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Abstract 

The field of medical image segmentation, particularly in the context of brain tumor delineation, plays an instrumental 
role in aiding healthcare professionals with diagnosis and accurate lesion quantification. Recently, Convolutional Neu-
ral Networks (CNNs) have demonstrated substantial efficacy in a range of computer vision tasks. However, a notable 
limitation of CNNs lies in their inadequate capability to encapsulate global and distal semantic information effectively. 
In contrast, the advent of Transformers, which has established their prowess in natural language processing and com-
puter vision, offers a promising alternative. This is primarily attributed to their self-attention mechanisms that facilitate 
comprehensive modeling of global information. This research delineates an innovative methodology to augment 
brain tumor segmentation by synergizing UNET architecture with Transformer technology (denoted as UT), and inte-
grating advanced feature enhancement (FE) techniques, specifically Modified Histogram Equalization (MHE), Contrast 
Limited Adaptive Histogram Equalization (CLAHE), and Modified Bi-histogram Equalization Based on Optimization 
(MBOBHE). This integration fosters the development of highly efficient image segmentation algorithms, namely FE1-
UT, FE2-UT, and FE3-UT. The methodology is predicated on three pivotal components. Initially, the study underscores 
the criticality of feature enhancement in the image preprocessing phase. Herein, techniques such as MHE, CLAHE, 
and MBOBHE are employed to substantially ameliorate the visibility of salient details within the medical images. Sub-
sequently, the UT model is meticulously engineered to refine segmentation outcomes through a customized con-
figuration within the UNET framework. The integration of Transformers within this model is instrumental in imparting 
contextual comprehension and capturing long-range data dependencies, culminating in more precise and context-
sensitive segmentation. Empirical evaluation of the model on two extensively acknowledged public datasets yielded 
accuracy rates exceeding 99%.
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Introduction
Brain tumors, notably characterized by their uncon-
trolled growth within the brain, represent a significant 
health challenge due to their complex origins and the 
severe impact they have on patients’ lives and well-being. 
Among these, gliomas are particularly significant, con-
stituting about 35% of all brain tumors [1]. They origi-
nate from glial cells and are known for their invasive 
nature, ranging from low-grade benign forms to highly 
malignant types like glioblastoma. The early detection 
of these tumors is critically important because of their 
high malignancy and the typically short survival time for 
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affected patients, underscoring the urgent need for effec-
tive diagnostic procedures [2].

In the realm of modern diagnostics, several methods 
are employed, including ultrasound imaging, CT scans, 
X-ray, and notably Magnetic Resonance Imaging (MRI). 
MRI stands out for its non-invasive nature, the detailed 
insights it offers without exposing patients to harmful 
ionizing radiation, and its exceptional ability to differen-
tiate soft tissues, such as tumors [3]. The varied imaging 
sequences available with MRI enable physicians to gain 
a comprehensive understanding of the tumor’s charac-
teristics, making it an indispensable tool in the diagno-
sis of brain tumors. The significance of medical imaging 
in modern medical diagnostics cannot be overstated, 
as these images are crucial in visualizing the internal 
structures of the human body [4, 5]. Medical image pro-
cessing, which encompasses detection, segmentation, 
registration, and fusion, is essential in this context. Cur-
rently, the focus of medical image segmentation is on 
images of various human organs, tissues, and cells, seg-
menting them into regions based on similarities or dif-
ferences. Enhancing these techniques, especially in MRI, 
is vital in advancing our ability to accurately diagnose 
and effectively treat brain tumors, ultimately improving 
patient outcomes [6].

Over the past few years, the field of medical image seg-
mentation has witnessed a continuous stream of research 
endeavors, leading to the development and proposition 
of numerous techniques and methods. These approaches 
encompass a diverse array, encompassing threshold-
based segmentation, region-based segmentation, and 
edge detection-based segmentation methods. Notably, 
traditional machine learning techniques, including deci-
sion trees, random forests, and clustering algorithms, 
have demonstrated their effectiveness in achieving pre-
cise image segmentation. Nevertheless, these methods 
are inherently reliant on feature engineering, and their 
performance is inherently constrained by the limited 
expressiveness of the features they extract [7, 8].

In recent years, deep learning methods, especially 
those based on convolutional neural networks (CNNs), 
have demonstrated strong feature recognition capa-
bilities. They have generally outperformed traditional 
machine learning methods in areas like medical image 
segmentation. Consequently, deep learning-based medi-
cal image segmentation methods have garnered increas-
ing attention and application [9, 10]. In this domain, 
medical image segmentation is a cornerstone, facilitat-
ing the differentiation of distinct regions within images, 
including discerning between healthy tissues and anom-
alies [11]. Deep learning techniques, such as the Fully 
Convolutional Network (FCN) [12], Deep lab [13], and 
notably the UNET architecture [14], have been pivotal 

in enhancing the precision of this vital task. Yet, while 
UNET has found tremendous success, it isn’t devoid of 
limitations, primarily its rigidity in adapting to datasets 
of different sizes and potential inefficiencies in leveraging 
skip connections.

UNET, a powerful tool in medical image segmenta-
tion, has notable limitations that must be considered 
when applying it in healthcare settings. One significant 
drawback is its substantial data appetite. UNETs require 
large and diverse datasets for training, which can be dif-
ficult to obtain, particularly for rare conditions. Moreo-
ver, deep learning models like UNET are susceptible to 
overfitting, especially when the training dataset is lim-
ited. This means that while they may perform exception-
ally well on training data, their ability to generalize to 
new, unseen cases can be compromised [15]. The com-
putational demands of UNETs can also be a hindrance, 
as they necessitate robust hardware resources, both for 
training and inference, making them less accessible to 
smaller healthcare facilities. Another critical limitation 
is the model’s interpretability, or rather, the lack thereof. 
UNETs are often regarded as "black boxes," making it 
challenging to explain how they arrive at their deci-
sions, a crucial concern in healthcare where transparent 
decision-making is imperative. Additionally, UNETs may 
struggle with precise boundary delineation, potentially 
producing slightly irregular object boundaries. Variations 
in image quality, acquisition devices, and protocols can 
also pose challenges for the model’s robustness. Address-
ing these limitations is paramount for the successful 
integration of UNETs into clinical practice. The major 
contributions of this study in the field of medical image 
segmentation are as follows:

•	 Innovative Hybrid Model (FE1-UT, FE2-UT, and 
FE3-UT): Our new algorithm combines the UNET 
architecture with Transformers and feature enhance-
ment techniques (MHE, CLAHE, and MBOBHE). 
The resulting hybrid models, named FE1-UT, FE2-
UT, and FE3-UT, represent a significant advance-
ment in the field of medical image segmentation.

