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Abstract

Background: The habitat resources are structured across different spatial scales in the environment, and thus
animals perceive and select habitat resources at different spatial scales. Failure to adopt the scale-dependent
framework in species habitat relationships may lead to biased inferences. Multi-scale species distribution models
(SDMs) can thus improve the predictive ability as compared to single-scale approaches. This study outlines the
importance of multi-scale modeling in assessing the species habitat relationships and may provide a
methodological framework using a robust algorithm to model and predict habitat suitability maps (HSMs) for
similar multi-species and multi-scale studies.

Results: We used a supervised machine learning algorithm, random forest (RF), to assess the habitat relationships
of Asiatic wildcat (Felis lybica ornata), jungle cat (Felis chaus), Indian fox (Vulpes bengalensis), and golden-jackal (Canis
aureus) at ten spatial scales (500-5000 m) in human-dominated landscapes. We calculated out-of-bag (OOB) error
rates of each predictor variable across ten scales to select the most influential spatial scale variables. The scale
optimization (OOB rates) indicated that model performance was associated with variables at multiple spatial scales.
The species occurrence tended to be related strongest to predictor variables at broader scales (5000 m).
Multivariate RF models indicated landscape composition to be strong predictors of the Asiatic wildcat, jungle cat,
and Indian fox occurrences. At the same time, topographic and climatic variables were the most important
predictors determining the golden jackal distribution. Our models predicted range expansion in all four species
under future climatic scenarios.

Conclusions: Our results highlight the importance of using multiscale distribution models when predicting the
distribution and species habitat relationships. The wide adaptability of meso-carnivores allows them to persist in
human-dominated regions and may even thrive in disturbed habitats. These meso-carnivores are among the few
species that may benefit from climate change.
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Introduction
The processes that determine the distribution of the
species occur at multiple spatial scales (Wiens 1989;
Cunningham and Johnson 2006; Thogmartin and
Knutson 2007), e.g., the occurrence of a carnivore spe-
cies in a habitat patch can depend on the factors that
influence the prey densities in their home ranges (third-
and fourth-order selection; Johnson 1980). The occur-
rence can also depend on colonization and dispersal
opportunities available in habitat patch (e.g., ecological
corridors) (Huck et al. 2010; Zemanova et al. 2017).
Thus, the overall occurrence of a species is a function of
multiple factors, each most influential at different spatial
scales. Multi-scale species distribution models can im-
prove the predictive ability compared to single-scale ap-
proaches (Cunningham and Johnson 2006). In multiscale
habitat modeling, it is also important to select the pre-
dictor variables that significantly influence the species
(correct predictors) at the appropriate scales. Failing to do
so or including the correct predictors at wrong spatial
scales can severely bias the results (Bradter et al. 2013).
One of the most commonly followed approaches of
scale selection in multiscale distribution models is to cal-
culate the focal mean of predictor variables within differ-
ent buffer sizes (scales) around the species occurrence
records and by means of appropriate regression tech-
nique such as generalized linear models (GLMs) to re-
gress each predictor variables against the response for
each scale (Steffan-Dewenter et al. 2002; Holland et al.
2004; Gray et al. 2010). The best scale is then selected
by the lowest AIC (Akaike information criterion;
Burnham and Anderson 2004). However, studies have
shown that a single predictor variable can be equally
useful in determining the species occurrence at more
than one scale (Bradter et al. 2013), particularly when
the ecological predictors are spatially autocorrelated
(Legendre 1993). The use of AIC to determine the best
scale in such cases can be affected by spatially autocorre-
lated predictors (Lennon 2000; Hoeting et al. 2006).
Bradter et al. (2013) proposed to evaluate all scales of
the predictor variables with moderate levels of statistical
support against each other, rather than using the single
best scale. Thus, they propose using a more robust ma-
chine learning algorithm, random forest (RF; Breiman
2001; Liaw and Wiener 2002), to overcome the uncer-
tainties mentioned above in multi-scale distribution
models. RF is robust when the ecological variables are
highly correlated (Archer and Kimes 2008; Nicodemus
et al. 2010) or the species occurrence points are limited
(Strobl et al. 2007). RF also has one key advantage com-
pared to traditional regression modeling when selecting
the correct variables. RF not only considers the impact
of each individual predictor but also considers the multi-
variate interactions of variables with each other.
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Cushman and Wasserman (2018) compared multiple lo-
gistic regression and random forest algorithms to study
American martens’ multi-scale habitat selection (Martes
americana). They found that RF outperformed the logis-
tic regression approach. Similar studies report the super-
ior ability of random forest than traditional regression
approaches (Cushman et al. 2010; Evans et al. 2011;
Drew et al. 2010; Rodriguez-Galiano et al. 2012; Schnei-
der 2012; Cushman et al. 2017). Mi et al. (2017) found
that RF demonstrated the best model performance, pro-
vided better model fit, and achieved better species range
maps than the most powerful and commonly used ma-
chine learning algorithms in species distribution models
such as TreeNet (boosted regression tree model), CART
(classification and regression tree), and Maxent (max-
imum entropy).

Climate change is an emerging challenge in biodiver-
sity conservation (Bellard et al. 2012) and plays an im-
portant role in determining the distribution of the
species (Gaston 2003). Studies have suggested that many
species will show range contraction and lose a substan-
tial portion of their suitable habitats or become locally
extinct due to future climate change (Thomas et al.
2004; Warren et al. 2013). Mammals are particularly vul-
nerable to climate change (Smith 2013). It is estimated
that 19% of the total species locally extirpated in US na-
tional parks due to climate change impacts belong to the
order Carnivora (Burns et al. 2003). However, it is also
hypothesized that generalist species by means of eco-
logical plasticity and broader adaptability may show
range expansion and may benefit from future climate
change (Thomas 2013).

