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Abstract 

In the field of remote sensing image interpretation, automatically extracting water body information from high-
resolution images is a key task. However, facing the complex multi-scale features in high-resolution remote sens-
ing images, traditional methods and basic deep convolutional neural networks are difficult to effectively capture 
the global spatial relationship of the target objects, resulting in incomplete, rough shape and blurred edges 
of the extracted water body information. Meanwhile, massive image data processing usually leads to computational 
resource overload and inefficiency. Fortunately, the local data processing capability of edge computing combined 
with the powerful computational resources of cloud centres can provide timely and efficient computation and stor-
age for high-resolution remote sensing image segmentation. In this regard, this paper proposes PMNet, a light-
weight deep learning network for edge-cloud collaboration, which utilises a pipelined multi-step aggregation 
method to capture image information at different scales and understand the relationships between remote pixels 
through horizontal and vertical spatial dimensions. Also, it adopts a combination of multiple decoding branches 
in the decoding stage instead of the traditional single decoding branch. The accuracy of the results is improved 
while reducing the consumption of system resources. The model obtained F1-score of 90.22 and 88.57 on Landsat-8 
and GID remote sensing image datasets with low model complexity, which is better than other semantic segmenta-
tion models, highlighting the potential of mobile edge computing in processing massive high-resolution remote 
sensing image data.
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Introduction
The study of extracting water bodies from high-resolu-
tion remote sensing images is garnering increased atten-
tion, particularly in light of the global rise in extreme 
climate events [1]. For instance, the unusual drought 
in China’s Yangtze River Basin and the appearance of 
“hungry rocks” in European rivers have underscored the 
urgent need for monitoring and analyzing water body 
dynamics [2]. These events not only demonstrate the pro-
found impacts of climate extremes on water resources 
but also emphasize the importance of precise monitoring 
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and analysis of water body distribution for disaster pre-
vention and resource management [3].

The primary task of image water body segmentation 
is to extract water bodies from complete remote sens-
ing images and separate them from other backgrounds, 
which is essential for understanding and analyzing 
regional hydrological conditions [4]. With the rapid 
development of satellite technology, it has become easier 
to acquire high-resolution remote sensing images, which 
provide a rich data resource for researchers. These high-
resolution images can provide more detailed and specific 
information about water bodies, thus making water body 
monitoring and analysis more accurate and comprehen-
sive. However, the complexity of high-resolution images 
creates new challenges for water body extraction [5, 6]. 
These images contain a large amount of non-water body 
surface object information and often present the problem 
of homoscedastic and heteroscedastic objects, which may 
lead to misclassification and omission of water bodies. 
In particular, some narrow water bodies surrounded by 
objects with similar colours and textures are more likely 
to be misidentified. Therefore, it becomes particularly 
important to develop accurate and efficient water body 
extraction algorithms. In addition, to ensure that the 
model can be deployed on some low-cost, low-configu-
ration edge devices, the new model should be lightweight 
and have low complexity. In this context, the application 
of deep learning-based methods, such as full convolu-
tional networks (FCNs) [7], has become a hot topic in 
water body extraction research. However, these meth-
ods still face limitations when processing high-resolution 
images, such as insufficient consideration of multi-scale 
properties and high storage and computational resource 
requirements. Mobile Edge Computing (MEC) relo-
cates part of the computation to the edge devices, which 
reduces the consumption of core system resources to a 
certain extent and reduces the computation latency and 
avoids network congestion problems [8]. It provides near 
real-time data processing capability for remote sensing 
image processing that requires fast response, reducing 
the dependence on remote data centres and the need for 
large-scale data transmission [9, 10]. Therefore, in order 
to further improve the accuracy of the model, reduce the 
complexity of the model and avoid excessive resource 
overheads, this paper proposes a lightweight PMNet net-
work driven by edge-cloud assistance.

The contributions of this paper are as follows:

•	 An edge-cloud collaborative approach for water seg-
mentation in high-resolution remote sensing images 
is proposed, which reduces the consumption of sys-
tem resources and improves the accuracy of water 
segmentation.

•	 A lightweight network PMNet with low complex-
ity is proposed in this paper. Comparison of sev-
eral deep learning networks on Landsat-8 dataset 
and GID dataset shows that the network is suitable 
for extracting water bodies from high resolution 
remote sensing images.

