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Abundance and habitat-suitability
relationship deteriorate in fragmented
forest landscapes: a case of Adinandra
griffithii Dyer, a threatened endemic tree
from Meghalaya in northeast India
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Abstract

Introduction: A strong positive ‘abundance and habitat-suitability’ relationship is crucial for conservation of species.
Nevertheless, anthropogenic alteration of natural landscapes leading to land use and land cover change, habitat
loss, and species extinctions (may) have putatively disturbed this relationship. Hence, it is important to study the
nature of the relationship in such human influenced landscapes.

Methods: In this study, we endeavored to understand the consistency of the relationship in the fragmented natural
landscapes in the Khasi, Garo, and Jaintia hills of Meghalaya in northeast India, with Adinandra griffithii (an endangered
endemic tree) as a model species. We reconstructed the distribution of its suitable habitats as a function of the remotely
sensed vegetation phenology (i.e., EVI data), using point occurrence data and ecological niche modeling (ENM) tool.
Estimation of the abundance and habitat characterization was done through field surveys following standard methods.

Results: The study revealed that remotely sensed landscape-level vegetation phenology could effectively discriminate the
suitable and unsuitable habitats of threatened species. Linear regression model showed a weak positive
correlation between abundance and predicted habitat suitability for adult trees indicating (plausible) deterioration in
the relationship. However, sapling and seedling populations did not show a precise trend in this respect. Field-based
studies revealed that removal of the species from the suitable habitats because of anthropogenic disturbances possibly
weakened the abundance-suitability relationship.

Conclusions: The findings of the study enjoin the need for re-establishment of the species in the suitable areas for its
conservation and perpetuation.
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Introduction
Studying abundance and distribution pattern is crucial
for species conservation planning (Sagarin et al. 2006).
In this context, the abundant-center hypothesis posits
that species abundance peaks in the center of its distri-
butional range and decline in the edges (Wulff 1950;
Whittaker 1975; Hengeveld and Haeck 1982). The high

abundance in the center is because of the optimal condi-
tions viz., the presence of suitable habitats, while the de-
cline in abundance in its range edges is because of
environmental sub-optimality (Lira-Noriega and Man-
they 2014). Therefore, in a geographical sense, the hy-
pothesis pronounces that species abundance (A) is
directly proportional to habitat suitability (S) (Weber et
al. 2016). Overall, this pattern is consistent in natural
landscapes (Brown 1984).
A resilient AS relationship is crucial for species con-

servation as it helps in addressing the issues related to
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landscape-level conservation, reintroductions, popula-
tion connectivity, habitat restoration and management,
and protected area delineation (Fischer and Linden-
mayer 2007). Nonetheless, anthropogenic activities such
as over-exploitation, habitat destruction, and fragmenta-
tion of forest areas have substantially altered the natural
landscapes affecting the distribution of species popula-
tions and habitats (Hansen et al. 2013). These influences
have brought at least one-fifth of the plant species to the
brink of extinction (Brummitt and Bachman 2010), puta-
tively affecting the AS relationship (Fischer and Linden-
mayer 2007). The nature of the relationship in human-
altered landscapes is not clearly understood, and there-
fore deserves a detailed and systematic study.
Assessing the strength of AS relationship for a species

in a given landscape requires (i) knowledge on the distri-
butional range and potential habitats, and (ii) quantify-
ing the abundance in the entire distributional range
(Sagarin and Gaines 2002). Availability of satellite data
of better spatial and temporal resolution, and geograph-
ical information system (GIS), ecological niche modeling

(ENM), and habitat modeling tools have helped in the de-
lineation of potential habitats and geographical range to a
high level of confidence, making it convenient to study the
AS pattern (Weber et al. 2016). ENM reconstructs the
niche of species in an ecological space by correlating the
occurrence data with a set of rasterized environmental
variables. The modeled niche can be translated into a
potential distribution area map (Peterson 2011). Such
models help in understanding the ecological and geo-
graphic extents of species distribution (Peterson 2001),
and has been used to guide biodiversity surveys and for
delineating areas for conservation of threatened species
(Adhikari et al. 2012).
The present study was carried out in the Khasi, Garo,

and Jaintia hills of Meghalaya in northeast India. The re-
gion is a part of the Indo-Burma biodiversity hotspot
and is a transition zone between the Indian, Indo-
Malayan, and Indo-Chinese biogeographic zones. Histor-
ically, large tracts of the study area were covered by sub-
tropical broadleaf forests (Champion and Seth 1968).
However, during last three decades, these areas became