Medium-sized carnivores (meso-carnivores) have
broader niches than top carnivores (Tilley et al. 2013)
and are known for their role of scavengers and import-
ant seed dispersers (DeVualt et al. 2011; Prugh et al
2009). In the absence of top predators, meso-carnivores
can have a strong influence in shaping the ecological
communities (Soulé et al. 1988). Mesopredators may act
as top predators in places where the apex predators have
been extirpated locally in a process called mesopredator
release (Soulé et al. 1988). The mesopredator release
may result in the trophic cascade effects (Crooks and
Soulé 1999; Berger et al. 2008).

Thus estimating the distributional changes of meso-
carnivores under future climatic scenarios is of particu-
lar interest. This study assesses the multi-scale habitat
association of four meso-carnivore species in and around
human-dominated regions. We used scale-optimized
predictor variables to predict their current and future
distribution under low and high representative concen-
tration pathway scenarios (RCP 2.6 and RCP 8.5). The
representative concentration pathways (RCPs) are a set
of four new pathways that have been developed for
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climatic modeling as a basis for long-term and near-
term modeling experiments (van Vuuren et al. 2011).

Materials and methods

Study area

Bandhavgarh Tiger Reserve (BTR) is located between 23°
27" 00" to 23° 59" 50"’ North latitude and 80° 47" 75"°
to 81° 15" 45" East longitude in the Umaria district of
Madhya Pradesh, in central India (Fig. 1). The reserve’s
core zone includes the Panpatha Wildlife Sanctuary
(PWS) in the north and Bandhavgarh National Park
(BNP) in the south, spreading over 716 km” The sur-
rounding buffer zone has an area of 820 km?, adding the
reserve’s total size to 1536 km?. The study area repre-
sents moist deciduous vegetation dominated by sal
(Shorea robusta) and sal mixed forests. The overall vege-
tation of the BTR comprises moist peninsular low-level
sal forest, northern dry mixed deciduous forest, dry de-
ciduous scrub, dry grassland, and west Gangetic moist
mixed deciduous forest (Champion and Seth 1968).

BTR supports a wide variety of faunal assemblages
from small invertebrates to the largest bovid in Asia.
There are 35 mammalian species and over 250 species of
birds in the reserve. Major large carnivore species
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include tiger (Panthera tigris), leopard (Panthera par-
dus), sloth bear (Melursus ursinus), Indian wolf (Canis
lupus), Asiatic wild dogs (Cuon alpinus), and striped
hyena (Hyaena hyaena). Golden jackal (Canis aureus),
Indian fox (Vulpes bengalensis), jungle cat (Felis chaus),
Asiatic wildcat (Felis lybica ornata), rusty-spotted cat
(Prionailurus rubiginosus), and fishing cat (Prionailurus
viverrinus) are the medium-sized carnivores in reserve.
The reserve falls within the tropical climatic zone with
three distinct seasons; summer, monsoon, and winter.
The summer season temperature ranges between 40 and
46 °C, with April and May being generally the hottest
summer months. During the winter season, the night
temperature may drop abruptly to a minimum of 5 °C.
There are more than 150 villages located in the buffer
zone of the reserve. The estimated population in and
around the reserve is between 40,000 to 50,000 heads.
Gond and Baiga are the two major tribal communities
living in the study area, and the majority of the popula-
tion depends on the nearby forests for sustenance. Agri-
culture and livestock rearing are the primary means of
livelihood for the local communities. The collection of
non-timber forest produce (NTFP) by local communities
is common and widespread throughout the reserve.
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Species occurrence data and spatial autocorrelation

The spatial occurrence data were obtained in the camera
trapping survey conducted over an extensive semi-urban
buffer zone of the Bandhavgarh Tiger Reserve between
January 2016 to May 2016 and September 2016 to
December 2016 in the reserve buffer zone. In the sec-
ond, phase camera traps were placed in territorial forest
divisions surrounding the reserve from January 2018 to
December 2018. We used the data from 35 pairs of cam-
era traps that yielded 2211 trap nights, and we obtained
a total of 544 independent photo-captures of all four
species considered in this study. At each camera trap
station, we attached a pair of camera traps to the trees
along the roads and trails at the average height of 30-40
cm above the ground. We deployed camera traps in 2x2
km grids overlaid in ArcGIS (version 10.3). The spatial
data is associated with the inherent bias, commonly re-
ferred to as spatial autocorrelation (Dormann et al.
2007). The phenomenon of spatial autocorrelation oc-
curs due to the non-independency of variables sampled
at nearby locations from each other (Tobler 1970). Vari-
ous methods have been developed to account for spatial
autocorrelation (Dormann et al. 2007). We used two
ways to correct for the spatial autocorrelation in the spe-
cies occurrence data. First, we implemented spatial filter-
ing using the SDM toolbox (Brown 2014) in ArcGIS
(version 10.3) to reduce the spatial bias in the species
presence records. The camera trap photo-captures were
spatiality rarified at a distance of 1000 m from each
other.

Secondly, we tested whether or not the spatially rari-
fied occurrence records assumed the random distribu-
tion after implementing spatial filtering by calculating
Global Moran’s I (Moran 1950) using the Spatial Auto-
correlation tool in ArcGIS (version 10.3) (Supplementary
S1). After accounting for spatial bias, we retained a total
of 55, 60, 49, and 51 spatially rarified occurrence records
of Indian fox, golden jackal, jungle cat, and Asiatic wild-
cat, respectively, for further RF modeling (Supplemen-
tary S2, S3, S4, and S5). Lacking the real absence points,
we randomly generated pseudo-absence points in ArcGis
(version 10.3) in an approximately equal number to the
actual occurrence points to deal with the problems aris-
ing from unbalanced prevalence (Titeux 2006). The im-
balance between the proportion of presence and absence
classes causes bias in the model predictions and model
fit (Chawla et al. 2003; Chen et al. 2004). In the imbal-
anced data set, the data’s bootstrap is biased toward the
majority class (presence or absence), causing the major-
ity class to over-predict. The minority class remains
under-predicted. To correct the unbalanced prevalence,
we generated twice the random pseudo absence points
as the species occurrence records for each species. We
then removed the absence points within the buffer
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radius of 500 m of the original occurrence points to re-
duce the number of false negatives (Mateo et al. 2010)
and achieve a balanced data set with an approximately
equal proportion of presence and absence classes. The
buffer distance can be either set arbitrary (as in this
study) or based on species attributes (Graham and
Hijmans 2006). We used only the occurrence locations
collected within the study area for this study. No add-
itional presence records were obtained from any open
access data repository platforms such as GBIF (Global
Biodiversity Information Facility).