•	 Improved Performance: The primary focus of this 
research is to enhance the accuracy of results of seg-
mentation for brain tumors. By integrating Trans-
formers into the UNET framework, the models gain 
the ability to understand context and capture long-
range dependencies within the data. This contextual 
understanding significantly improves segmentation 
accuracy, especially in cases involving intricate ana-
tomical structures and indistinct features.

•	 Feature Enhancement in Image Preprocessing: The 
study emphasizes the importance of feature enhance-
ment during the image preprocessing stage. The use 
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of image quality method such as MHE, CLAHE, and 
MBOBHE enhances the visibility of critical details 
within medical images, ensuring better results of seg-
mentation.

•	 Exceptional Accuracy: The models developed in this 
study achieve remarkable accuracy rates, exceeding 
99%, on two publicly available datasets. This level 
of accuracy is a significant achievement in medical 
image segmentation and reflects the excellence of the 
proposed approach.

The remaining sections of the paper are structured as 
follows:

•	 Section II provides an in-depth comparison of our 
novel methods with existing approaches.

•	 In Section III, we offer a concise overview of the 
structure of our innovative techniques.

•	 Section IV is dedicated to discussing the experimen-
tal results, including comprehensive discussions and 
comparisons with established methodologies.

•	 Concluding the paper, we present our final remarks 
and conclusions in Section VI.

Related work
This section is structured into two main categories: seg-
mentation methods based on Convolutional Neural 
Network (CNN)-UNET approaches and segmentation 
methods using Transformer-based techniques. This divi-
sion allows for a more in-depth exploration of the specific 
techniques and approaches within these two prominent 
branches of medical image segmentation.

Image segmentation with CNN and UNET
The journey continued with the groundbreaking concept 
of Convolutional Neural Networks (CNNs) introduced 
by LeCun et  al. [16], and his collaborators. Their work 
achieved remarkable success in recognizing handwritten 
digits, notably with the construction of the LeNet-5 net-
work. As computing power continued to advance, CNNs 
garnered widespread attention from researchers, gain-
ing prominence in various domains. CNNs found their 
application in image segmentation, excelling not only 
in segmentation tasks but also in related areas such as 
image classification and object detection [17]. They have 
emerged as one of the most influential algorithms in the 
realm of deep learning. In the domain of medical image 
segmentation, CNN-based research predominantly falls 
into two categories:

Image Block Classification: In this approach, the task of 
image segmentation is transformed into the classification 
of local image blocks, where each pixel’s location within 
the image plays a crucial role. For instance, researchers 

like Arkapravo Chattopadhyay and Mausumi Maitra have 
devised CNN-based models for brain tumor segmenta-
tion [18]. These models make extensive use of both local 
and global image features, enhancing their segmentation 
capabilities. The incorporation of fully connected layers 
at the end of the model significantly accelerates network 
training.

Semantic Segmentation based on Fully Convolutional 
Networks (FCN): This approach predicts the class to 
which each pixel within an input image belongs, enabling 
pixel-level semantic segmentation. Notably, Long and his 
team introduced the concept of Fully Convolutional Net-
works (FCN), capable of pixel-wise classification through 
forward propagation. This technology transforms image 
input into image output, enabling end-to-end segmen-
tation [19]. FCN-based semantic segmentation has 
attracted substantial research efforts, with novel tech-
niques emerging to facilitate hierarchical feature learn-
ing, classification optimization, and the creation of dense 
predictions for entire images.

Furthermore, advanced 3D networks, inspired by 
U-net-like topologies, have been introduced to extract 
contextual information from adjacent slices within 3D 
volumes used extensively in clinical practice [20]. Nota-
ble examples include 3D U-net and V-net, which leverage 
context from neighboring slices to enhance segmentation 
accuracy. In recent years, FCN-based semantic segmen-
tation has dominated the landscape of medical image 
analysis. A significant proportion of international compe-
titions, approximately 70%, focus on this particular area. 
Consequently, this chapter will delve into the exploration 
of fully convolutional neural networks, with a primary 
focus on the research status of the U-Net model in the 
domain of medical image segmentation.

Image segmentation with transformers
Although Convolutional Neural Networks (CNNs) have 
been around for many years, it wasn’t until the intro-
duction of AlexNet that CNNs became the mainstream 
deep learning model in the field of computer vision. 
Since then, deeper and more effective deep network 
models have gradually been proposed, such as ResNet, 
GoogleNet, DenseNet, and others [21]. In addition to 
exploring network architectures, these studies also 
included improvements to CNN itself, such as the 
introduction of dilated convolutions and depth-wise 
separable convolutions. One of the primary advantages 
of CNNs compared to traditional machine learning 
methods is that CNNs extract richer and more expres-
sive features, eliminating the need for manual feature 
engineering. In different application scenarios, select-
ing suitable handcrafted features can be challenging, 
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while CNNs do not require manual feature selection 
and can perform end-to-end feature extraction.