Fig. 1 Adinandra griffithii. a A mature tree. b Flower initiation. c Flower. d Fruit and e Seeds
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highly fragmented due to various anthropogenic activ-
ities (Roy and Tomar 2001), resulting in habitat loss of
at least 274 endemic plants (Upadhaya et al. 2013). As a
model species, we selected Adinandra griffithii—an en-
dangered endemic tree of the region (World Conserva-
tion Monitoring Centre 1998; Nayar and Sastry 1987;
Haridasan and Rao 1985). The species is admired for its
fragrant flowers and is a good timber species (Nayar and
Sastry 1987). Information on its ecology, potential distri-
bution areas, habitat preferences, and population status
is limited as the species was last collected in the year
1938 (Nayar and Sastry 1987). The specific objectives
were (i) to model the distribution of potential habitats,
(ii) to assess the population and abundance pattern in
the predicted areas, (iii) to characterize the habitats, and
(iv) to study the relationship between abundance and
habitat suitability.

Methods
Study species
Adinandra griffithii Dyer (Family Pentaphylacaceae) is a
globally endangered (A1c, B1 + 2c) tree species. It attains

a height of ~ 15 m and has coriaceous leaves, solitary
fragrant flowers, and ovoid berry-like fruits. The fruit
measures ~ 1.5 cm across containing numerous seeds.
Seeds are kidney-shaped measuring ~ 0.1 to 1.5 mm
across (Fig. 1). The flowering occurs during April to
June, and fruiting during September to December
(Balakrishnan 1981; Upadhaya et al. 2017).

Population survey
Population survey was undertaken following a grid-
based approach. Two hundred and fifty-five grids of
0.1° × 0.1° sizes (i.e., ~ 1 × 1 km) were laid over the state
of Meghalaya (Fig. 2). Thereafter, we selected 20 grids
for the systematic survey based on expert opinion and
historical record of species presence, i.e., herbarium re-
cords and published literature (World Conservation
Monitoring Centre 1998; Nayar and Sastry 1987;
Haridasan and Rao 1985). Extensive field surveys were
undertaken in the selected grids during the year 2015 to
locate natural populations of the species. The encoun-
tered individuals of A. griffithii were categorized as (i)
adults (≥ 5 cm diameter at breast height measured at

Fig. 2 Distribution of potential habitats of A. griffithii in the Garo, Khasi and Jaintia hills of Meghalaya. The italicized numerals in the map represent the
grid numbers
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1.37 m from the ground level), and (ii) saplings (< 5 cm
dbh and > 1 m height), and (iii) seedlings (< 1 m height).
The abundance in each occurrence locality was
expressed as a total count of the adults, saplings, and
seedlings.

Habitat distribution modeling
Species occurrence data
Geographical coordinates of 17 occurrence localities of
A. griffithii were recorded from one National park (Bal-
pakram National park), 5 sacred groves (Lum Shynna,
Law Arliang Laitryngew, Law Khlieng, Law Sunnia, Law
Lyngdoh Lynshing), 5 village forests (Umlangmar Law
Shnong, Twah Sangparat, Khlaw Jingkieng, Law Adong
Kynshuilid, Law Adong Thmai), and 6 protected forests
owned by the local communities (Tyllong Um-Kyrwiang,
Mawsynram village forest, Law Pjah, Law Adong Dieng-
kynthong, Law Adong Phlangmawsyrpat, Law Adong
Phud Juad) to an accuracy range from ~ 5 to 10 m using
Garmin e-trex global positioning system (GPS) device.