•	 A pipeline deep learning encoder based on equal 
channel number division is proposed to aggregate 
different levels of feature information. this method 
can capture multi-scale and deep-level semantic 
information with fewer parameters.

•	 This paper proposes an Object Enhancement Mod-
ule (OEM) to strengthen the water information 
during the information fusion between the encod-
ing and decoding phases of the network.

The rest of the paper is organized as follows. “Related 
work”  section focuses on related work. “Methodol-
ogy”  section describes the proposed method of this 
paper in detail. “Experiment”  section discusses the 
experimental results in detail. “Conclusion”  section is 
the conclusion and outlook.

Related work
Traditional water extraction methods
The early water body extraction method mainly used 
the threshold segmentation method to determine a bet-
ter gray threshold through continuous experimental 
analysis and then compared each pixel with this to dis-
tinguish the water object from the background infor-
mation. However, the error of this method is large, and 
it is easy to mistake the darker shaded information in 
the surrounding area or the wetland and farmland as a 
water body. Therefore, subsequent water body extrac-
tion methods mainly rely on spectral information in 
remote sensing images, such as near-infrared (NIR) and 
short-wave infrared (SWIR). The more widely known 
are various water index methods [11], such as auto-
matic water extraction (AWEI) [12], normalized dif-
ference water index (NDWI) , pixel region index (PRI) 
[13], and so on. NDWI mainly considers the correlation 
between different bands of sensed images and extracts 
water bodies using NIR and green bands. But this 
method does not perform well in cloudy and densely 
built-up areas. Therefore, Xu[14] further proposed 
MNDWI, using mid-infrared band instead of near-
infrared band to further suppress surface noise. For 
further improvement of accuracy, Guo [15] proposed 
weighted WNDWI. However, the robustness and gen-
eralization of the above methods are poor and they all 
demand manual rectification, leading to a tendency to 
fall into local optimum solutions.
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Deep learning based semantic segmentation approach
Different from traditional water body extraction meth-
ods, deep learning-based image semantic segmentation 
methods can free researchers from the tedious manual 
tuning and automatically learn to extract the optimal 
solution for water bodies. Most current segmentation 
networks are based on the Unet architecture [16]. Unlike 
traditional FCN networks, Unet uses a progressive up-
sampling structure that incorporates the output of each 
stage of the encoder at each up-sampling stage. The shal-
low detail information is taken into account along with 
the semantic messages, which is important for pixel-
level classification tasks such as image segmentation. In 
addition, extending the perceptual field of model allows 
it to precisely identify the target and the background. 
For example, PSPNet [17] aggregates different contex-
tual information according to different scale sizes in 
the last stage of the network. DeepLab [18] extends the 
perceptual domain of the network with three convolu-
tional kernels with different dilated rates to extract richer 
multi-scale contextual information, but this design makes 
the model perform less well with small objects and details 
than with large objects, as the dilated convolution may 
result in the information of small objects being diluted in 
the process of expanding the perceptual domain. OCR-
Net [19] converts pixel classification to object-area clas-
sification, explicitly enhancing the global information 
of the object, however this approach may not work well 
with edge blurring or small objects as it focuses on large-
scale regional information and may ignore local details. 
The attention mechanism also has an impact on the 
network results. The self-attentive mechanism [20] cal-
culates the relevance of each pixel point by using three 
matrices Q, K, and V. It expands the perceptual space of 
each pixel point, which can better highlight the target 
object and suppress the background information. How-
ever, its number of parameters is too large to apply this 
module on some lightweight devices. The CCNet [21] 
uses a cross-crossing approach based on the self-attentive 
mechanism, allowing each pixel to consider only the rela-
tionship between itself and the pixels in its row and col-
umn, further reducing the number of parameters. GCNet 
[22] further proposes that the global context is not loca-
tion dependent and there is no need to compute a global 
context for each location. ECANet [23] notes that chan-
nel degradation in SENet [24] will weaken the network’s 
learning of different channel weights, and proposes a par-
tial cross-channel interaction strategy without degrada-
tion which can reduce the complexity of the model as well 
as maintain the performance [25] proposed a new image 
segmentation network MobileUNet-FPN. it designed a 
multilevel edge computing system with distributed edge 
nodes deployed in servers at different locations. The 