However, one limitation of CNNs is their local opera-
tion, meaning that they have limited receptive fields 
[22]. To address the problem of limited convolutional 
receptive fields, commonly used operations like dilated 
convolutions effectively increase the receptive field 
without reducing resolution. Dilated convolution, uses 
convolution kernels with different dilation rates to 
extract features at different scales, to some extent alle-
viating the limitations of standard convolution opera-
tions. Feature pyramidal pooling, on the other hand, 
uses different sizes of pooling combinations to obtain 
multiscale feature information, enhancing classification 
accuracy. In the field of medical image segmentation, 
despite the success of models based on Convolutional 
Neural Networks (CNNs) like U-Net, there are still 
limitations in terms of segmentation accuracy and 
granularity due to the complexity of medical images, 
difficulty in data labeling, and limited annotated data.

Researchers have proposed various variations of the 
U-Net model to address these limitations. For exam-
ple, U-Net +  + introduced mesh-like connectivity by 
using denser skip connections to link different stages 
of features [23]. R2U-Net [24] ensured segmentation 
continuity by introducing recurrent convolution mod-
ules and Long Short-Term Memory (LSTM) networks. 
SA-U-Net incorporated spatial attention modules to 
suppress irrelevant areas of feature maps, enhancing 
classifier discriminative accuracy, and used Dropout 
layers to mitigate overfitting [25]. However, these varia-
tions are primarily focused on improving convolutional 
models and do not fundamentally address the lack of 
global information in convolutional features. These 
improved variant networks still struggle to handle long-
range semantic interactions in CNNs.

The Transformer was initially introduced in natu-
ral language processing research and was first applied 
to computer vision tasks, such as ImageNet image 
classification [26], through models like ViT (Vision 
Transformer) [27], achieving unprecedented suc-
cess. Transformers divide images into fixed-size 
image patches, project them to a specified dimension 
through linear projection, and represent them as token 
sequences, offering a novel segmentation approach. 
Transformers model global information without down-
sampling, allowing for global information modeling 
while maintaining image resolution [28]. This approach 
is a fresh approach to semantic segmentation. Without 
relying on operations like dilated convolutions and Fea-
ture Pyramid Networks (FPN) used in convolutional 
methods, the Transformer expands receptive fields and 
obtains feature responses from a global perspective.

Transformers, based on multi-layer self-attention and 
multi-layer perceptrons, achieved significant success in 
natural language processing [29]. ViT was the first suc-
cessful application of Transformers in computer vision, 
outperforming many advanced models in image recogni-
tion tasks. However, ViT is more suitable for large data-
sets. Touvron et al. [30], and others [31] improved ViT’s 
performance on small datasets through various train-
ing strategies. The Swin-UNET model, utilizing a pure 
Transformer U-shaped network architecture, achieved 
excellent results in liver image segmentation [32]. Due to 
the high computational complexity of core self-attention 
computations in Transformers, Swin Transformer intro-
duced the concept of sliding windows, reducing param-
eter counts for calculating self-attention within each 
window and enabling communication between non-adja-
cent patches.

While Transformer structures may perform relatively 
poorly on medical image datasets with limited data, 
some researchers have made progress in applying Trans-
formers to image processing with promising results. 
The SETR model proposed using Transformers exclu-
sively for semantic segmentation and introduced context 
information dependencies at every stage, removing the 
previous limitations of relying on dilated convolutions 
and attention mechanisms to increase receptive fields 
[33]. TransUNET was the first model to combine Trans-
former and CNN in a U-shaped lightweight network for 
abdominal organ segmentation. It used conventional 
CNNs to extract low-level information, serialized fea-
ture maps in the last stage of the Encoder using patches 
to obtain tokens, and then obtained global informa-
tion through Transformers [34]. The TransFuse model 
employed a dual-branch structure with Swin-Trans-
former and CNN for feature encoding, capturing both 
local information and global dependencies. It introduced 
the Bifusion module to fuse multiscale features, achiev-
ing state-of-the-art results in Polyp dataset segmenta-
tion. DS-TransUNET [35] used two different patch sizes 
for partitioning and introduced a dual-branch Swin 
Transformer to extract different scale feature represen-
tations. It proposed the TIF fusion strategy to combine 
the results of two different scales. In the Decoder stage, 
it also introduced Swin-Transformer to establish global 
dependencies during upsampling. The Medical Trans-
former model used Gated axial attention and decom-
posed global spatial attention into two axial directions 
[36], significantly reducing parameter counts. It also 
introduced the Local branch and Global branch to fuse 
global and local segmentation results [37]. However, 
these methods have several limitations. For instance, 
while Transformers can establish global context depend-
encies, they may disrupt the shallow features of the 
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convolutional network, which contain crucial local 
information for improving edge segmentation accuracy. 
Therefore, designing a more suitable fusion model that 
retains low-level information while establishing long-
term dependencies is a key challenge to address.

Method
The initial phase of the feature-enhanced UNET-based 
Transformer (FE-UT) model involves enhancing image 
features through a series of preprocessing steps. These 
steps utilize Contrast-Limited Adaptive Histogram 
Equalization (CLAHE) [38], Modified Histogram Equali-
zation (MHE) [39], and Modified Brightness and Con-
trast Enhancement (MBOBHE) [40] techniques. These 
image enhancement methods are applied to enhance the 
contrast and visibility of the input image, ensuring that it 
is well-prepared for subsequent analysis and processing. 
In Fig. 1, the comprehensive implementation strategy for 
all algorithms is visually presented, outlining the various 
steps involved in this process.

Image enhancement
The preprocessing stage incorporates the application 
of MHE, CLAHE, and MBOBHE to leverage image 

enhancement techniques aimed at augmenting the con-
trast and visibility of the input image prior to any sub-
sequent analysis or processing. Each of these methods 
possesses unique characteristics and brings specific 
advantages to the enhancement process. All models of 
enhancements are described as follows:

a)	 MBOBHE method

MBOBHE operates with the explicit goal of simul-
taneously addressing three critical aspects of image 
enhancement: contrast enhancement, brightness pres-
ervation and detail preservation.

