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Abstract 

Background:  Aberrant alternative splicing (AS) events could be viewed as prognostic indicators in a large number of 
malignancies. This study aims to identify prognostic AS events, illuminate the function of the splicing variants bio-
markers and provide reliable evidence for formulating public health strategies for gastric cancer (GC) surveillance.

Methods:  RNA-Seq data, clinical information and percent spliced in (PSI) values were available in The cancer genome 
atlas (TCGA) and TCGA SpliceSeq data portal. A three-step regression method was conducted to identify prognostic 
AS events and construct multi-AS-based signatures. The associations between prognostic AS events and splicing fac-
tors were also investigated.

Results:  We identified a total of 1,318 survival-related AS events in GC, parent genes of which were implicated in 
numerous oncogenic pathways. The final prognostic signatures stratified by seven types of AS events or not stratified 
performed well in risk prediction for GC patients. Moreover, five signatures based on AA, AD, AT, ES and RI events func-
tion as independent prognostic indicators after multivariate adjustment of other clinical variables. Splicing network 
also showed marked correlation between the expression of splicing factors and PSI value of AS events in GC patients.

Conclusion:  Our findings provide a landscape of AS events and regulatory network in GC, indicating that AS events 
might serve as prognostic biomarkers and therapeutic targets for GC.
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Background
Gastric cancer (GC) remains the public health burden 
worldwide with high morbidity and mortality, and there 
are estimated 27,600 new diagnosed cases and 11,010 
GC-related deaths in 2018 [1]. A majority of patients 
were diagnosed at an advanced stage, missing the opti-
mal opportunity of surgical resection, and thus had the 
dismal prognosis with the overall 5  year survival rate 
of 32.0% [1]. Therefore, prevention and early diagnosis 
are the most important pubulic health strategies. Nota-
bly, high-throughput omics at DNA, RNA and protein 

provide effective solutions for screening high-risk indi-
viduals with GC. Owing to the combined algorithm 
based on transcriptomics and genomics, alternative 
splicing (AS) events as prognostic factors have attracted 
increasing attention in recent years.

Alternative splicing (AS) is a post-transcriptional regu-
latory mechanism by which differential splicing of exons 
occurs, resulting in the diversity of mRNAs and proteins. 
Over 95% of human genes undergo AS and encode splic-
ing variants with different or even opposite functions 
[2]. Differential splicing of the same pre-mRNA gener-
ates mature isoforms and proteins with different struc-
tures and functions. Under normal circumstances, AS is 
essential for complex biological behaviors. Once disor-
dered, however, abnormal protein isoforms with inserted, 
missing or altered function domains may drive or pro-
mote oncogenic processes. Moreover, it has been widely 
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acknowledged that AS events are closely associated with 
gastric carcinogenesis and progression [3, 4].

Tumor development is a multi-step, multi-factor pro-
cesses. Thus, constructing a risk prediction model con-
sisting of diverse biomarkers is an effective and reliable 
strategy compared to using a single clinicopathological 
indicator. To improve the predictive accuracy for malig-
nancies such as GC, numerous studies had built diverse 
prognostic models using several mRNAs, miRNAs and 
long non-coding RNAs based on transcriptome-wide 
profiles [5–7]. Although the mechanism of AS events 
is complicated and remains poorly understood to some 
extent, their prognostic role has been emphasized in a 
large number of cancers [8–12]. Considering the role of 
AS in GC, there is an urgent need to build the prediction 
model of AS events and screen high-risk patients with 
GC.

Methods
Data curation and preprocessing
The GC cohort, including RNA-Seq (level 3) and corre-
sponding clinical data were downloaded and integrated 
via R “TCGAbiolinks” package from TCGA data por-
tal (https://​portal.​gdc.​cancer.​gov/). The SpliceSeq data 
for GC was obtained from TCGA SpliceSeq database 
(https://​bioin​forma​tics.​mdand​erson.​org/​TCGAS​plice​
Seq). The Percent Spliced In (PSI) value, ranging from 
0 to 1, was used in quantifying 7 types of alternative 
splicing events: Alternate Acceptor site (AA), Alternate 
Donor site (AD), Alternate Promoter (AP), Alternate Ter-
minator (AT), Exon Skip (ES), Mutually Exclusive Exons 
(ME) and Retained Intron (RI). For generation of a reli-
able prognostic model, the included AS events meets the 
following criterion: (1) more than 75% patients own PSI 
value; (2) mean PSI of AS event in all samples > 0.1; (3) 
PSI standard deviation (SD) ≥ 0.05. In addition, patients 
followed up for over 30 days were enrolled in our study.