Environmental predictors

This study used 40 environmental predictor variables
(Table 1) to predict the species habitat relationships.
The predictor variables were grouped into five broad
categories: climatic, topographic, landscape composition,
vegetation, and human-influenced. The bioclimatic vari-
ables were obtained from the WORLDCLIM database
(www.worldclim.org). We removed highly correlated
predictor variables (|r| > 0.70) using r package “rfUtili-
ties” to avoid multi-colinearity among predictor variables
(Dormann et al. 2013) (Fig. 2).

We obtained the study area’s digital elevation map
from the Shuttle Radar Topography Mission (SRTM)
elevation database and resampled at 90-m resolution
(http://srtm.cs.cgiar.org). Slope, aspect, and topographic
ruggedness index was derived from the elevation layer
using surface analysis tools in the Spatial Analyst tool-
box in ArcGIS (10.3) at the spatial resolution of 90 m.
The land use land cover map (LULC) (resampled at 90
m spatial resolution) corresponding to the year 2005 was
obtained from the Indian Institute of Remote Sensing
(IIRS, http://iirs.gov.in) and reclassified into nine land
use categories. The nine categorical habitat variables
were derived from the LULC map using the reclassify
tool in ArcGIS. During reclassification, the habitat vari-
able of interest was given the value of 1 while keeping all
other variables’ values at 0. In this way, a reclassified
raster layer was derived with the raster values on a con-
tinuous scale. Road and river density were calculated
using the line density tool in ArcGIS at the spatial scale
of 1000, 2000, and 3000 m.

Monthly Normalized Difference Vegetation Index
(NDVI) version 6 (MOD13Q1) generated every 16 days
available at the spatial resolution of 250 m was obtained
from the MODIS website (https://Ipdaac.usgs.gov/prod-
ucts/mod13qlv006/) for the year 2013. We reclassified
the 23 NDVI layers into three seasons corresponding to
summer, wet, and winter seasons and used their average
values. The categorical variables were resampled using
the nearest neighbor resampling technique, and continu-
ous variables were resampled using bilinear interpolation
at the spatial resolution of 90 m in ArcGIS (10.3).
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Table 1 The set of 40 predictor variables used in multi-scale habitat modeling of Indian fox, golden jackal, jungle cat, and Asiatic
wildcat at most influential spatial scale. All the variables were resampled at the spatial resolution of 90 m. The LULC layer was
obtained from Indian Institute of Remote Sensing for the year 2005

Variable type Variable Indian fox Golden jackal Jungle cat Asiatic wildcat
Topographic Elevation 3000 1000 2500 5000
Slope 5000 1000 2500 4000
Aspect 3000 3500 5000 3500
Terrain roughness 2000 4000 1000 5000
River density 1000, 2000, 3000 1000, 2000, 3000 1000, 2000, 3000 1000, 2000, 3000
Bio-climatic Bio1 2500 3500 1500 3500
Bio2 1000 4000 500 5000
Bio3 5000 1000 3500 4000
Bio4 5000 1500 3000 4000
Bio5 2500 4000 3500 1500
Bio6 500 3500 4500 4000
Bio7 3000 500 4500 1000
Bio8 2000 3500 4000 5000
Bio9 2000 2000 2000 1500
Bio10 1500 5000 1000 4500
Bio11 3500 3000 5000 4500
Bio12 1500 5000 500 2500
Bio13 3000 1000 1000 2000
Bio14 4000 3500 500 1500
Bio15 5000 4000 5000 500
Bio16 500 1000 500 5000
Bio17 500 1000 1500 1000
Bio18 4000 3000 2000 2000
Bio19 5000 500 3500 500
Actual evapotranspiration (summer) 2500 1000 3500 3500
Actual evapotranspiration (wet) 1500 3000 2500 2000
Actual evapotranspiration (winter) 3000 5000 2000 5000
Landscape composition Sal dominated 4500 3000 2500 1500
Sal mix 3500 3000 2000 3500
Dry deciduous 5000 2500 5000 2500
Moist deciduous 4000 2000 3500 1000
Degraded 1500 4500 3500 5000
Scrub 4000 5000 5000 5000
Vegetation NDVI (summer) 5000 4500 5000 500
NDVI (winter) 3500 2500 2500 2000
NDVI (wet) 3500 3000 3000 2000
Human influenced Human settlements 2500 3000 4500 4500
Human population density 5000 2000 1000 3500

Road density

Farmlands (croplands)

1000, 2000, 3000
4000

1000, 2000, 3000
4500

1000, 2000, 3000
5000

1000, 2000, 3000
1000

Predictor variables are classified in five groups (topographic, climatic, landscape composition, vegetation and human influenced). Road and river density were
calculated at three different spatial scales (1, 2, 3 km). The future projections of bioclimatic variables were downloaded from WorldClim data website (https://
worldclim.org/data/index.html). The actual evapotranspiration data was downloaded from MODIS website (https://modis.gsfc.nasa.gov/data/dataprod/mod16.php).
The population density data for India was downloaded from WorldPop website (https://www.worldpop.org/).
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Fig. 2 Multi-colinearity among the predictor variables used in the final multi-scale habitat modeling of all four species
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Future climatic data