Predictor variables
We used moderate resolution imaging spectroradi-
ometer (MODIS) based enhanced vegetation index (EVI)
data as a predictor of the potential habitats of A. grif-
fithii. Compared to normalized difference vegetation
index (NDVI), EVI serves as a better predictor of species
potential areas in forested and undulating terrains be-
cause of its capability to discriminate spatial and tem-
poral variations in vegetation (Setiawan et al. 2014).
Twenty-one GeoTIFF EVI images for the study area at a
spatial resolution of 250 m were downloaded from Oak
Ridge National Laboratory Distributed Active Archive
Centre using the online MODIS data-subsetting tool
(http://daac.ornl.gov/, ORNL DAAC 2008). These im-
ages correspond to the year 2015 when the field surveys
were undertaken, and summarize the spatial and tem-
poral variations in the greenness of the study area at
fortnightly intervals. We avoided using climatic predic-
tors as their influence on species distribution is best de-
fined at coarser resolutions, i.e., > 1 km (Waring et al.
2006). Topographic variables such as slope, aspect, and
elevation were not used as EVI is sensitive to the influ-
ence of such variables, and their effects are indirectly
represented in it (Matsushita et al. 2007). We performed
correlation analysis for the 21 layers to check multicolli-
nearity using ENMTools (Warren et al. 2010). Subse-
quently, the variables with correlation coefficient ≥ 0.8
were discarded, and 13 uncorrelated variables were used
as predictors. The selected data were re-sampled to a
spatial resolution of 250 m. The spatial resolution of the
EVI data was chosen based on the assumption that a
pixel resolution of 250 × 250 m would equitably explain

the latent environmental variations of the species poten-
tial habitat (Adhikari et al. 2012).

Model calibration and evaluation
Selection of appropriate calibration area extent is crucial
in species distribution modeling, as it influences the
model predictive capacity (Phillips et al. 2009; Giovanelli
et al. 2010). It has been demonstrated that the area ex-
tents that have been historically accessible to the species
are ideal for model development (Barve et al. 2011).
Based on the historical account of the occurrence and
distribution of the species viz., herbarium records and
published literature (World Conservation Monitoring
Centre 1998; Nayar and Sastry 1987; Haridasan and Rao
1985), we presume that the landscapes in the Garo,
Khasi, and Jaintia Hills have been accessible to the dis-
persal of the species. Therefore, model calibration was
done in these areas.
We used a machine-learning algorithm, Maxent ver-

sion 3.3.3e (Phillips et al. 2006), to model species poten-
tial habitats. Maxent computes the suitability of a pixel
(corresponds to the grid of a given size in the real world)
in a defined landscape by contrasting random back-
ground pixels against the ones with actual species pres-
ence (Merow et al. 2013). The landscape is characterized
by a set of rasterized environmental variables such as
temperature, precipitation, vegetation index, and the
species real presence in the raster grids are indicated by
geographic coordinates. Thus, it estimates a probability
surface representing the distribution of pixels with a
suitability range from 0 to 1 (Elith et al. 2011).
In the present study, model parameterization was done

using 10,000 background points, 5000 iterations, and a
convergence threshold of 0.00001. Because of lower
presence records, the hinge, linear and quadratic feature
types were used to optimize complexity in model-fitting.
Over-fitting was controlled using default regularization
multiplier of 1. Ten replicated model runs with
bootstrap procedure was executed to derive an opti-
mized model.
Model performance was assessed based on the

traditional receiver operating characteristic (ROC) curve
and area under curve (AUC) metric (Phillips et al. 2006).
Here, an AUC value of ≤ 0.5 indicates a performance
that is no better than random expectations, whereas, a
value of one indicates perfect discrimination (Thuiller et
al. 2005). Model classification was done using the con-
servative guide suggested by Thuiller et al. (2005), i.e.,
random (AUC < 0.8), fair (0.8 < AUC < 0.9), good (0.9 <
AUC < 0.95), and very good (0.95 < AUC < 1.0). To en-
sure consistency of model performance, we also
employed the partial AUC metric (Lobo et al. 2008,
Peterson et al. 2008). Partial AUC was estimated using
the online tool http://shiny.conabio.gob.mx:3838/
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nichetoolb2/. Here, the ratio between AUCrandom (at 0.5
level) and the AUCactual (with a defined level of omis-
sion, e.g., 0.05) was calculated using the occurrence data
and the predicted distribution model, and gives a graph-
ical output of the distribution of the estimated random
and actual AUC values, along with t tests for the differ-
ence between the distributions. For this study, we exe-
cuted 500 bootstrap simulations with 5% omission to
obtain the distribution of AUC ratios. Finally, hypothesis
testing was done by comparing the means between
AUCrandom and AUCpartial to test whether the predictive
model performed better than random expectations.