Prognostic model construction via three‑step regression 
analysis
The univariate Cox regression analysis was carried out to 
screen overall survival (OS)-related AS events. To avoid 
confounding factors, only patients with follow-up time 
more than 30 days were enrolled in our study. Upset plot 
was generated to quantify specific overlapping among 
seven types of AS events with the Upset package in R. 
Then, stratified by the splicing type, the top 20 signifi-
cant (If available) AS events screened above were further 
selected through LASSO regression (R glmnet) followed 
by multivariate Cox regression (R survival). Finally, the 
Cox proportional hazard regression model for each splic-
ing type was constructed. The risk score of each sample 
was calculated by the following formula: Risk Score = PSI 

of gene1 × β1 + PSI of gene2 × β2 + ······· + PSI of gene 
n × βn. Using the median risk score as the cutoff, GC 
patients were divided into low- and high-risk groups. 
Kaplan–Meier survival analysis with log rank test was 
performed to demonstrate the variation between these 
two groups. In addition, the predictive power of each AS 
signature was evaluated by calculating the area under 
the curve (AUC) of the Receiver operating characteristic 
(ROC).

GO, KEGG and PPI network
Moreover, parent genes of these AS events were sent for 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analyses via “cluster-
Profiler” package in R software. Then, the significantly 
enriched GO terms and KEGG pathways (P < 0.05) were 
visualized via barplots. Additionally, these parent genes 
were submitted to STRING to identify the protein–pro-
tein interactions (PPI) which were visualized by the 
cytoscape software. The key modules and genes were 
selected in PPI network via using the Cytohubba tool.

Construction of splicing regulatory network
A total of 404 human genes encoding Splicing factor (SF) 
were retrieved from the Supplementary files of Seiler 
M`s paper [13], and their corresponding expression pro-
files were extracted from the integrated RNA-Seq data 
of GC. Then, Spearman test was conducted to analyze 
the correlation between the expression of SF genes and 
PSI values of survival-associated AS events (P < 0.001, 
coefficient > 0.6), followed by network plotting using the 
cytoscape software.

Results
Overview of AS events and related genes in GC cohort
AS events could be divided into seven types as illustrated 
in Fig.  1A, including AA, AD, AP, AT, ES, ME and RI. 
Through strict filtering, 19,698 AS events from 11,579 
parent genes were identified in 364 GC patients, includ-
ing 7,189 ESs in 3,562 genes, 4,310 APs in 2,474 genes, 
3,487 ATs in 1,979 genes, 1,664 AAs in 1,310 genes, 1,542 
ADs in 1,174 genes, 1,391 RIs in 985 genes and 106 MEs 
in 104 genes (Fig.  1B). In addition, the Upset plot indi-
cated that one gene possesses several types of AS events 
(Fig. 1C).

Identification of survival‑related AS events in GC cohort
Through univariate Cox regression analysis, a total of 
1,318 AS events from 957 parent genes were viewed as 
prognostic ones, including 464 ESs in 377 genes, 352 APs 
in 229 genes, 200 ATs in 133 genes, 79 AAs in 79 genes, 
128 ADs in 121 genes, 81 RIs in 75 genes and 14 MEs in 
14 genes (Fig. 1B). Moreover, intersections among these 

https://portal.gdc.cancer.gov/
https://bioinformatics.mdanderson.org/TCGASpliceSeq
https://bioinformatics.mdanderson.org/TCGASpliceSeq


Page 3 of 12Wang et al. Archives of Public Health          (2022) 80:145 	

seven types of AS events were exhibited with the Upset 
plot (Fig. 1D), demonstrating that one gene could hold up 
to several types of prognostic AS events.