We modeled the potential distribution of all four species
under two representative concentration pathway scenarios
(RCP 2.6 and RCP 8.5) developed by Model for Inter-
disciplinary Research on Climate change (MIROCS5) for the
two timelines (the 2050s and 2070s) (Watanabe et al. 2010).
These scenarios project the global greenhouse gas emis-
sions based on the assumptions for a wide range of
variables such as human population size, global energy con-
sumption, and change in land-use patterns. Global climate
models (GCMs) were downloaded from the WordClim
website (http://www.worldclim.org/cmip5_30s). The digital
layers of GCMs were based on the same bioclimatic layers
used to predict the current distribution maps. The climatic
models used in this study represent two extreme scenarios
of greenhouse gas emissions. The RCP 2.6 assumes that
global CO, emissions would peak around 2020s and fall to
values around zero by 2080. RCP 8.5 is regarded as the
worst climatic scenario with higher predicted greenhouse
gas emissions. RCP 8.5 assumes that the global CO, emis-
sions would increase at a higher rate during the first half of
the century and stabilize by 2100. However, the concentra-
tions are three times those in 2000 (Calvente et al. 2009;
van Vuuren et al. 2011; Wayne 2013; Rogelj 2012).

Multi-scale data processing

We calculated the focal mean of each predictor variable
across ten spatial scales (500-5000 m) surrounding each
species occurrence location (presence/pseudo absence)

using a moving window analysis with the focal statistic
tool in ArcGIS (10.3). Each spatial scale ranging from
500 to 5000 m surrounding each location was used as
search radii for calculating the focal mean of all the pre-
dictor variables expect road and river density. The road
and river density were evaluated at three spatial scales
independently (1000, 2000, 3000 m).

Univariate random forest models and scale selection

RF is an ensemble of classification and regression tree
(CART) based on the bootstrap aggregation method
(also called bagging). The trees are created by drawing
samples or sub-samples (bootstrap samples) from the
original training data and fitting a single classification or
regression tree to each sample. The data that is not part
of the bootstrap sample is referred to as out-of-bag
(OOB) observations and used to estimate the prediction
error rates (OOB error rates). Random forest increases
the randomness (diversity) among classification trees by
resampling the data with replacement. In this way, RF
randomly changes the predictive variable sets over the
different tree construction processes. Each classification
tree is grown using different bootstrap subsample Xi of
the original training data set X (Liaw and Weiner 2002).
The bootstrap subsample Xi consists of two-thirds of
the observations of the original data set. The observa-
tions excluded from the bootstrap subsample are not
used in the construction of the ith tree. In the end, each
observation of the original training sample is out-of bag
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in one-third of the trees constructed. The proportion of
the misclassifications over all out-of-bag observations is
called an out-of-bag-error rate, usually given in percent-
age. Following McGarigal et al. (2016) and Cushman
et al. (2017), we ran a series of univariate RF models for
each predictor variable across ten spatial scales (500—
5000 m) to select the most appropriate scale based on
the lowest OOB error rates. We used the OOB error rate
as a measure of choosing the most suitable predictive
spatial scale. In calculating OOB error rates, a training
data set was created by sampling with replacement from
two-thirds of the data (~ 66%) for each classification tree
in a random forest. Each tree was then used to predict
the remaining one-third (~34%) (out-of-bag sample) of
the data, and finally, the OOB error rate was computed
as the proportion of times that the predicted class was
not the same as the true class (Breiman 2001; Liaw and
Wiener 2002). The scale with the minimum OOB error
rates was selected as the most influential spatial scale of
the predictor variables.

Multi-scale random forest modeling and variable
selection

We used scale-optimized predictor variables (scales with
lowest OOB error rate) for multi-scale random forest
modeling using the package “randomForest” imple-
mented in R (R Core Team 2019). We executed random
forest as a regression with the following specifications
for each species: 2000 trees (number of bootstrap itera-
tions), ~34% data withheld for each tree (out-of-bag
[OOB] sample), and m (number of independent metrics
permuted at each tree node) optimized to the OOB error
estimate following Liaw and Wiener (2002). We followed
Murphy et al. (2010) and adopted their methodology to
remove redundant metrics, metric selection, evaluating
model fit, and test overall model significance. In the first
step of multivariate modeling, we used the package “rfU-
tilities” to account for multi-collinearity among predictor
variables by removing the redundant variables using QR
matrix decomposition at 0.05 threshold (Becker et al
1988). The package “rfUtilities” performs QR decompos-
ition on the matrix of predictors to calculate R>. A pre-
dictor is regressed on all other predictors to calculate R>.
If R? is less than a particular threshold value, the pre-
dictor is said to have failed the test and is subsequently
removed from the matrix (see Becker et al. 1988 for de-
tails). The multi-collinearity was tested for scale-
optimized variables after evaluating the variables for
scale selection. Though RF is known to handle a broad
set of predictors, however, a large number of predictor
variables make ecological interpretation difficult, intro-
duce noise, and decrease the model’s explanatory power
(Murphy et al. 2010). The RF model output variables are
ranked in order of their importance (/) based on
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decreasing mean squared error (MSE). However, Mur-
phy et al. (2010) used a new metric model improvement
ratio (MIR), which is calculated as [In/Imax], where In is
the importance of a given metric and [max is the max-
imum model improvement score. Our model selection
process was based on the procedures briefly described
above using MIR. We calculated the MIR scores and
then iterated through MIR thresholds (0 to 1 in 0.10 in-
crements) and retained all metrics above this threshold
that minimized the model MSE and maximized the per-
centage of variation explained (Murphy et al. 2010). Re-
moving the redundant variables results in the more
parsimonious model with less random noise, and may
also improve model OOB error rates (Murphy et al
2010).