MobileUNet-FPN model is trained in parallel on each 
edge node, which effectively reduces the network com-
munication overhead [26] proposed a segmentation 
method based on convolutional neural network (CNN), 
which used the distributed computing architecture pro-
vided by edge cloud computing in the image acquisition 
and processing stages to improve the efficiency of data 
processing. This approach can reduce network latency, 
improve real-time performance, and perform calcula-
tions close to the data source, thereby reducing the need 
for data transmission and storage [27] optimized the tar-
get algorithm of the edge computing platform for GPU, 
only uploading the algorithm output to the cloud, and 
the segmentation task was performed on the local edge 
device. This method reduces the dependence on infra-
structure and the consumption of network resources, and 
is more robust to connection interruptions, thus achiev-
ing efficient real-time processing.

Overall, there is great potential in applying mobile 
edge computing technology to the segmentation task of 
high-resolution remote sensing images. It helps spread 
the computational load, reduce system overhead, and 
improve processing efficiency. This article aims to intro-
duce the concept of mobile edge computing and improve 
the performance of high-resolution remote sensing image 
segmentation by implementing the collaborative working 
method of edge and cloud computing.

Methodology
System model
The architecture of the entire system is shown in Fig. 1. 
This system uses edge computing to improve the effi-
ciency and reliability of the semantic segmentation task 
of remote sensing images. By performing data preproc-
essing on the edge device, model training on the cloud 
center server, and model inference on the edge server, the 
respective advantages are fully utilized to achieve high-
quality and efficient ground object segmentation tasks. 
First, the ground receiving station will serve as a mobile 
edge node device. It is mainly responsible for receiving a 
variety of remote sensing satellite image data from satel-
lites and performing various image preprocessing opera-
tions, including data correction, radiation correction, and 
atmospheric correction operations to improve data qual-
ity, reduce noise, and ensure accuracy. This helps reduce 
model errors during training and inference and improves 
the reliability of results. And this operation distributes 
some computing operations to various edge computing 
devices, reducing the pressure on servers in the cloud. 
Subsequently, the processed data will be transferred 
to the cloud center for inference training of the deep 
learning model to adjust model parameters to continu-
ously optimize performance and improve accuracy and 
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generalization capabilities. The benefit of cloud servers 
is that they have high-performance computing resources 
and can support complex model training and large-
scale data processing. Finally, the trained model will 
be deployed to the edge server for inference. Migrating 
the result output calculation to edge computing devices 
avoids problems such as network delay and congestion, 
and enables fast decision-making with low latency.

Overall semantic segmentation model structure
Figure  2 shows the general structure of PMNet. The 
training process of this model will be carried out in the 
cloud center, and the pre-processed images of each 
mobile edge node will be transmitted to there as the 
training data set of the model. The whole model can be 
divided into encoding phase and decoding phase. In the 
encoding stage, the image is first down-sampled to one-
half of the original image using the basic convolution, 
followed by four successive P-Block encoding modules 
proposed in this paper. The P-Block module can build 
a narrower and deeper network encoding model with 
fewer parameters while learning the multi-scale nature 
of the target object at different stages. At the end of the 
encoding stage, an attention module is used to enhance 

the texture information of the target object. In the 
decoder part, a multi-branch decoder architecture is 
designed. Each decoder stage combines the high-level 
semantic information of the final output of the encoder 
with the shallow detail information of the output of each 
stage of the encoder. However, unlike the conventional 
decoder stage which only has a single branch to up-sam-
ple the high-level semantic information to the original 
image size, the approach in this paper adds an additional 
branch to each decoding stage to up-sample each layer 
of the decoding stage directly to the original image size 
before fusion. This can effectively learn the multi-scale 
information in the image, and also indirectly increase the 
perceptual field of the shallow information. In addition, 
an OEM module is added in the middle of each encod-
ing and decoding stage to enhance the water part of the 
detailed information. The details of the implementation 
of P-Block, multi-branch decoder, OEM, and CBAM are 
given in the subsequent subsections.