Bioinformatics analysis of survival associated AS events
To elucidate the potential interference of OS-associated 
AS events and corresponding proteins, 957 parent genes 
of 1,391 AS events were sent for bioinformatics analy-
ses, including GO, KEGG and PPI. As a result, 4 terms 
in biological process, 8 terms in cellular component 
and 10 terms in molecular function were highlighted 
via GO analysis (Fig.  2A). Moreover, 11 of 23 remark-
ably enriched KEGG pathways seem to be implicated 
in oncogenic processes, including Basal cell carcinoma, 
Autophagy, Proteoglycans in cancer, ECM-receptor inter-
action, Gastric cancer, Hepatocellular carcinoma, Focal 
adhesion, EGFR tyrosine kinase inhibitor resistance, 
Cell cycle, HIF-1 signaling pathway and Wnt signaling 
pathway (Fig. 2B). To further explore the significances of 
these parent genes, a PPI network was constructed which 
incorporated 373 nodes and 960 edges (Fig. 3C). Moreo-
ver, the key module, composed of 25 nodes and 297edges, 
was processed via CytoHubba tool (Fig. 3D). The parent 
genes/proteins in the key module were mainly comprised 
of ribosomal proteins (RPS5, RPS6, RPLP0, etc.) and rib-
onucleoproteins (HNRNPC, HNRNPR, SNRNP70, etc.).

Construction of the prognostic signature using AS events 
for GC patients
To minimize the counts of the prognostic model, lasso 
and multivariate Cox regression methods were per-
formed. After lasso regression filtering, 20 varibles (If 
available) in each splicing type dropped to 20 in AA, 
19 in AD, 17 in AP, 16 in AT, 17 in ES, 13 in ME, 15 
in RI and 17 in all types, respectively (Fig.  3). Then, 
the selected AS events were further screened by the 
multivariate Cox regression, and thus final prognostic 
models were constructed, containing 15 AA, 14 AD, 
9 AP, 10 AT, 13 ES, 8 ME, 10 RI and 11 all AS events 
(Fig. 4).

Using the median value of the riskscore as the cut-
off, GC patients were classified into high- and low- risk 
groups. The Kaplan–Meier curves were employed to 
demonstrate the survival variation of patients between 
these two groups. Each AS-based prognostic model, 
stratified or as a whole, indicated the predictive power 

that patients in the high-risk group had poorer OS than 
those in the low-risk group (Fig. 5A-H).

ROC curves were generated to assess the predictive 
accuracy of the eight AS prognostic models. As illus-
trated in Fig. 5I, the risk score of AD model showed the 
greatest predictive power with an AUC of 0.804, followed 
by AA, AP, AT, RI and the model not stratified by AS sub-
types. The performance of these prognostic signatures 
with AUC > 0.7 were further tested in predicting the sur-
vival status. With the increasing risk score calculated by 
any type of AUC > 0.7, there were more patients dead and 
less patients living (Fig. 6), respectively.

To determine whether the final model was an inde-
pendent prognostic factor for GC, AS predictive mod-
els along with age, gender, grade and clinical stage, were 
once again sent for Uni/Multivariate Cox regression anal-
ysis. As a result, risk scores calculated by the formula of 
five AS signatures (AA, AD, AT, ES, RI) were independ-
ent prognostic indicators (Fig. 7A, B).

Interactive analysis of splicing factors and AS events
The regulatory network was built based on the expres-
sion of SF genes and PSI values of AS events via using 
the cytoscape software. As shown in Fig. 7C, prognostic 
AS events, including 20 risky (red node) and 14 favora-
ble ones (green node), were positively or negatively 
modulated by the key SF genes (blue node). Remarkably, 
the same SF could regulate different AS events, and the 
same AS could be regulated by different SFs. Moreover, a 
majority of adverse AS events were positively associated 
with SFs (red line), whereas most favorable AS events 
were negatively associated with SFs (green line). For the 
same gene and same splicing type, the SF may play differ-
ent or even opposite roles producing different isoforms. 
For example, QKI expression was positively correlated 
with AT event of SEPT11-69618, but negatively corre-
lated with AT event of SEPT11-69616 (Fig. 7C-E).