For the variable selection procedures (e.g., Sandri and
Zuccolotto 2005; Diaz-Uriarte and de Andrés 2006; Gen-
uer et al. 2010), we followed Genuer et al. (2010) and
Murphy et al. (2010) and used permuted variable im-
portance. We identified the most parsimonious model
by applying MIR (Murphy et al. 2010). MIR makes use
of the permuted variable importance, represented by the
mean decrease in model OOB error rate, standardized
from zero to one. In this approach, the variables are sub-
set using 0.10 threshold increments, with all variables
above this retained for each model (Evans and Cushman
2009; Murphy et al. 2010). This approach is based on
the un-scaled permutation importance calculated by per-
muting each predictor in turn and using the difference
in prediction error (OOB error) before and after permu-
tation as a measure of variable importance (Liaw and
Wiener 2002; Strobl et al. 2008).

Model validation

We approached model validation using model fit, sensi-
tivity (proportion of observed positives correctly pre-
dicted), specificity (proportion of observed negatives
correctly predicted), area under the ROC curve, Kappa
Statistics, and true skill statistics (TSS). We assessed
model fit using the OOB error estimate. The area under
the ROC curve (AUC) is a commonly used measure of
model performance in the species distribution modeling.
Models with AUC values of 0.7-0.9 are considered use-
ful, whereas the values higher than 0.9 are regarded as
models with excellent discrimination abilities or high
predictive power (Hosmer Jr. et al. 2013; Swets 1988).

Multiscale random forest distribution maps

Following the procedures of univariate random forest
models (scale optimization), selection of important vari-
ables, and model assessment, we used scale-optimized
variables to predict the final distribution maps using the
r package “randomForest” in R (Liaw and Weiner 2002).
The future distribution maps were predicted using the
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same scale-optimized variables. The bioclimatic variables
corresponding to the greenhouse gas emission scenarios
of RCP 2.6 and RCP 8.5 were used in future prediction
maps for the timeline 2050s and 2070s. We converted
the continuous distribution probability maps for current
and future climatic scenarios into the binary distribution
(0,1) using a 0.5 threshold in the final step. The change
in the distribution (loss and gain) was calculated in the
raster calculator. The distributional change in the output
maps was classified as gain (distributional gain in the
habitat), loss (distributional loss in the habitat), and
stable (no change in the distribution).

Results

Univariate scaling

A total of ten spatial scales (500-5000 m) for each pre-
dictor variable except road and river density were chosen
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for univariate random forest modeling. Overall, the
scales at a broader spatial extent (5000 m) had the high-
est selection frequency. In jackal, the scales at fine (1000
m) and medium (3000 m) spatial extent occurred more
frequently than the broadest scale (Fig. 3a). Jungle cat
showed a strong relationship for predictor variables at
the broadest scale (Fig. 3b), Asiatic wildcat selected
variables more frequently at medium to broader scale
(Fig. 3¢), and Indian fox perceived habitat variables more
regularly at the broadest scale (Fig. 3d).

Multivariate modeling and variable importance

Following the variable selection procedure based on
model improvement ratio (MIR) in random forest algo-
rithm, a total of 13, 8, and 12 variables were retained in
the final multivariate models of Indian fox, jungle cat,
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golden jackal, and Asiatic wildcat (Fig. 3a—d), briefly de-
scribed in the following components. The selected,
scaled variables’ contribution is provided in the supple-
mentary information (Supplementary S6).

Indian fox

The aspect was the most important predictor variable,
and road density within 1000 m radius was the least im-
portant variable based on the variable importance plot
(Fig. 4a). The variable importance plot shows variable
importance measured as the increased mean square
error (MSE), which represents the deterioration of the
model’s predictive ability when each predictor is re-
placed in turn by random noise. Higher MSE indicates
greater variable importance. Only two predictor variables
(degraded forests and actual evapotranspiration in sum-
mer) at a small spatial scale (1500-2500 m) were in-
cluded in the multivariate random forest model of
Indian fox (Fig. 4a), two predictor variables (aspect and
sal mix forests) were included at medium scales (3000—
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4000 m), and the rest of the eight variables were in-
cluded at broadest scales (> 4000 m).

Jungle cat

Seven of the thirteen predictor variables were selected at
the broadest scale (>3500 m); three variables, human
population density (hump1000), biol4 (biol4_500), and
biol7 (biol7_1500), were selected at a small scale (500—
1500 m); and sal dominated forest (sal2500) was chosen
at medium scale (Fig. 4b). The variable importance plot
showed human settlements within the focal radius of
4500 m to be the most important predictor variable of
jungle cat occurrence and degraded forests at the spatial
scale of 3500 m to be the least important predictor vari-
able (Fig. 4b).

Golden jackal

A total of eight predictor variables were included based
on the variable importance plot in the golden jackal’s
multivariate random forest model (Fig. 4c). Aspect
within the focal radius of 3500 m was the most
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important variable, and biol7 within the focal radius of
1000 m was the least important variable determining the
habitat associations of the golden jackal. Four variables
in order of their decreasing importance selected at a
small spatial scale (1000-2000 m) retained in the final
model were human population density (hump2000), ac-
tual evapotranspiration in the summer season (aet-
sum1000), slope (slopel000), and biol7 (biol7_1000).
Three variables in order of their decreasing importance
at a broader spatial scale (>3500 m) were aspect (as-
pect3500), biol4 (biol4_3500), and percentage of scrub
habitat patches (scrub5000).

Asiatic wildcat

A total of 13 important variables were selected based on
MIR in the final multivariate model of Asiatic wildcat
(Fig. 4d). Six variables selected at the broadest scale
(>3500 m) in order of decreasing importance were
the percentage of scrub habitats available (scrub5000), hu-
man settlement (settlement4500), human population
density (humn3500), slope (slope4000), actual evapotrans-
piration in summer season (aetsum3500), and percentage
of degraded forest patches (degraded5000). Five variables
selected at small spatial scale (500-2000 m) included Nor-
malized Difference Vegetation Index in summer season

Page 10 of 17

(ndvisum500), percentage of moist deciduous forests
(moistdec1000), biol4 (biol4_1500), biol7 (biol7_1000),
and percentage of agricultural land (farmland1000).