Design of P‑Block in encoder
A very important point in the field of image segmenta-
tion is that the encoder stage of the neural network needs 
the network to be able to learn the high-level features of 

Fig. 1  System model
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the image sufficiently to obtain richer semantic informa-
tion. This requires the network to have a large enough 
perceptual field. The main and basic way to expand the 
field of perception is to increase the depth of the net-
work. The deeper the network depth is, the richer the 
feature level is, and the richer the semantic informa-
tion can be extracted. Although this is theoretically true, 
recent studies have shown that the theoretical field size is 
much smaller than the actual field size. In addition, as the 
network deepens the model will also have problems such 
as gradient disappearance. The main manifestation is 
that the accuracy of the results gradually increases to the 
highest value as the depth of the network increases, but 
at a certain point, there will be a sudden cliff-like decline. 
To solve this problem, the ResNet [28] network was pro-
posed. It solves the problem of network degradation by 
skip connection. However, the second problem arises. 
The deeper the network, the larger the number of param-
eters, which leads to an increase in model complexity and 
memory consumption. Thus, this paper designs a new 
feature encoding module, P-Block, to train narrower and 
deeper networks with less number of parameters while 
containing rich multiscale information.

Unlike STDCNet, which considers shallow infor-
mation to be more important than high-level seman-
tic information in semantic segmentation. This paper 
considers that shallow and deep information should be 
equally important for semantic segmentation. The learn-
ing of high-level semantic feature information is the key 
to accurately identifying the object in the segmentation 
result while the information of shallow details is the key 
to refining the target object segmentation result. So the 
shallow and deep information in the network proposed in 

this paper has an equal number of channels. Compared 
with Res2Net [29], Res2Net is unfair to the informa-
tion contained in the channel. The number of channels 
in the latter part of the input of each layer aggregates the 
information of the former part of the channel, result-
ing in a greater weight for the latter part of the channel 
information. It is explicitly assumed that the number of 
channels in the latter part of each layer of information is 
more important than the former part before the model 
is trained. In contrast, the design of this paper lies in 
the fairness that both deep and shallow information is 
equally important. The general architecture of P-Block is 
shown in Fig. 3.

First, an 1 × 1 convolution is used to expand the number 
of feature channels to ensure that enough information 
can be learned in the subsequent dimensionality reduc-
tion operations. Four successive convolution operations 
are then used, and it should be noted that the convolu-
tions used in the middle are all dilated convolutions with 
different dilated rates. The purpose is to extend the per-
ceptual field without losing the resolution of the remote 
sensing image while capturing the multiscale informa-
tion of the image with different convolution sizes. In 
addition, the inflated convolution itself does not require 
the introduction of any additional parameters, which is 
what the model in this paper seeks. Unlike traditional 
ResNet, the number of output channels of each interme-
diate convolution layer is only one-fourth of the original 
map, which is intended to obtain a deeper network with 
fewer parameters. However, the reduction of the number 
of output channels in each layer will lead to insufficient 
information extraction, so the output of each intermedi-
ate convolution is finally stitched together to enrich the 

Fig. 2  The overall Structure of the Proposed PMNet
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information between channels. This operation also allows 
the information at different scales to be superimposed, 
further expanding the perceptual field of the model and 
allowing the model to learn information about the tar-
get object at different scales during the encoding stage. 
Finally, an 1 × 1 convolution is used again for feature 
fusion, allowing the network to adaptively learn differ-
ent scale features at each convolution stage. To prevent 
network degradation and other problems, this module 
also adopts the skip connection operation proposed in 
Res2Net. The overall formula is as follows:

where f3×3 and f1×1 represent the convolution opera-
tion of the size of 3 × 3 and 1 × 1, respectively. x0 represents 
the input after the dimension upgrade, xi represents the 
output of each intermediate convolution, and concat(·) 
represents the concatenation operation of output feature 
graphs at each stage.

Design of WOEM between encoder and decoder
Figure  4 shows the general structure of the WOEM. 
First of all, the first stage of this module adopts a chan-
nel selection structure, which allows the network to 
strengthen the relatively important channels of each stage 
and suppress irrelevant information channels by combin-
ing average pooling and maximum pooling. In the second 
stage of the module, the spatial relationship of each pixel 
is mainly considered. Referring to the cross-attention 

(1)xi = f3×3(xi−1) 0 < i ≤ 4.