Identification and characterization of potential habitats
The potential habitat distribution map was generated
using ArcMap by dividing the probability range into five
classes, i.e., very high (> 0.8), high (0.6–0.8), moderate
(0.4–0.6), low (0.2–0.4), and very low (< 0.2). Subse-
quently, field surveys were undertaken from January
2016 to July 2017 for ground verification of the pre-
dicted potential habitats and searching new populations.
Habitat characterization was done based on topographic
features (viz., elevation, slope angle, slope orientation,
and soil type), forest/vegetation type, and tree canopy
cover. Slope orientation and elevation were determined
using a GPS device (Garmin e-trex), and slope angle was
measured using a clinometer. Vegetation type was deter-
mined following Champion and Seth (1968) classifica-
tion, and the associated species were identified with the
help of regional flora (Haridasan and Rao 1985–1987;
Kanjilal et al. 1934–1940).

Relationship between species abundance and habitat
suitability
The relationship between species abundance and habitat
suitability was determined by running simple linear re-
gression models. Here, species abundance, expressed in
terms of density of trees, saplings, and seedlings, was

regressed with the modeled habitat suitability thresholds
using SPSS software.

Results
Evaluation of model performance
Tests of model performance yielded optimal results for
ROCfull (mean AUC 0.99) and ROCpartial (mean AUC
0.98) (Table 1). The distribution of AUC ratios, calcu-
lated from the bootstrap values as AUCpartial/AUCrandom,
was significantly greater than random expectations
showing very good model consistency (Fig. 3).

Analysis of variable contributions
Jackknifing of the regularized training gain and the ana-
lysis of variable contributions reveal a strong influence
of vegetation phenology on the distribution of potential
habitats of A. griffithii (Fig. 4). The EVI data for the
period of June and July together contributed ~ 80% to
the modeled distribution of the species (Table 2).

Potential habitat distribution and characterization
Only 0.68% of the total area of Meghalaya is highly suit-
able (15,506 ha), and 3% of the total area is suitable for
medium to low levels (70,650 ha) (Fig. 5). The rest of
the areas are predicted to be suitable at very low level.
The (potential) habitats were distributed mostly in the
fragmented sub-tropical broadleaf type of forests at

Table 1 Result of model evaluation tests done using full and
partial ROC-AUC measures. The mean value for AUCpartial at 0.5
is 0.5

ROC
space

Omission
proportion

Mean
AUCmodel (± SD)

Mean
AUCratio (± SD)

P value for
difference in
expected and
random
AUCmean

ROCfull 0 0.99 (± 0.002) – –

ROCpartial 0.05 0.98 (± 0.004) 1.97 (± 0.009) 0

Fig. 3 Partial AUC distribution for A. griffithii generated after 500 iterations with 5% omission in the ROC space. The curve along with the shaded
bars shows the frequency distribution of the ratios between AUC from model prediction and AUCrandom. The curve on the left side represents the
distribution of AUC ratios for random models. Here, the higher distributional range of AUC ratios indicates the better predictive ability of the
Maxent model
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elevations ranging from ~ 1200 to 1600 m above mean
sea level, of which sizable parts are in the Khasi hills
(Fig. 2 and Table 3). In addition, field surveys revealed
that degraded open forests, grasslands, small groves, cul-
tivated areas, and homestead gardens may have suitable
habitats, although at medium to low levels. Considerable
areas of the highly suitable habitats were located on the
hill slopes and had open, closed, and mixed canopy
covers. The soil had sandy loam texture and was acidic
in all the habitats.

Population and regeneration status
We inventoried 486 individuals comprising of 201 seed-
lings, 191 saplings, and 94 adults from the predicted area
of occurrence. The largest number of adult trees were
recorded from Lum Shynna in Cherrapunjee with 16 in-
dividuals followed by Law Adong Phlangmawsyrpat and
Law Adong Kynshuilid with 10 individuals each
(Table 3).