Hum et al. [40] have conducted extensive research to 
demonstrate the superior performance of MBOBHE 
in comparison to existing bi-Histogram Equalization 
methods. Both quantitative and qualitative results sub-
stantiate the effectiveness of MBOBHE, highlighting 
its ability to provide a holistic view of image enhance-
ment. Notably, MBOBHE excels in striking the delicate 
balance between preserving image brightness, retain-
ing intricate details, and enhancing contrast in the final 
enhanced images Figs. 2 and 3.

Fig. 1  Feature Enhanced Model for MRI segmentation using UNET and transformers
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b)	 Multipeak Histogram Equalization (MHE)

Multipeak Histogram Equalization, also known as 
Multi-Modal or Multi-Peak Histogram Equalization, 
is a variation of the traditional histogram equaliza-
tion technique used in image processing and computer 

vision. Traditional histogram equalization aims to 
enhance the contrast of an image by redistributing the 
pixel intensity values in such a way that the resulting 
histogram is approximately uniform. However, this 
approach may not be suitable for images with multi-
ple distinct intensity peaks or modes, as it can cause 

Fig. 2  Layered architecture of U-Net in this study

Fig. 3  Datasets used in this study (a) MSD dataset (b) BraTS dataset
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unwanted artifacts and exaggerate the differences 
between the modes. Multipeak Histogram Equalization 
is designed to handle images with multiple intensity 
modes effectively. It does so by identifying the distinct 
peaks or modes in the histogram and then equalizing 
each mode separately. Here’s a outline of the process:

•	 Compute the Histogram

	 Let H be the histogram of the input image I, where 
H(i) represents the number of pixels with intensity i.

•	 Identify Intensity Modes:
	 Detect the peaks or modes in the histogram.
	 Divide the Image:
	 Divide the input image I into subregions based on 

the identified modes.
•	 Apply Histogram Equalization:
	 For each subregion, perform histogram equalization 

independently. Let’s denote the subregions as I_1, 
I_2, ..., I_n, where n is the number of modes. Apply 
histogram equalization to each subregion as follows:

1.	 Compute the cumulative distribution function (CDF) 
for the subregion:

2.	 Apply histogram equalization to the subregion:

3.	 Reconstruct the Image:

After equalizing all the sub regions, combine them to 
reconstruct the final equalized image.

Multipeak Histogram Equalization can be particularly 
useful for enhancing the contrast in images where differ-
ent objects or regions have varying illumination condi-
tions or intensity characteristics. By equalizing each mode 
separately, it preserves the relative differences between 
modes while enhancing the contrast within each mode.

iii)	Contrast-limited adaptive histogram equalization 
(CLAHE)

(1)CDF_i(j) =
sum (H(i) for all i from 0 to j)

Total number of pixels in I_i

(2)I_i(j) = round (CDF_i(I_i(j)) ∗ (Number of intensity levels− 1))

Contrast-Limited Adaptive Histogram Equalization 
(CLAHE) is a widely used technique in image process-
ing to enhance the contrast of an image while limit-
ing the amplification of noise in flat or low-contrast 
regions. CLAHE is particularly useful when dealing 
with images that have uneven lighting conditions or 
regions with varying contrasts. The basic idea behind 
CLAHE is to divide the image into small tiles or blocks 
and perform histogram equalization within each tile. 
However, to prevent excessive amplification of noise, 
CLAHE also limits the contrast enhancement for each 
tile by clipping the histogram.

Here’s an explanation of CLAHE along with equations:

Divide the image into tiles
Divide the input image I into non-overlapping tiles 
or blocks. Let’s denote these tiles as I(x, y), where (x, 
y) represents the coordinates of the top-left corner of 
each tile.

Calculate the histogram for each tile
For each tile I(x, y), compute the histogram H(x, y) that 
represents the distribution of pixel intensities within 
that tile.

Clip the histogram
Apply contrast limiting by clipping the histogram. This is 
done by setting a predefined threshold T. If any bin in the 
histogram exceeds this threshold, the excess pixels are 
redistributed to other bins. The formula for this clipping 
is as follows:

After clipping, normalize the histogram so that its sum 
remains the same

Calculate the Cumulative Distribution Function (CDF)
Compute the cumulative distribution function (CDF) for 
each clipped and normalized histogram:

Apply histogram equalization
For each tile, map the pixel intensities using the CDF to 
perform histogram equalization:

(3)H_clip(x, y, i) = min(H(x, y, i), T), for all i

(4)H_norm(x, y, i) = H_clip(x, y, i)/sum(H_clip(x, y, j) for all j)

(5)CDF(x, y, i) = sum(H_norm(x, y, j) for all j from 0 to i)
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Reconstruct the image
Combine the equalized tiles to form the final CLAHE-
enhanced image.

The key parameter in CLAHE is the contrast thresh-
old (T). Adjusting this threshold will control the degree 
of contrast enhancement and noise amplification. A 
lower value of T results in stronger contrast enhance-
ment but may increase noise, while a higher value of 
T reduces contrast enhancement but also limits noise 
amplification.

CLAHE is a powerful technique for enhancing local 
contrast in images and is commonly used in medical 
image processing and other applications where con-
trast is crucial. Its adaptability to local image content 
makes it a valuable tool for various image enhance-
ment tasks.

Improved U‑net segmentation
The U-Net architecture, renowned for its exceptional 
performance in medical science and bioinformatics 
image segmentation tasks, has garnered significant atten-
tion among researchers [41]. Its name is derived from the 
network’s structural shape, which bears a resemblance to 
the letter "U." This architecture encompasses two funda-
mental paths:

Self‑attention‑transformer
Recent advancements have seen the incorporation of 
Transformers, which excel in capturing long-range 
dependencies and contextual information [42]. The 
Transformer blocks can be inserted at various points 
in the U-Net architecture to enhance feature extraction 
and segmentation performance. By attending to and 
aggregating information across the feature maps, Trans-
formers contribute to a deeper understanding of image 
context, allowing for more context-aware and accurate 
segmentation.