(2)y = f1×1(x0 + concat(x1, x2, x3, x4))

idea of CCNet, the rectangular pooled kernel is adopted 
to establish the long-dependence relationship between 
discrete regions rather than the traditional square 
pooled kernel. However, since the cross-cross attention 
of CCNet still requires a large number of parameters, 
this paper makes a further simplification by using aver-
age pooling to collect contexts with long dependencies in 
both horizontal and vertical dimensions and then aggre-
gating the two dimensions for an 1 × 1 convolution opera-
tion as a way to learn the weight information between 
each direction. Finally, a normalization operation using 
the Sigmoid function is performed to obtain the final 
output by dot product with the output of the first stage. 
Compared with the global average pooling, this rectangu-
lar pooling operation considers a long and narrow range 
instead of a whole feature map, avoiding some irrelevant 
calculations between remote locations. And due to the 
continuity and internal consistency of most water bodies, 
most of them present a slender and narrow shape that is 
suitable for pooling kernel learning in this rectangular 
shape. In addition, the proposed module in this paper is 
more lightweight compared to the self-attention module 
which requires a lot of computation of position relation-
ships between each pixel.

Design of the multi‑branch in decoder
In the decoding part, a multi-branch decoder is designed 
in this paper as shown in Fig.  5. The traditional single-
branch decoder may gradually weaken the importance 
of the deep semantic information learned by the encoder 
during the up-sampling process, so this paper extends 

Fig. 3  The framework of P-Block in the encoder
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an additional branch at each stage of the decoder for 
the enhancement of the deep semantic information. The 
feature maps of each stage of the decoder are directly 
up-sampled to the original map size, this up-sampling 

operation at different stages helps the decoder stage to 
learn multi-scale features. Finally, the decoded outputs 
of each stage are stitched together and fused, allowing 
the network to learn the important features of the water 
target at different scales adaptively. Specifically, at each 
stage of the decoder, the feature map is first directly up-
sampled to the original map size using a bilinear inter-
polation method in order to reduce the information loss. 
Then the number of channels is transformed to 2 using a 
convolution kernel of 1 × 1 size, and finally, a batch nor-
malization operation is added to prevent the network 
gradient from disappearing. The whole process can be 
described as follows:

where xi represents the input at each stage of up-sam-
pling, F represents the bilinear interpolation function, 
BN represents the batch normalization operation, C1×1

represents a point convolution with a kernel size of 1 × 1. 
Its function is to fuse the multi-level feature information 
after splicing and change the dimension of the feature 
information, and Di represents the final output of each 
branch.

The whole decoder is divided into 5 paths, one main 
path, and four branches. Each of the branched paths 
is collocated before the result is output. With multiple 
scales and multiple different sensory fields for fusion, 
the information about the water body at different levels 
can be learned more fully. The final fusion process is as 
follows:

(3)Di = BN (C1×1(F(Xi))) i = 1, 2, 3, 4, 5

Fig. 4  The framework of WOEM

Fig. 5  The framework of the multi-branch decoder
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Where Di is the output of each stage of the decoder, 
concat(·) indicates the superposition of channel 
dimensions.

Design of CBAM
Considering the overall computational and parametric size 
of the model, the convolutional block attention module 
(CBAM) is used in the last stage of the encoder. The main 
focus of the CBAM is on the texture features of the image. 
In high-resolution remote sensing images, the texture of 
the water object is very clear, so this module is very effec-
tive in distinguishing the water body from the background 
information. The CBAM module generates the respective 
attention maps along two different dimensions, which gives 
better results than the previous SENet which only focuses 
on the channels. The overall structure of the CBAM is 
shown in Fig. 6 , where the output of the encoder is first 
weighted by a channel attention module, followed by a spa-
tial attention module to obtain the final output.

Equation  5 gives the basic process of channel attention 
calculation, σ represents the Sigmoid activation function, 
MLP represents the nonlinear fitting operation and W1 rep-
resents the weight of attention. The whole channel atten-
tion mechanism aggregates features by averaging pooling 
and maximum pooling, compresses the feature map into a 
one-dimensional vector, and then sends it to a shared net-
work for learning and element-by-element summation. The 
final generated attention graph is then multiplied with the 
original input to get the final output.