Partial dependence plots

Partial plots show the marginal effect of single predictor
variables included in the respective RF model while
keeping the impact of all the other variables on average.
The individual species-specific partial dependency plots
are provided in Supplementary material S7.

Predicted distribution under current and future climatic
scenarios

The distribution of meso-carnivores was predicted using
the scale optimized predictor variables selected in the
process of variable importance in multiscale random for-
est models. A total of 39,290.36 (25.57%), 39,211.57
(25.52%), 71,960.76 (46.84%), and 100,015.63 (65.11%)
hectares of suitable habitat exists for golden jackal, In-
dian fox, jungle cat, and Asiatic wildcat, respectively
under the current climatic scenario (Table 2).

Suitable areas for Indian fox and jackal were in the
eastern and southwestern parts of the reserve, including
scrubs, grasslands, degraded forest patches, and a mosaic
of croplands and natural vegetation (Fig. 5a, b).

Table 2 Change in the predicted distribution of golden jackal, Indian fox, jungle cat, and Asiatic wildcat in and around Bandhavgarh
Tiger Reserve, Madhya Pradesh, India under low (RCP 2.6) and high (RCP 8.5) representative concentration pathway scenarios for the
years 2050s and 2070s using the model developed by Model for Inter-disciplinary Research on Climate change (MIROC5)

Species Scenario Total stable habitat (ha) Gain (ha) Gain (%) Loss (ha) Loss (%) Net gain/Loss (ha) Net gain/Loss (%)

Jackal Current 39,290.36
2050s RCP 26 51,262.55 13,865.52 3529 189333 4.82 11,972.19 3047
2050s RCP 85 47,478.25 9409.93 23.95 1222.04 3.1 8187.89 —7.38
2070s RCP 26 41,96844 5586.23 1422 290815 740 2678.08 —11.60
2070s RCP 85 41,968.44 5586.23 14.22 2908.15 740 2678.08 0.00
Current 39211.57

Indian Fox 2050s RCP 26 43,530.07 4653.36 11.87 334.86 0.85 431850 11.01
2050s RCP 85 42,095.30 3139.79 8.01 256.07 0.65 2883.73 -330
2070s RCP 26 42,149.66 342423 873 486.14 124 2938.09 0.13
2070s RCP 85 38,741.98 55153 141 102112 260 —469.59 —8.08

Jungle cat Current 71,960.76
2050s RCP 26 80,318.84 14,35559 1995 5997.52 833 8358.08 11.61
2050s RCP 85 88614.67 1993316 27.70 327925 456 16,653.91 1033
2070s RCP 2.6 73,828.09 10,72572 1490 8858.39 12.31 1867.33 - 16.69
2070s RCP 85 77,264.14 12,665.54 1760 736217 10.23 5303.38 4.65

Asiatic wildcat  Current 10,0015.63
2050s RCP 26 10,6635.59 794521 7.94 1325.25 1.33 6619.96 6.62
2050s RCP 85 10,4189.15 5034.70 503 861.18 0.86 4173.52 -229
2070s RCP 26 98,915.71 1448.17 1.45 2548.08 2.55 —1099.91 —5.06
2070s RCP 85 10,0382.79 2797.06 2.80 2429.89 243 367.16 148
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Jungle cat preferred moist and dry deciduous forests,
scrubs, grasslands, and degraded habitat patches around
human habitations at the reserve’s core-buffer interface
(Fig. 5¢) and most suitable areas for Asiatic wildcat con-
sisted of moist and dry deciduous forests present
throughout the reserve (Fig. 5d).

We predicted the change in the distribution of
meso-carnivores under the most conservative emission
pathway scenario (RCP 2.6) and the worst emission
scenario (RCP 8.5). Our model predicted an overall
gain in all four species’ habitats under all the

scenarios considered in this study (Table 3). The
highest gain in habitat was predicted for jackal (35%)
under RCP 2.6 for the timeline 2050, and the lowest
gain was predicted for Indian fox (1.41%) under RCP
8.5 for the timeline 2070 (Table 3). Our model pre-
dicted the highest loss in habitat for jungle cat
(10.25%) under the RCP 8.5 scenario for the timeline
2070 (Table 3). The gain in the habitat of Indian fox
was predicted in the southwest part of the reserve
under all emission scenarios (Fig. 6), and the gain in
the habitat of the golden jackal was predicted in the

Table 3 Model validation metrics including model OOB error, sensitivity, specificity, Kappa, TSS, AUC, and significance (p), for each

model

Model Model OOB error (%) Sensitivity Specificity Kappa TSS AUC p value
Asiatic wildcat 0.19 0.733 0.86 0.57 0.61 0.79 0.001
Jungle cat 0.28 0.64 0.79 043 044 0.71 0.001
Golden jackal 0.16 0.81 0.85 0.66 0.66 0.83 0.001
Indian fox 0.09 0.94 0.82 0.82 0.83 091 0.001
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north, east, and southwest of the reserve under RCP
2.6 for the timeline 2050 (Fig. 6).

The gain in the jungle cat’s habitat was predicted to-
ward the core areas of the reserve (Fig. 7).

The habitat was predicted to remain stable for golden
jackal under RCP 2.6 and RCP 8.5 for the 2070s. Our
model predicted the habitat to remain stable for Indian
fox under all scenarios, with small amounts of loss pre-
dicted under RCP 8.5 for the 2070s. The highest gain in
the total stable habitat for jungle cat was predicted
under RCP 8.5 for the 2050s, while the Asiatic wildcat
habitat was predicted to remain constant under all sce-
narios considered in this study.