Algorithm
This code implements a convolutional neural network 
(CNN) based on the U-Net architecture with an addi-
tional Transformer module for image segmentation 
tasks. Below is a detailed explanation of the code in 
points:

•	 Input Shape and Layers Initialization

(6)
I_equalized(x, y, p) = round(CDF(x, y, I(x, y, p)) ∗ (Number of intensity levels − 1))

The input shape of the images is defined as (240, 240, 
4), indicating images with a resolution of 240x240 pixels 
and 4 channels.

The code initializes an input layer (inply) using the 
defined input shape.

•	 Encoder

Convolutional Layers: The input passes through a 
series of convolutional layers (conv1, conv2, conv3) 
with increasing filters (64, 128, 256) and 3x3 kernel 
size, followed by ReLU activation and same padding. 
This extracts essential features from the input image.

MaxPooling and Dropout: After each set of convolu-
tional layers, max-pooling is applied to reduce spatial 
dimensions, and dropout is used for regularization to 
prevent overfitting.

•	 Transformer Module

Dropout: A dropout layer with a dropout rate of 0.1 is 
added to the output of the encoder (drop3).

Multi-Head Attention: The dropout output is fed into 
a Multi-Head Attention layer with 4 heads and a key 
dimension of 64. This layer captures complex patterns 
and long-range dependencies in the input features.

•	 Decoder

Convolutional Transpose Layers: The output from 
the Transformer module is passed through a series of 
transpose convolutional layers (tran1, tran2, tran3). 
These layers upsample the features to reconstruct the 
spatial dimensions of the image.

Concatenation: At each stage of the decoder, the 
upsampled features are concatenated with the cor-
responding features from the encoder to provide skip 
connections. This helps the network to retain detailed 
information from the encoder.

Convolutional Layers and Dropout: After concat-
enation, the features go through several additional 
convolutional layers (conv4, conv5, conv6) with ReLU 
activation and same padding. Dropout is applied after 
each convolutional layer for regularization.

•	 Output Layer

Convolutional Layer with Softmax Activation: The 
output from the decoder is passed through a 1 × 1 
convolutional layer with 4 filters (for 4 segmentation 



Page 9 of 18Nizamani et al. Journal of Cloud Computing          (2023) 12:170 	

classes) and same padding. Softmax activation is 
applied to obtain the final segmentation probabilities 
for each class.

Experimental setting and results
Results with experimental settings are described in this 
section.

Evaluation metrics
This study employed a range of evaluation metrics to 
assess the performance of the model and the equations 
for these evaluation methods are as follows:

Where;
FN (False Negative): This refers to cases where the 

model or classifier incorrectly predicted the nega-
tive class when the true class was actually positive. In 
other words, it’s a situation where a positive instance is 
missed or not detected.

TP (True Positive): This indicates cases where the 
model correctly predicted the positive class when the 
true class was indeed positive. It represents accurate 
positive predictions.

FP (False Positive): FP refers to cases where the model 
incorrectly predicted the positive class when the true 

(7)Dice =
2 ∗ Tp

2 ∗ Tp+ Fp+ Fn

(8)Accuracy =
Tp+ Tn

Tp+ Tn+ Fn+ Fp

(9)Sensitivity =
Tp

Tp+ Fn

(10)Specificity =
Tn

Tn + Fp

(11)Precision =
Tp

Tp+ Fp

(12)

Inter section over Union (IOU) =
Tp

Fp+ Tp+ Fn

(13)Kappa =

(Tn + Fn)(Tn + Fp)+ (Fp+ Tp)(Fn + Tp)

Tp+ Tn + Fn + Fp

(14)
Balanced Accuracy(BA) =

Sensitivity + Specificity

2

class was actually negative. In this situation, the model 
made a positive prediction when it should not have.

Dataset description
Datasets used in this study are BraTS dataset [43] and 
Medical Segmentation Decathlon (MSD) [44]. The 
Medical Segmentation Decathlon (MSD) dataset is a 
comprehensive collection of medical images and cor-
responding segmentation masks, designed for evalu-
ating and developing medical image segmentation 
algorithms. It covers various imaging modalities and 
anatomical regions, making it versatile for different 
medical tasks. Researchers use it to benchmark and 
compare the accuracy of segmentation algorithms, 
making it a valuable resource in medical image analysis 
research for applications like organ segmentation, dis-
ease diagnosis, and treatment planning.

The BRATS (BraTS) 2020 dataset is a widely recog-
nized collection of medical images designed for the 
evaluation and development of algorithms related to 
brain tumor segmentation and diagnosis. It contains 
multi-modal magnetic resonance imaging (MRI) scans, 
including T1-weighted, T1-weighted contrast-enhanced, 
T2-weighted, and FLAIR (Fluid Attenuated Inversion 
Recovery) images. The dataset provides annotations for 
brain tumor regions, including gliomas, making it invalu-
able for machine learning and deep learning research 
in the field of medical image analysis. Researchers and 
practitioners use the BRATS 2020 dataset to develop and 
benchmark segmentation and classification algorithms 
for brain tumor detection and analysis, contributing to 
advancements in neuro-oncology and medical imaging.

Experimental parameters setting
The hardware environment for this experiment includes 
a CPU with a clock speed of 3.40 GHz, an NVIDIA GTX 
1070 GPU, and 16  GB of memory. This study models 
were constructed using TensorFlow and Keras as the 
backend framework. To optimize performance, the Adam 
optimizer, known for its robustness, was chosen. Further-
more, the preprocessing steps includes normalization to 
avoid complexities in preprocessing. For the dataset, we 
adopted a random split, allocating approximately 80% of 
the data to the training set and reserving the remaining 
20% for the test set. Specific parameter configurations for 
all the algorithms employed in this research are provided 
in detail in Table 1.