Relationship between abundance and habitat suitability
Category wise, the high and very high suitability classes
had greater abundance represented by 69 adults, 145
saplings, and 155 seedlings, compared to medium and
low suitability classes comprising of 25 adults, 46 sap-
lings, and 46 seedlings (Table 3). Linear regression shows
a weak positive relation between abundance and the de-
gree of habitat suitability for trees (slope 3.93; r 0.23; p
0.36), though statistically not significant. However, sap-
ling and seedling abundance had no particular relation-
ship with habitat suitability.

Discussion
In the present study, remotely sensed vegetation phenology
data (i.e., EVI) effectively discriminated the suitable and
unsuitable habitats of A. griffithii. Nearly 80% contribution
was made by the EVI layers pertaining to June and July,
which is the flowering period of the species. Phenology can
be a good predictor of species distribution as it is one of
the important adaptive traits in the niche of perennial
plants, plays a crucial role in their fitness, and is the trait

Fig. 4 Jackknife of regularized training gain for Adinandra griffithii.
Description of the variable codes are presented in Table 2

Fig. 5 Area under different habitat suitability classes. The figures on
top of the bars represent the area in hectares

Table 2 Analysis of variable contributions

Variable code Month and date of EVI image Percent contribution Permutation importance

081 evi March 22nd 1.9 1.4

097 evi April 7th 0.2 0.1

113 evi April 23rd 2.0 0.6

129 evi May 9th 0.5 0.2

145 evi May 25th 8.7 1.6

161 evi June 10th 7.5 5.4

177 evi June 26th 58.6 85.3

193 evi July 12th 13.6 1.3

209 evi July 28th 1.0 0.2

225 evi August 13th 1.2 0.3

241 evi August 29th 0.5 0.1

257 evi September 14th 1.3 0.4

273 evi September 30th 3.1 3.0
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most affected by the change in climate (see Chuine 2010).
Nonetheless, it is well-known that the position of a species
niche is correlated with the flowering time, and members
of a species growing in a given climatic zone synchronize
their phenologies (Thuiller et al. 2005). Earlier, EVI was ef-
fectively used to predict the potential habitats for Ilex
khasiana, an endangered endemic tree in the same region
(Adhikari et al. 2012). Thus, EVI-based habitat suitability
assessment is promising for population survey and species
conservation.
Our study revealed a positive—though weak—correla-

tion between species abundance and habitat suitability

in an ecological space. This is in conformity with the
abundance-center hypothesis which posits theoretical
maxima of species abundance in the central part of a
given landscape, which decline towards the edges
(Sagarin et al. 2006). This theoretical maxima result
from the presence of optimal environmental conditions
in the central part of the distributional range of the spe-
cies compared to its edges. Nevertheless, the geograph-
ical representation of the same revealed that the suitable
habitats and individuals of the species, and therefore the
abundance peaks, are distributed across the Garo, Khasi,
and Jaintia hills. This phenomenon is a geographical

Table 3 Species abundance, habitat attributes, and habitat suitability in the occurrence localities

Occurrence localities Predicted
suitability

Suitability
classes

Abundance (No. of individuals) Habitat attributes

Adults Sapling Seedling Total Elevation
(m)

