al. 2018; Shen
et al. 2014). Significant mismatch existed between VI
and GPP phenology even though they had strong relation-
ship spatiotemporally (across site-years) in most previous
studies, partly because they used the same inflection point
to define the VI and GPP phenology. For example, the

Fig. 7 Relationships between the summer peaks of gross primary production (GPP) and vegetation indices. NDVIB: broadband normalized
difference vegetation index, EVIB: broadband enhance vegetation index, NIRvB: broadband near-infrared albedo of vegetation, NDVIM: MODIS
broadband normalized difference vegetation index, EVIM: MODIS enhanced vegetation index. NIRvM: MODIS near-infrared reflectance
of vegetation

Liu et al. Ecological Processes           (2021) 10:51 Page 10 of 13



SOSEVIM defined by the change of curvature was 10-d
earlier than SOSGPP across deciduous broadleaved forests
of AmeriFlux sites (Gonsamo et al. 2012; Shen et al.
2014). The NDVIM-, EVIM-, and NIRvM-derived EOSs de-
fined by 20% threshold were later than EOSGPP by 23, 16,
and 15 d, respectively, across the 19 tested deciduous
broadleaf forests (Yin et al. 2020). Changing the definition
threshold of VI reduced the mismatch between VI and
GPP phenology (Fig. 5). Therefore, we recommend using
the threshold-method to define the VI and GPP phen-
ology. First, the relationship between VI and GPP phen-
ology by the threshold-method was higher than that by
the change of curvature method (Figs. 5 and A2), which
was partly consistent with the situation of NDVI (D’Odor-
ico et al. 2015). Second, the curvature-method may fail to
extract SOS and EOS when the curvature of the fitted
curve do not have inflection point (Shen et al. 2014). Des-
pite of the hysteresis in seasonal VI and GPP patterns,
using appropriate definition threshold of VI magnitude
can effectively estimate the GPP phenology. Jointly consid-
ering the R2, bias and MAD, we recommend that using
the 25%–35% of EVIB amplitude to track the SOSGPP, and
using 50% amplitude of NDVIB and NDVIM to capture
the EOSGPP.
However, the peaks of the six tested VIs could not

characterize the IAV of the GPP peak. Although the peaks
of NDVIM and NIRvM were significantly correlated with
GPP peak, they could not capture the long-term increas-
ing trend. There are a few reasons for the failure of VI
peak in indicating the GPP peak. First, the VI (particularly
the NDVI) saturates in summer, thus it only detects the
sunlit leaves of overstory but not the shaded leavers of
overstory and understory (D’Odorico et al. 2015). Al-
though the NIRvM is sensitive at high leaf area index, the
cloud contamination is still a problem for satellite data
(Badgley et al. 2019), particularly for our site usually with
a wet summer (Liu et al. 2021b). Second, the photosyn-
thetic capability of vegetation may vary with environmen-
tal drivers even when vegetation spectral properties were
similar (Zhao et al. 2020). These results indicate the peaks
of VIs should be precautionarily used as proxies of the
IAV of the peak of ecosystem activity or GPP.
As far as we know, this is the first comprehensive

study to investigate the abilities of VIs in capturing
the IAV of the phenology, summer peak and annual
flux of GPP. These results may be not universal, but
has great implications for future remote sensing stud-
ies on GPP. These thresholds can be tested using a
larger dataset, for example, with the dataset of FLUX-
NET (Baldocchi et al. 2001).

Conclusion
The abilities of tower-based broadband and MODIS VIs
on tracking the IAV of GPP were comprehensively

evaluated in the temperate deciduous forest. The
growing-season integral NIRvM best represented the
IAV in annual flux of GPP, and its performance was in-
sensitive to the threshold of magnitude. In contrast, both
VI type and threshold of magnitude were important for
accurately modeling the GPP phenology, of which the
35% of EVIB amplitude in spring and 50% of NDVIM
amplitude in autumn performed best. The peaks of the
six tested VIs could not reflect the IAV in GPP peak.
We concluded that using appropriate VI (and thresholds
of magnitude) could improve the ability of monitoring
annual GPP (and GPP phenology) in deciduous forests.
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