Proposed methods segmentation performance evaluation
Our study three algorithms are compared by using dif-
ferent validation criteria. Balanced accuracy takes into 
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account both the sensitivity and specificity of the seg-
mentation results, making it a more reliable measure 
in situations where the class distribution is imbalanced, 
as often seen in medical imaging. This metric provides 
a balanced evaluation of how well the algorithm iden-
tifies both positive and negative regions within the 
image, ensuring that neither class is disproportionately 
favored in the assessment, which is crucial for accu-
rate and fair evaluation of medical image segmentation 
models. For Dataset 1, FE1-UT is having higher bal-
anced 98.64% which is higher then FE2-UT (98.53%) 
and FE3-UT(98.42%). Similarly, Precision is 98.19% 
for FE1-UT which is higher then FE2-UT (97.98%) and 
FE3-UT(97.85%). Higher precision of FE1-UT means 
that a greater proportion of the pixels or regions iden-
tified as belonging to a particular class (e.g., a specific 
anatomical structure or lesion) are indeed correct or 
true positives. Therefore, all algorithms higher pre-
cision shows that the segmentation algorithm pro-
duces fewer false positives and is better at correctly 

identifying the regions of interest in the medical image. 
This is particularly important in medical applications, 
where misclassifying or missing important struc-
tures can have serious clinical consequences. Another 
important metric is Recall, which is also 98.18% for 
FE1-UT while 97.90% for FE2-UT and 97.85% for FE3-
UT. Higher recall means that the segmentation algo-
rithm has correctly identified a greater proportion of 
the actual positive regions (e.g., important anatomical 
structures or abnormalities) within the image. Similar 
higher results are observed for FE1-UT in other data-
set 2 as well in all metrics, which shows that CLAHE 
improvement has a better impact on image segmenta-
tion. Figures  4 and 5 shows the comparative perfor-
mance of the proposed algorithms against different 
image segmentation metrics.

CLAHE enhances local contrast, which helps in better 
delineation of subtle details and boundaries in medical 
images. U-Net provides excellent spatial feature extrac-
tion and segmentation capabilities. The Transformer 

Table 1  Layer and parameter settings

Part Layer Type Layer Name Output Shape Number of 
Parameters

Encoder Conv2D conv2d (None, 240, 240, 64) 2368

Encoder Conv2D conv2d_1 (None, 240, 240, 64) 36928

Encoder MaxPooling2D max_pooling2d (None, 120, 120, 64) 0

Encoder Dropout dropout_1 (None, 120, 120, 64) 0

Encoder Conv2D conv2d_2 (None, 120, 120, 128) 73856

Encoder Conv2D conv2d_3 (None, 120, 120, 128) 147584

Encoder MaxPooling2D max_pooling2d_1 (None, 60, 60, 128) 0

Encoder Dropout dropout_2 (None, 60, 60, 128) 0

Encoder Conv2D conv2d_4 (None, 60, 60, 256) 295168

Encoder Conv2D conv2d_5 (None, 60, 60, 256) 590080

Transformer Dropout dropout_3 (None, 30, 30, 256) 0

Transformer MultiHeadAttention multi_head_attention (None, 30, 30, 256) 263168

Transformer Dropout dropout_4 (None, 30, 30, 256) 0

Decoder Conv2DTranspose conv2d_transpose (None, 60, 60, 256) 262400

Decoder Concatenate concatenate (None, 60, 60, 512) 0

Decoder Conv2D conv2d_6 (None, 60, 60, 256) 1179904

Decoder Conv2D conv2d_7 (None, 60, 60, 256) 590080

Decoder Conv2DTranspose conv2d_transpose_1 (None, 120, 120, 128) 131200

Decoder Concatenate concatenate_1 (None, 120, 120, 256) 0

Decoder Conv2D conv2d_8 (None, 120, 120, 128) 295040

Decoder Conv2D conv2d_9 (None, 120, 120, 128) 147584

Decoder Conv2DTranspose conv2d_transpose_2 (None, 240, 240, 64) 32832

Decoder Concatenate concatenate_2 (None, 240, 240, 128) 0

Decoder Conv2D conv2d_10 (None, 240, 240, 64) 73792

Decoder Conv2D conv2d 11 (None, 240, 240, 64) 36928

Output Conv2D conv2d_12 (None, 240, 240, 4) 260

Output Activation activation (None, 240, 240, 4) 0
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Fig. 4  Performance of proposed algorithms in MSD dataset

Fig. 5  Performance of proposed algorithms in BRaTS dataset
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component can capture long-range dependencies, mak-
ing it effective for tasks where context matters. The syner-
gistic use of these components can improve segmentation 
accuracy, especially in complex and high-contrast medi-
cal images, enabling the model to handle a wider range of 
clinical scenarios and deliver superior results. Figures  6 
and 7 provide a visual comparison of our proposed model 
with each dataset. It is evident that our model exhibits 
remarkable consistency with the ground truth in terms 
of feature extraction, closely resembling other existing 
methods. However, what sets our proposed hybrid model 

apart is its superior segmentation performance, with 
more distinct and clearly visible boundaries.

Traditional methods comparison with proposed methods
In medical image segmentation, like when using a U-Net 
architecture, sensitivity is an important evaluation metric 
because it measures the ability of the model to correctly 
identify positive instances (i.e., true positives) within 
the dataset. Sensitivity is also known as the true positive 
rate, recall, or hit rate, and it quantifies the model’s abil-
ity to detect all instances of a particular class, typically 

Fig. 6  Comparison of proposed methods visual in database 1

Fig. 7  Comparison of proposed methods visual in database 2
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the presence of a specific medical condition or object 
of interest within an image. To validate the results of 
our proposed method against different state of the arts 
(SOTA) methods we used to compare the sensitivity of 
our proposed method with other algorithms. Table  2 
shows the results of different methods with best results 
are bold while second best results are underline.