(4)Yout = C1×1(concat(D1,D2,D3,D4,D5))

(5)
Fc = σ(MLP(Avg(X))+MLP(Max(X)))

= σ W1 W0 Xc
avg +W1 W0 Xc

max

(6)
Ms

(

X ′
)

= σ
(

f 7×7
([

Avg
(

X′
)

;Max
(

X′
)]))

= σ

(

f 7×7
[

X ′s
avg ;X

′s
max

])

Equation  6 gives the basic formulation of the spa-
tial attention mechanism. X ′ represents the output of 
the channel attention mechanism, f7×7 represents the 
convolution operation of a 7 × 7 size convolution kernel. 
The spatial attention mechanism is a compression of 
the channel, where the average pooling and maximum 
pooling of each pixel point are performed at the chan-
nel level, thus highlighting the texture features of each 
pixel point.

Experiment
Dataset
The dataset used in this paper is Landsat-8 remote 
sensing image dataset. The data imaging time is the 
whole year of 2019 in the lower reaches of the Yang-
tze River, January to April 2021 in the middle reaches 
of the Yangtze River, and July to September 2020 in the 
upper reaches of the Yangtze River. The total number 
of samples used in the experiment is 2870, of which 
2009 (70%) are used for network training, 574 (20%) for 
network validation, and 287 (10%) for testing. In order 
to further enhance the information content of the raw 
data, the image data were also processed by transla-
tion, rotation, mirroring and edge flipping to avoid 
overfitting.

To further validate the generalisation capability, the 
GID high-resolution image dataset released by the State 
Key Laboratory of Wuhan University, China, is also used 
in this paper. The GID dataset contains a total of 150 
complete land-covered images with labels, including five 
different categories. The size of each image is 6800×7200, 
and the coverage area is large enough to include nearly 60 
cities in China covering an area of 506 square kilometres. 
Since this paper extracts information about water bodies, 
labels other than water bodies are eliminated. In addi-
tion, in order to reduce the training cost, this paper crops 
the image to 512×512 size and excludes the samples with 
too large or too small proportion of water bodies. Other 
operations are the same as Landsat-8 dataset.

Fig. 6  The framework of CBAM
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Evaluation metrics
Since the study is based on the binary classification task 
of water body extraction, two metrics are chosen in this 
paper to measure the accuracy of the results: the Recall 
and the F1-score. Recall measures how many targets the 
model is able to find correctly when recognising a target 
object. It is the ratio of the number of samples correctly 
detected as positive examples to the total number of true 
positive examples. F1 Score combines recall and preci-
sion and is used to evaluate the comprehensive perfor-
mance of the model in image segmentation tasks to avoid 
the situation where the recall is high but the proportion 
of samples that are mistakenly identified as positive is 
also high. The formula for both is as follows:

where TP refers to the case where the model correctly 
predicts a positive example sample as a positive example. 
FN refers to the case where the model incorrectly pre-
dicts a positive example sample as a negative example. 
In addition to the above metrics, params, GFLOPs, and 
Memory metrics are used to measure the complexity and 
lightness of the model. The params represent the num-
ber of parameters of the model, GFLOPS represent the 
gigabit floating point operations per second of the model, 
and Memory represents the memory usage of the graph-
ics card.

Experimental setup
The environment of the cloud center in this experiment 
is Windows 10 Professional Edition, and the proces-
sor is i9-10980XE. The GPU model is GeForce RTX™ 
3060, and the memory is 32 GB. The optimizer used in 
lab is Adam, and the cosine annealing algorithm is used 
to dynamically adjust the learning rate size to avoid the 
network from falling into local optima. Considering that 
the experiment in this paper is a pixel-based classifica-
tion task, the loss function used in this experiment is 
Dice Loss + Binary Cross Entropy Loss. BCE focuses on 
the pixel-by-pixel classification accuracy and strength-
ens the model’s ability to determine whether each pixel 
point belongs to the target category, which is particularly 
suitable for dealing with category imbalance, while DCE 
measures the similarity between the predicted and the 
real segmented regions to optimise the overall quality of 
segmentation. This combination strategy ensures that the 
model captures the shape and size of the target region 

(7)recall =
TP

TP + FN

(8)F1− score =
2× Precision× Recall

Precision+ Recall

while focusing on individual pixel accuracy, thus striking 
a balance between ensuring local detail and overall con-
sistency, which is crucial for improving the comprehen-
sive performance of image segmentation. The formula for 
Binary Cross Entropy Loss is as below:

where gi represents the value of the true label, pi on 
behalf of the prediction result, and N delegate total sam-
ple size.