Model assessment

All four models corresponding to Asiatic wildcat, jungle
cat, golden jackal, and Indian fox were well supported
and significant at P < 0.001 (Table 3). The model for the
Indian fox was discriminately accurate compared to
other species. Models for all four species performed well
based on model OOB error rate, though the Indian fox
model had the lowest OOB error rate, highest AUC,
TSS, and Kappa values (Table 2) compared to the other
three species.

Discussion

In this study, we designed our modeling approach to pay
explicit attention to selecting the most appropriate
spatial scales based on new metrics (OOB error rate)
compared to the traditional information criteria such as
AIC. We aimed to identify the multi-scale drivers of spe-
cies distribution using more efficient and accurate mod-
eling techniques. The variables of most importance in
the multivariate random forest models of all four species
indicate that the landscape composition has a dominant
influence on predicting the occurrence of meso-
carnivores. We present the first attempt of using mul-
tiple scale optimization models to predict the potential
change in the distribution of meso-carnivores under the
impacts of future climate change using a random forest
algorithm. Random forest algorithm is known to be ro-
bust to the situations when the ecological variables tend
to be highly co-related (Bradter et al. 2013) and outper-
forms the most commonly used machine learning algo-
rithms in species distribution modeling (Mi et al. 2017).
The “ensemble” modeling approach, which combines
predictions across different modeling approaches, is gen-
erally regarded to perform better than single modeling
approaches. However, a recent study compared the
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predictive performance of ensemble distribution models
to that of individual models and they report no particu-
lar benefit to using ensemble modeling approaches over
individually tuned models (Hao et al. 2020). The high
predictive success and inclusion of scale-optimized vari-
ables that drive the distribution of meso-carnivores sug-
gest that these multi-scale niche models may tightly
reflect the realized niches of these four species. Thus
random forest algorithm may be highly effective at de-
scribing the realized niches across complex landscapes.
The model improvement ratio (MIR, Murphy et al
2010) is regarded as an effective method of identifying a
more parsimonious set of predictor variables and thus
improves the overall model performance (Evans and
Cushman 2009).

Scaled variables and partial dependency plots

Our multi-scale and multi-species models selected pre-
dictor variables at small (500 m), medium (2000-3000
m), and large spatial scales (>3500 m). We observed a
relatively large difference between the smallest and lar-
gest spatial scales selected in the multi-scale models of
all four meso-carnivores considered in this study, which
indicates the processes determine the distribution of
species across multiple spatial scales (Bradter et al.

2013). Our findings agree with the studies that explicitly
observe various predictors at specific spatial scales that
are most influential in determining the species-habitat
associations in multiscale habitat modeling. All four spe-
cies selected various groups of predictor variables at dif-
ferent spatial scales. The jungle cat responded to the
human-influenced variables such as human population
density (humpl000), permanent human settlements
(settlemnt4500), and degraded habitat patches (de-
graded3500) at small and broader spatial scales indicat-
ing the relatively high tolerance level of jungle cat for
the human population within their immediate vicinity.
Most of the landscape composition variables were influ-
ential at medium and broader spatial scales that may
correspond to the third order of habitat selection of jun-
gle cats (Johnson 1980). A higher predicted occurrence
of jungle cat was recorded with increasing amounts of
moist deciduous forests, sal dominated forests, scrubs,
and dry deciduous forests. Rodents are the substantial
portion of jungle cats’ diet, and habitats such as scrubs,
dry deciduous forests, and human settlements may be
used for foraging on rodents. The multimodal relation-
ship between jungle cat and degraded forest patches in-
dicates specific tolerance limits at which jungle cat
occurrence is recorded highest. The highest predicted
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occurrence of the jungle was recorded at high road
density within the focal radius of 1 km showing the
jungle cat’s affinity toward more open areas. Our multi-
scale habitat suitability model indicates that dry and
moist deciduous forest patches, scrubs, degraded forest
patches, forest patches around human settlements, with
low precipitation, are the preferred habitats of jungle
cats (Kalle et al. 2013).

Asiatic wildcat was previously reported to be distrib-
uted exclusively in arid and semi-arid parts of western
India. Recently, however, the Asiatic wildcat was re-
corded in the camera trap survey in the moist deciduous
forest of Central India (Rather et al. 2017, 2019), indicat-
ing the range expansion in the habitat of Asiatic wildcats
in India. Dry and moist deciduous forests were among
the most important variables determining its distribu-
tion. Among human-influenced variables, human popu-
lation density, degraded forest patches, and human
settlements were most influential in predicting the distri-
bution of wildcat at a larger spatial scale, indicating the
tendency of wildcats to perceive the human disturbance
at the broadest scale. The foraging sites for Asiatic wild-
cats may be located in the habitats associated with high
rodent abundances such as farmlands, scrubs, and habi-
tat patches near human settlements, which were most
influential at small and broad scales.

Indian fox is an opportunistic omnivore generally oc-
curring in dry savannah and open grassland habitats
(Vanak and Gompper 2010). Indian fox selected land-
scape composition variables such as moist deciduous
forests (moistdec4000), sal dominated forests (sal4500),
scrubs (scrub4000), grasslands (grassland5000), sal mix
forests (salmix3500), and farmlands (farmland4000) at
broadest scales. In semi-arid landscapes, the grasslands
are the important determiners of its distribution (Vanak
and Gompper 2010). Our study found habitats such as
moist deciduous forests, sal dominated forests, scrubs,
sal mix forests, and farmlands were equally important
variables of its distribution. Highest predicted occur-
rences were recorded at higher percentages of degraded
forests and farmland.