The loss function and accuracy graph with epoch is a 
vital visualization tool for monitoring the training pro-
gress and evaluating the performance of deep learning 
models in medical image segmentation. The loss function 
graph shows how the loss (e.g., Dice loss or cross-entropy 
loss) decreases as training progresses. A decreasing loss 
indicates that the model is converging and learning to 
produce better segmentations. In contrast, the accu-
racy graph measures the similarity between predicted 
and ground truth segmentations, which is crucial for 
assessing the model’s performance. An increasing accu-
racy suggests that the model is improving in segmenting 
medical images accurately. These graphs help researchers 
and practitioners fine-tune models, detect overfitting or 
underfitting, and decide when to stop training, ensuring 
that the model achieves the desired level of segmentation 
accuracy for clinical applications. In Fig.  8, we present 
the average loss and accuracy graphs per epoch for both 
training and testing datasets.

Latest methods comparison with proposed models
We conducted a comparative analysis of our proposed 
models against recent studies in the field of MRI seg-
mentation, including Zhang et  al. [45], Nizamani et  al. 
[46], and Huang et  al. [47], which have demonstrated 
commendable performance in their recent research 
endeavors. Huang et  al.’s model [47] is distinguished by 

its utilization of improved segmentation by using patch-
based feature extraction. Nizamani et  al.’s work [46] 
encompasses segmentation, clustering, and the applica-
tion of CLAHE with UNET for feature extraction and 
tumor classification.

The results, as depicted in Tables 3 and 4 with training 
70%, unveil that our proposed model exhibits superior 
performance when compared to another feature-based 
segmentation method. It’s noteworthy that the other 
CLAHE does not perform optimally due to its limited 
efficiency in effectively segregating intricate datasets. 
Additionally, the studies by Huang et al. [48] and Aamir 
et al. [49] exhibit suboptimal performance, primarily due 
to their limited semantic understanding of complex data 
structures.

Ablation experiments
Additionally, we performed the ablation experiments by 
removing transformer and adding filters to UNET mod-
ule directly and results are shown in Tables 5 and 6 that 
transformer addition with CLAHE is producing better 
results for FE1-UT method in both datasets and show the 
superiority of our method.

Discussion
The practical significance of our study underscores the 
promising advantages of harnessing sophisticated deep 
learning methods in the realm of medical image seg-
mentation, with a particular focus on the analysis of 
brain tumor MRI scans. Nonetheless, it is imperative 
for researchers and healthcare professionals to remain 
cognizant of the study’s limitations and proactively 
work towards mitigating them to ensure the secure and 
efficient integration of these techniques into clinical 
applications.

Practical applications
There are many practical implications of our proposed 
method:

•	 Brain Tumor Detection and Segmentation: The pri-
mary focus of the study is enhancing the precision 
of brain tumor MRI image segmentation. This tech-
nology can be deployed in clinical settings to assist 
radiologists and oncologists in accurately delin-
eating tumor boundaries, which is crucial for treat-
ment planning and monitoring disease progression 
[50–55].

•	 Tumor Volume Assessment: Accurate segmentation 
of tumors allows for precise measurement of tumor 
volumes over time. This is essential for tracking treat-
ment response, assessing disease progression, and 
adjusting treatment strategies accordingly.

Table 2  Sensitivity comparison of different algorithms with 
proposed methods

Method MSD BRATS

UNET 45.21 90.19

Dense UNET 46.27 91.46

Att -UNET 50.08 85.24

UNET +  +  49.0 89.06

UNET3 +  44.9 89.30

Trans-UNET 47.22 92.34

TransU2-UNET 47.45 93.85

UNET + CLAHE 97.12 98.36

UNET + MBOBHE 97.42 99.50
UNET + MPHE 97.63 77.72

FE1-UT 97.96 99.49

FE2-UT 97.8 91.73

FE3-UT 97.64 63.16
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•	 Radiotherapy Planning: Medical image segmentation 
plays a vital role in radiotherapy planning. The tech-
nology can help radiation oncologists identify tumor 
regions and healthy tissues, enabling them to create 

treatment plans that deliver radiation therapy pre-
cisely to the affected area while sparing surrounding 
healthy tissue.

Fig. 8  Impact on performance with epochs
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•	 Image-Guided Surgery: Surgeons can benefit from 
accurate image segmentation during brain tumor 
surgeries. It helps in identifying tumor boundaries 
and guiding the surgical procedure to maximize 

tumor removal while minimizing damage to healthy 
brain tissue.

•	 Disease Diagnosis and Staging: Beyond brain tumors, 
the methodology can be adapted to segment and 
analyze medical images for various other conditions, 
such as lung tumors, liver lesions, and cardiovascular 
diseases. This aids in disease diagnosis, staging, and 
treatment planning [56–59].

•	 Automated Diagnosis: The technology can be inte-
grated into diagnostic systems to assist healthcare pro-
viders in making accurate and timely diagnoses. This 
can be especially valuable in  situations where timely 
intervention is critical, such as stroke diagnosis.

Limitations
Our proposed algorithm is better in medical field but it 
has some limitations:

•	 Data Dependency: Deep learning models, including 
UNETs and Transformers, typically require substan-
tial amounts of labeled data for training. In the medi-
cal field, obtaining large and diverse datasets can be 

challenging, especially for rare conditions or specific 
patient demographics. Limited data may hinder the 
model’s generalizability and performance in diverse 
cases.

Table 3  Proposed methods comparison with latest methods in 
Brats dataset

Algorithm Kappa DSC IoU Accuracy Balanced
Accuracy

FE1-UT 0.669 0.670 0.571 0.806 0.799

FE2-UT 0.677 0.678 0.578 0.816 0.809

FE3-UT 0.702 0.703 0.6 0.846 0.838

Study [45] 0.6021 0.603 0.5139 0.7254 0.7191

Study [48] 0.6093 0.6102 0.5202 0.7344 0.7281

Study [49] 0.6318 0.6327 0.54 0.7614 0.7542

Table 4  Proposed methods comparison with latest methods in 
MSD dataset

Algorithm Kappa DSC IoU Accuracy Balanced
Accuracy

FE1-UT 0.544 0.549 0.413 0.799 0.651

FE2-UT 0.551 0.556 0.418 0.809 0.659

FE3-UT 0.571 0.577 0.433 0.838 0.683

Study [45] 0.4896 0.4941 0.3717 0.7191 0.5859

Study [48] 0.4959 0.5004 0.3762 0.7281 0.5931

Study [49] 0.5139 0.5193 0.3897 0.7542 0.6147

Table 5  Ablation experiments for Brats dataset

Model Filter Balanced Accuracy F1 Score Cohen’s Kappa Precision Recall Jaccard Index ROC AUC​