Equation  10 is the calculation process of Dce Loss, 
where pi represents the predicted value of each pixel, gi 
represents the label value of each pixel. The smooth is a 
small constant added to the denominator and numera-
tor for stabilising the loss function. It is usually a very 
small positive number, such as 1e. It helps to mitigate the 
over-penalisation of the model for boundary pixels, thus 
improving the robustness of the model to some extent. 
The loss function used for the experiments in this paper 
is shown in Eq. 11.

Comparisons and analysis
In this paper, some classical network models and some 
advanced network models are selected to compare with 
the model proposed in this paper. The details are pre-
sented as follows:

•	 FCN was the first deep-learning method used for the 
semantic segmentation task. This model simply used 
the CNN backbone network to extract image features 
and substitute fully connected layer with a convolu-
tional layer, then finally performed a direct up-sam-
pling operation to restore to original size.

•	 DeepLabV3 [30] utilized cascading multiple convo-
lutional modules with different hole rates to catch 
multi-scale contextual information to tackle the issue 
of multi-scale size of target objects. The ASPP struc-
ture proposed in V2 was extended by using four cas-
caded convolutions with different sampling rates and 
Batch Normalization in parallel at the top layer of the 
feature mapping.

•	 SPNET [31] first proposed the method of band-
shaped pooling to capture the long-range relation-
ship between isolated areas. In addition, a hybrid 
pooling module was designed to further model the 

(9)LBCE = 1−
2
∑N

i pigi + soomth
∑N

i p2i +
∑N

i g2i + smooth

(10)LDCE = 1−
2
∑N

i pigi + soomth
∑N

i p2i +
∑N

i g2i + smooth

(11)L = LDCE + LBCE
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advanced semantic information. It used different 
shapes of pooling cores to detect complex scenarios 
to collect richer context information.

•	 BiseNetV1 [32] designed a two-way network in order 
to take into account the lightweight nature of the 
model and the fact that high-level semantic informa-
tion was as important as shallow detailed informa-
tion for semantic segmentation.

•	 DDRNet [33] proposed deep dual-resolution net-
works to learn richer contextual information with 
bilateral fusion and designed a new pyramid pooling 
module DAPPM to collect richer multi-scale infor-
mation.

Among them, BISENETV1 and DDRNet are relatively 
advanced lightweight networks, and the lightest DDR-
NET-23-Slim is selected in DDRNET as the comparison 
object of the experiment. SPNET is a relatively compli-
cated and heavy network.

Table 1 provides a comprehensive comparison of vari-
ous models on the GID dataset, with a specific focus on 
their various performance metrics. It is clear from the 
table that PMNet performs well on two key evaluation 
metrics: recall and F1-score. PMNet’s Recall, at 0.8963, 
is about 1.1 percentage points higher than its closest 
competitor, SPNet, which stands at 0.8760. In addition, 
the F1-score of PMNet is about 1.4 percentage points 
higher than that of SPNet. Although these differences 
may seem small in numerical terms, they demonstrate 
PMNet’s excellent ability to accurately identify target 
object while minimising false positives and omissions. 
This balance of high recall and F1 scores demonstrates 
PMNet’s robust and reliable performance in identifying 
true positives from non-target elements, thus greatly 
reducing the possibility of misclassification. In addi-
tion, PMNet’s memory usage is further highlighted 
by its memory usage of only 338.2MB, which is much 
lower than SPNet’s 1703.97MB. This lower memory 
requirement makes PMNet a more viable option for 
deployment in systems with limited memory resources. 
Although PMNet exhibits a slight disadvantage in terms 

of memory, parameters, and GFLOPs when compared 
to the more advanced lightweight network DDRNet, 
the difference is not significant and remains relatively 
small overall. Importantly, PMNet achieves a signifi-
cant improvement in target recognition capability, with 
F1-scores about 5 percentage points higher and Recall 
about 7 percentage points higher compared to DDR-
Net. The significant improvement in performance met-
rics highlights PMNet’s increased ability to accurately 
recognise target objects. Such results are acceptable 
under realistic conditions.