In contrast, the occurrences of Indian fox declined at
higher amounts of grasslands in our study area, conflict-
ing with the findings of Vanak and Gompper (2010).
Thus in tropical deciduous forests, the grasslands may
not be important variables of fox distribution as in
savannah habitats. The highest occurrences of Indian
foxes were predicted at high road density values within
the focal radius of 1 km, suggesting the affinity for open
habitats at the fourth-order of habitat selection.

Golden jackals are generalist and opportunistic omni-
vores usually associated with open habitats and semi-
urban landscapes around human habitations. Our
models predicted topographic variables to be significant
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predictors determining its distribution in tropical moist
deciduous forests. Only two landscape composition vari-
ables, dry deciduous forest (drydec2500) within the focal
radius of 2500 m and scrubs at the home range level
(5000 m), were important variables determining the
jackal occurrences. Directionality (aspect), precipitation
of the driest month (biol4), actual evapotranspiration in
summer (aetsum1000), gentle slopes, and precipitation
of driest quarter (biol7_1000) were the most important
variables of its distribution.

Predicted distribution and range expansion

All meso-carnivores showed the highest predicted occur-
rences in habitats represented by significant deforest-
ation, habitat degradation, and human-induced
disturbances such as livestock grazing. Our models pre-
dicted that range expansion would be related to the cli-
matic and landscape composition predictors under both
the low and high emission scenarios. Among the biocli-
matic variables, only precipitation-based variables (biol4
and biol7) were significant for the distribution of all
four species. All four species showed high predicted
occurrences at the low amounts of precipitation of the
driest month (bio14) and the driest quarter (biol7), indi-
cating the preference for arid climatic conditions. Under
the RCP 8.5 scenario, India’s mean warming is predicted
to be likely in the range of 1.7-2 °C by the 2030s and
3.3-4.8 °C by the 2080s relative to pre-industrial times.
Precipitation under the same scenario is expected to in-
crease by 4% to 5% by 2030s and from 6% to 14% toward
the end of the century (Chaturvedi et al. 2012). The
range expansion in Indian fox, golden jackal, and wildcat
was predicted in degraded forests. In contrast, the range
expansion in the jungle was predicted in densely forested
habitats toward the reserve’s core zone. The high pre-
dicted occurrences and the range expansion of meso-
carnivores in dry and fragmented habitats are consistent
with India’s future climatic conditions. Studies investi-
gating the impacts of climate change on forests in India
report that about 77% and 68% of India’s forest grids are
likely to experience a shift in forest types under A2 and
B2 scenarios (Ravindranath et al. 2006). The anthropo-
genic stresses, including livestock grazing, biomass col-
lection for firewood and timber, and the fragmented
nature of forests, make the forests more vulnerable to
climate change. Thus, it is unlikely that forest area will
expand in India (Ravindranath and Sukumar 1998).
Meso-carnivores have been reported to expand their
range and thrive in human-dominated landscapes (Prugh
et al. 2009). Similar results of range expansion in meso-
predators are reported from North America, where apex
predators have lost 2-76% of their ranges, and meso-
carnivores have expanded their range by 60% (Prugh
et al. 2009). Mesopredators reportedly broaden their
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distribution as the ranges of apex predators decrease
(LaPoint et al. 2015). The ranges of tigers are predicted
to decrease by 23% in reserve by 2050 (Rather et al.
2020). Habitat fragmentation, deforestation, anthropo-
genic impacts, and habitat degradation affect large and
apex predators negatively compared to mesopredators
(Ripple et al. 2014; Salek et al. 2015). These conditions
have been accelerated by recent and ongoing climate
changes (Brook et al. 2008). The species can adapt to cli-
mate change by either shifting their ranges to remain
within the appropriate climatic conditions or by means
of adaptations whereby species can alter their behavior
or physiology in response to changing temperatures
(Foden et al. 2013; Pacifici et al. 2015). The broad adapt-
ability of meso-carnivores to cope with habitat fragmen-
tation and tolerate the human-induced changes enables
them to thrive under fragmentation and disturbance
conditions. The species with broad niches have benefited
from climate change (Pandey and Papes 2017). Indian
fox, golden jackal, jungle cat, and Asiatic wildcat are
generalist and opportunistic meso-carnivores with a
wide distribution throughout India. They mostly occur
in grasslands, scrubs, savannahs, degraded forest patches,
croplands, and around human settlements. The propor-
tion of degraded forests, scrubs, and croplands is pro-
jected to increase in the future (IPCC 2014), and
consequently, we expect the range expansion in meso-
carnivores under future climatic scenarios.

Limitations

One of our study’s major limitations is that we predicted
the changes in the potential distribution of meso-
carnivores in a relatively smaller landscape at the size of
a single protected area and used limited distributional
data. Thus our models may be limited in presenting the
complete climatic niches of all the species considered in
this study. Though the use of distribution models is fre-
quently used to assess future climate change impacts on
potential species distribution, the distribution may also
depend on factors such as dispersal abilities, inter-
species biotic relationships that were not taken into ac-
count. Our study used only one general circulation
model (MIROCS5) and considered only two emission
pathway scenarios, RCP 2.6 and RCP 8.5. The predic-
tions may change using other GCMs. Nevertheless, our
study presents the potential response of meso-carnivores
to various predictor variables at multiple spatial scales
under current and future climatic scenarios.

Conclusion

In this study, explicit attention was given to selecting the
most appropriate spatial scales using a robust machine
learning algorithm. This study shows that predictor vari-
ables were influential at determining the species
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occurrence across the range of spatial scales. Thus
single-scale approach can severely bias the results and
can lead to the wrong management decisions. This study
also indicated that human-modified habitats might pro-
vide the niches best exploited by habitat generalist spe-
cies. The expected habitat degradation and expansion in
the farmlands to meet the increasing human popula-
tion’s energy requirements under the future climatic sce-
narios may create the habitats preferred by generalist
species. Habitat generalist species are thus likely to ex-
pand their range under future climatic scenarios.
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