UNET CLAHE 0.9890 0.9869 0.9826 0.9872 0.9867 0.9742 0.9912

FE1-UT 0.9966 0.9964 0.9952 0.9966 0.9962 0.9928 0.9975
UNET MBOBHE 0.9967 0.9956 0.9942 0.9956 0.9956 0.9913 0.9971
FE2-UT 0.9449 0.9242 0.9006 0.9738 0.8794 0.8591 0.9358

UNET MPHE 0.5544 0.2545 0.1873 1.0 0.1458 0.1458 0.5729

FE3-UT 0.5544 0.2545 0.2038 1.0 0.1458 0.1458 0.5729

Table 6  Ablation experiments for MSD dataset

Model Filter Balanced Accuracy F1 Score Cohen’s Kappa Precision Recall Jaccard Index ROC AUC​

UNET CLAHE 0.9808 0.9735 0.9646 0.9735 0.9735 0.9483 0.9823

FE1-UT 0.9864 0.9819 0.9758 0.9819 0.9818 0.9644 0.9879
UNET MBOBHE 0.9828 0.977 0.9693 0.977 0.977 0.955 0.9846

FE2-UT 0.9853 0.9798 0.9731 0.9798 0.9798 0.9604 0.986
UNET MPHE 0.9842 0.978 0.9706 0.978 0.978 0.9569 0.9853

FE3-UT 0.9842 0.9785 0.9713 0.9785 0.9785 0.9578 0.9856
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•	 Computationally Intensive: Training deep learning 
models, particularly those with extensive layers and 
parameters, can be computationally intensive. This 
may necessitate powerful hardware and longer train-
ing times, making it less accessible for smaller health-
care facilities with limited resources.

•	 Model Interpretability: Deep learning models, such 
as UNETs and Transformers, are often considered as 
"black boxes." It can be challenging to interpret the 
decision-making process of these models, which can 
be a critical concern in medical applications where 
transparency and interpretability are essential.

•	 Overfitting: Deep learning models are susceptible to 
overfitting, especially when dealing with small data-
sets. Overfit models may perform exceedingly well 
on the training data but generalize poorly to new, 
unseen cases. Regularization techniques and data 
augmentation are employed to mitigate this issue, but 
it remains a concern.

•	 Imaging Variability: Medical images can exhibit sub-
stantial variability due to differences in acquisition 
equipment, protocols, and conditions. The model’s 
ability to handle such variability may be limited, 
potentially leading to decreased accuracy in real-
world clinical settings.

•	 Clinical Validation: Although the model demon-
strates high accuracy on publicly available datasets, 
its performance in a real clinical setting might differ 
due to variations in image quality, patient population, 
and clinical practices. Clinical validation and integra-
tion into healthcare systems are critical steps that 
must be addressed.

•	 Ethical and Privacy Concerns: The use of deep learn-
ing models in healthcare raises ethical and privacy 
concerns related to patient data security and consent. 
Proper data handling and adherence to ethical guide-
lines are essential when implementing such systems.

•	 Algorithm Bias: If the training data is not representa-
tive of the entire population, the model may exhibit 
bias, potentially leading to disparities in diagnosis 
and treatment recommendations.

•	 Deployment Challenges: Integrating deep learning 
models into clinical workflows and ensuring their 
seamless operation can be challenging. Healthcare 
institutions may require significant infrastructure 
and expertise for deployment and maintenance.

Conclusion
In conclusion, the precision of medical image segmenta-
tion is undeniably crucial in the modern healthcare land-
scape, significantly impacting diagnosis and treatment 
planning. Recent strides in deep learning have ushered 

in a new era by harnessing the capabilities of UNETs and 
Transformers to automate labor-intensive manual seg-
mentation processes. However, despite these advance-
ments, challenges persist, particularly when dealing with 
intricate anatomical structures and indistinct features, 
which can compromise accuracy.

Our study presents an innovative and effective solution 
to elevate the precision of brain tumor MRI image segmen-
tation. We achieve this by seamlessly integrating UNET 
architecture with Transformers and incorporating feature 
improvement techniques, specifically MHE, CLAHE, and 
MBOBHE, to develop the high-performance image seg-
mentation algorithms—FE1-UT, FE2-UT, and FE3-UT.

Our approach relies on three fundamental pillars. Firstly, 
we emphasize the significance of feature imrpovement dur-
ing the image preprocessing stage. Through techniques 
like MHE, CLAHE, and MBOBHE, which employ contrast 
enhancement, we enhance the visibility of critical details 
within medical images. Secondly, our UT model is meticu-
lously designed to enhance segmentation results through 
personalized layering within the UNET architecture. The 
incorporation of Transformers brings in contextual under-
standing and facilitates the capture of long-range depend-
encies in the data, thereby enabling more precise and 
context-aware segmentation.

The resulting model represents a comprehensive frame-
work for achieving precise medical image segmentation, 
skillfully combining the power of UNETs, Transformers, 
and feature-enhanced filters. Our approach is not merely 
theoretical; it has been rigorously validated through experi-
mental evaluations, which affirm its excellence in distin-
guishing complex brain tissues. In essence, our research 
makes a significant contribution to the ongoing transfor-
mation of healthcare practices. By pushing the boundaries 
of medical image segmentation and offering a highly accu-
rate, automated solution for brain tumor MRI image seg-
mentation, we are poised to enhance the quality of patient 
care, expedite diagnosis, and streamline treatment plan-
ning in the field of healthcare. The combination of deep 
learning, feature improvement, and advanced network 
architectures offers a promising path forward, potentially 
revolutionizing medical image analysis and improving 
patient outcomes.
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