Discussion
Through AS, differential proteins with differential struc-
tures and functions can be generated and may be asso-
ciated with carcinogenesis. Thus, alternative spliced 
isoforms and AS events could be served as diagnos-
tic, predictive, prognostic biomarkers and even thera-
peutic targets in a large number of cancers [14–17]. 
Recent studies demonstrated that Aberrant AS events 

Fig.1  Overview of AS profiles in GC cohort. A, Depiction for 7 splicing pattens, including Exon Skip (ES), Alternate Promoter (AP), Alternate 
Terminator (AT), Alternate Donor Site (AD), Alternate Acceptor Site (AA), Mutually Exclusive Exon (ME) and Retained Intron (RI). B, Number of AS 
events and related genes. The green bars represent all AS events and parent genes, the red bars represent survival related AS events and parent 
genes. C, Upset plot of interactions within 7 types of all AS events. D, Upset plot of interactions within 7 types of prognosis-related AS events

(See figure on next page.)
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Fig.1  (See legend on previous page.)
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inducing-variants affected important phenotypes of 
GC, including proliferation, apoptosis, metastasis and 
chemotherapy resistance [18–20]. Currently, Chuan Liu 
et al. [21] and Victoria E S Armero et al. [22] had deter-
mined the prediction model of AS events in Helicobac-
ter pylori-negative cohort and Epstein-Barr virus cohort 
of GC, respectively. However, the present study depicted 
the landscape of AS profiles within the entire GC cohort 
and respectively constructed the risk prediction model 

stratified by 7 types of AS. In addition, a series of GC-
specific and survival associated AS events as well as SFs 
were identified, which would provide potential interven-
tion targets for GC therapy.

Alternative splicing is one of the critical mechanisms 
by which the diversity of mRNAs and corresponding 
proteins occurs in organism. In the present study, a total 
of 19698 AS events of 11579 genes were detected, show-
ing that AS is a common process in GC and one gene 

Fig.2  Enrichment analyses on parent genes from Overall survival (OS)-related AS events and their interacting network. A, Top 10 iterms (If available) 
of GO in Biological process (BP), Cellular component (CC) and Molecular function (MF). B, Top 30 pathways in KEGG. C, Protein Protein Interaction 
(PPI) network on parent genes of OS-related AS events. D, The core module derived from the PPI network. The node size represents the connectivity 
to other agents. The larger the node in size, the more important the node
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generates several transcripts. Next, we identified 1318 
prognosis-related AS events of 957 genes. To explore how 
these AS events drive tumor initiation, the parent genes 
were incorporated into GO and KEGG pathway enrich-
ment analyses. These spliced genes were closely associ-
ated with HIF-1/Wnt/ErbB/p53 oncogenic pathways. 
Moreover, we established a PPI network and obtained a 

key module consisting of 40 hub genes, including splicing 
factors and ribosomal proteins.

To minimize the number of prognosis-related AS 
events of the prediction model, we further performed 
the stepwise lasso and multivariate Cox regressions. 
Ultimately, seven risk prediction models stratified by AS 
types as well as one non-stratified prediction model were 

Fig.3  Lasso regression analysis of OS-related AS events by AA, AD, AP, AT, ES, ME, RI type (A-G) and all types (H). Upper, selection of tuning 
parameter (lambda) in Cox penalized regression analysis via tenfold cross validation. The vertical dotted line on the left and right represents the 
“lambda.min” and “lambda.lse” criteria, respectively. Lower, dynamic lasso coefficient profiling by Cox-penalized model
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Fig.4  Forest plots of OS-related AS events via Multivariate Cox regression according to stratified (A-G: AA, AD, AP, AT, ES, ME, RI) or non-stratified (H) 
strategy. Hazard ratios and 95% Confidence intervals of OS-related AS events
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constructed, respectively. Although prognostic AS signa-
tures of GC had been produced in Zhen Zong et al.`s and 
Zhang S et  al.`s reports [23, 24], our screening strategy 
seems more reasonable. We first identified OS-related 
AS events through univariate Cox and lasso regres-
sion methods, followed by multivariate Cox regression 