Figure 7 in the study provides insightful visual compar-
ative analysis. The recognition capabilities of the different 
models in terms of object extraction are shown in detail. 
These result images highlight the significant advantage 
of PMNet in this task, especially in its ability to detect 
smaller or finer objects. Compared to other models, 
PMNet is able to detect smaller or finer objects, while 
other models tend to ignore or misclassify this informa-
tion. In addition, PMNet also shows higher accuracy in 
object edge delineation. Smaller objects or objects with 
inconspicuous boundaries are very important issues for 
accurate detection and classification tasks, and PMNet is 
able to accurately outline the edge details of objects.

Table 2 shows the result metrics of each model on the 
GID dataset. It is evident that the Recall and F1-score 
evaluation metrics of PMNet are the highest. Compared 
to SPNet, which has the smallest difference, PMNet is 
about 1.1 percentage points higher in the Recall metric 
and about 1.4 percentage points higher in the F1-score. 
In a word, the generalization ability of the PMNet model 
is still good. Figure 8 shows some prediction figures for 
each model on the GID dataset. Overall, the prediction 
results obtained by PMNet are still the best in terms of 
edge details and missed judgments of water bodies com-
pared with other models.

Ablation analysis
The PMNet proposed in this article is composed of dif-
ferent modules. To confirm the validation of the mod-
ules for final results, this section conducts an ablation 
experiment.

Since the F1-score is a comprehensive evaluation index, 
it was chosen only as the judging index for this ablation 
experiment. As shown in Table 3, when the CBAM mod-
ule and WOEM module are removed, the F1 score drops 
by 0.46 and 0.69 percentage points, respectively. When 
using the P-Block module and the multi-branch decoder 
module, the F1-score increased by 1.47 and 1.12 percent-
age points respectively, which are slightly larger. This 
shows that the learning of multi-scale features is more 
effective.

Table 1  Comparison of different models on Landsat-8 Dataset

Bold is optimal, underline is suboptimal

Model Name Recall↑ F1-score↑ Params↓ GFLOPs↓ Memory↓

FCN 0.8269 0.8527 15.3M 80.5 571.01MB

DeepLabV3 0.7755 0.8092 39.6M 25.5 578.01MB

BiseNetV1 0.7902 0.8347 12.7M 13.02 228.42MB

DDRNet 0.8113 0.8502 5.6M 4.6 115.51MB
SPNet 0.8760 0.8941 39.2M 158.9 1703.97MB

PMNet 0.8963 0.9022 14M 14.6 338.2MB
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Fig. 7  Prediction of different models on Landsat-8 Dataset

Fig. 8  Prediction of different models on GID Dataset
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Conclusion
This paper proposes an edge-cloud collaboratively 
driven network named PMNet to handle image seg-
mentation tasks. Since large amounts of data need to be 
processed in mobile edge computing scenarios, efficient 
and lightweight networks are required, and PMNet 
is designed for this. By introducing the P-Block mod-
ule, we successfully constructed a network with fewer 
parameters, narrower structure, and deeper structure, 
taking full advantage of the multi-scale characteristics 
of the image. In the decoding stage, in order to maintain 
deep semantic information and prevent the loss of deep 
semantic information during the gradual upsampling 
process, this paper designs a multi-branch decoder to 
enhance the detection of water objects by combining 
upsampling information at different scales. In addi-
tion, to further enhance the detailed information of the 
water body, we added a WOEM module between the 
encoder and decoder. Experiments show that the model 
proposed in this article achieved F1-score indicators of 
up to 90.22 and 88.57 on the two data, respectively, and 
minimized the number of parameters, floating point 
operations and memory usage. However, it should be 
noted that although this article proposes a lightweight 
method to deploy AI applications on mobile edge 
devices, it does not fully consider the real-time nature 
of model operations, such as the number of images that 
can be processed per second. Therefore, the next task 
will focus on implementing AI applications on mobile 
edge devices from a lightweight and real-time perspec-
tive for rapid data processing and analysis.
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