Slope Aspect Forest type Canopy
cover

Khlaw Jingkieng 0.99 Very high 2 18 10 30 1420 Very
steep

NE Subtropical
Broadleaf

Open

Lum Shynna 0.98 Very high 16 22 26 64 1434 Very
steep

W Subtropical
Broadleaf

Closed

Law Adong
Kynshuilid

0.87 Very high 10 2 0 12 1210 Extreme W Subtropical
Broadleaf

Open

Law Adong Thmai 0.85 Very high 2 2 0 4 1605 Very
steep

N Subtropical
Broadleaf

Mixed

Tyllong Um-Kyrwiang 0.79 High 5 11 18 34 1407 Moderate S Subtropical
Broadleaf

Closed

Law Arliang
Laitryngew

0.77 High 1 5 12 18 1610 Steep N Subtropical
Broadleaf

Closed

Law Adong
Diengkynthong

0.73 High 9 0 0 9 1610 Steep S Subtropical
Broadleaf

Open

Law Khlieng 0.72 High 8 22 21 51 1410 Very
steep

SE Subtropical
Broadleaf

Closed

Law Pjah 0.71 High 2 0 1 3 1605 Very
steep

S Subtropical
Broadleaf

Mixed

Balpakram National
Park

0.68 High 5 15 23 43 586 Very
steep

S Tropical
Broadleaf

Closed

Law Sunnia 0.67 High 4 27 35 66 1210 Very
steep

E Subtropical
Broadleaf

Mixed

Mawsynram village
forest

0.66 High 5 21 9 35 1430 Extreme NW Subtropical
Broadleaf

Closed

Law Lyngdoh
Lynshing

0.58 Medium 4 11 18 33 1230 Very
steep

E Subtropical
Broadleaf

Mixed

Law Adong
Phlangmawsyrpat

0.55 Medium 10 11 9 30 1240 Extreme NE Subtropical
Broadleaf

Closed

Twah Sangparat 0.33 Low 2 2 0 4 1425 Steep S Subtropical
Broadleaf

Open

Law Adong
Phud Juad

0.33 Low 2 4 6 12 1400 Gentle SE Subtropical
Broadleaf

Closed

Umlangmar Law
Shnong

0.27 Low 7 18 13 38 1600 Steep SW Subtropical
Broadleaf

Open

Total 94 191 201 486

Slope (°): Level (0), nearly level (0.3–1.1), very gentle (1.1–3), gentle (3–5), moderate (5–8.5), strong (8.5–16.5), very strong (16.5–24), extreme (24–35), steep (35–45),
very steep (> 45). The ‘predicted suitability’ values for the occurrence localities have been extracted from the logistic output of Maxent. The occurrence localities
have been grouped under various suitability classes based on the range of predicted suitability values as very high (0.8–1.0), high (0.6–0.8), medium (0.4–0.6), low
(0.2–0.4), and very low (< 0.2)
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manifestation of Hutchinsons’ duality concept, which
elucidates the connection between a species’ ecological
niche and its corresponding biotope, as well as the reci-
procity in projections between them (Colwell and Rangel
2009). Nonetheless, the role of anthropogenic factors
such as habitat/forest fragmentation in creating environ-
mental/spatial heterogeneity cannot be ignored, as their
effects are often not noticeable in the ecological space.
This is because of occurrence of similar environmental
conditions in more than one geographical location. For-
est fragmentation and habitat degradation often lead to
discontinuity in the distribution of species as well as the
suitable habitats and leading to the local extinction of
the species (Lindenmayer and Fischer 2013; Krauss et al.
2010). This weakens the linearity and strength of the re-
lationship between environmental suitability and species
abundance, as evident from the present study.
The narrow distribution of A. griffithii, low population

coupled with habitat fragmentation, and human distur-
bances is posing a serious threat to the species, and may
lead to its global extinction. Low seedling recruitment
and sapling establishment on the forest floor is a major
constraint faced by the species. The seeds (~ 1 mm size)
mature in October–November and take nearly 45 days
to germinate (Upadhaya et al. 2017). Field observations
revealed that the newly germinated seedlings are
exposed to moisture stress and low temperatures that
extend from December to February (winter season),
leading to seedling mortality. The highly suitable habi-
tats of the species, distributed in patches at various
pockets of the study area, is already under threat due to
anthropogenic activities such as road construction,
shifting cultivation, mining, and grazing. It is important
to mention that the forest cover in these areas experi-
enced a tremendous change in the last few decades
(Sarma 2005; Sarma et al. 2016). Nevertheless,
colonization and dispersal may play an important role in
population dynamics in such a patchy landscape (Freck-
leton et al. 2006).

Conclusions
Based on the above, we conclude that relationship between
species abundance and habitat suitability deteriorates in
fragmented forest landscapes having anthropogenic influ-
ences. We recommend reinforcement of the depleted pop-
ulations, as well as reintroductions in suitable areas using
artificially raised seedlings for its conservation (Adhikari et
al. 2012; Deka et al. 2017). Moreover, the suitable habitat
patches may be connected through habitat corridors
facilitating species migrations, enabling their long-term
conservation.
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