analysis. Conversely, lasso regression analysis was not 
employed in Zhen Zong et al.`s report, and multivariate 
Cox regression methods was not used in Zhang S et al.`s 
report. The inadequacy of statistical strategy may lead to 
the overfitting of the risk model and affect the predictive 
performance of the model.
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Importantly, AD showed the most reliable predictive 
capacity among AS events with the AUC value of 0.804, 
followed by AA event. Unparalleled with our study, AA 
event exhibited the highest AUC value, followed by AD 
event in Zong S et al.`s report. The distinction may arise 
from the screening strategy of OS-related AS events 
mentioned above. The AUC > 0.8 is generally considered 
to be adequate for clinics, so AD event should be high-
lighted excessively for prospects of clinical application. In 
addition, via Cox regression analysis with other clinical 
parameters, AD event was proved to be an independent 
prognostic indicator of GC. Within the prediction model 
of AD events, two genes (HYI, FBXW2) were adverse and 
the other 12 were favorable factors of GC. As a critical E3 
ubiquitin ligase, FBXW2 retards tumor proliferation and 
metastasis via degrading tumor-associated transcription 
factors or coactivators [25]. However, if FBXW2 is spliced 
by AD event, it becomes a poor prognostic indicator 

which may facilitate tumorigenesis and progression of 
GC.

Mutations or alterations in the expression of regula-
tory splicing factors could cause aberrant AS events and 
production of differential spliced variants, thus promot-
ing or inhibiting the oncogenic phenotype in multiple 
cancers [26, 27]. By constructing the regulatory network 
between the expression of SFs and PSI value of OS-
related AS events, we identified 16 critical SFs, some of 
which had been documented to exhibit pro-oncogenic 
or anti-oncogenic behavior in a series of malignan-
cies, including GC. These SFs regulate the expression of 
the spliced variants derived from the same pre-mRNA 
via different AS events. Even within the same gene, the 
same AS event in multiple loci may generate differential 
spliced variants with the same or opposite behavior. For 
instance, QKI served as a tumor suppressor and inhib-
ited gastric carcinogenesis via alternative splicing of the 

Fig.6  Distributions of survival status (Up), risk score (Middle) and expression profile (Down) of the most reliable prognostic signatures with 
AUC > 0.7. A, AA type; (B), AD type; (C), AP type; (D), AT type; (E), RI type; (F), non-stratified by the splicing type
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histone macroH2A1 [28]. In our bioinformatics analysis, 
QKI may play a dual role in the development of GC, pro-
moting tumorigenesis via a poor prognostic AS indica-
tor (Fig.  3B) or inhibiting tumorigenesis via a favorable 
prognostic AS indicator (Fig.  3C). CLK1 had been con-
sidered as a novel therapeutic target in GC through phos-
phoproteomic analysis, and facilitated the proliferation, 
migration and invasion of GC cells via modulation of the 

phosphorylation of SRSF2 [29]. The regulatory network 
in our study also reveals that CLK1 activates the RI event 
of SRSF2, and generates the spliced variants which favors 
the prognosis. Interestingly, SRSF2 belongs to the family 
of SFs itself and contributes to the carcinogenesis of mul-
tiple cancers via alternative splicing [30, 31]. Thus, SFs 
play a pivotal role in tumor development via regulating 
AS events of key genes.

Fig.7  Forest plots of prognostic factors and regulatory network of SF and parent genes. A-B, univariate and multivariate Cox regression analyses 
of AS types combined with age, gender, grade and stage, respectively. Red star indicates independent prognostic AS subtype. C, the network of SF 
expression and PSI value of AS genes. Red, green and blue node represents adverse, favorable AS events and SF, respectively. D-E, The correlation 
plot of SF QKI and PSI value of SEPT11-69,616-AT, SEPT11-69,618-AT, respectively
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Conclusion
The present study constructed an ideal prognostic signa-
ture of AS events based on which effective public health 
strategies could be formulated to monitor high-risk pop-
ulations with GC.
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