
S and T ﻿Journal of Cloud Computing (2023) 12:164
https://doi.org/10.1186/s13677-023-00549-w

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Volatile Kernel Rootkit hidden process
detection in cloud computing
Suresh Kumar S1* and Sudalai Muthu T1 

Abstract 

The rootkit industry has advanced significantly in the last decade. Attackers want to leave a backdoor for quick reoc-
curring exploits rather than launching the traditional one-time worm/virus attacks. Meanwhile, as intrusion detection
technologies improve, rootkits have grown in popularity. For the attackers to succeed, stealth becomes critical. The
primary function of rootkits is to provide stealth. The modifications a rootkit makes conceal the presence of a rootkit.
Determining the presence of mutation rootkits was quite challenging. Attackers can silently alter volatile (processes)
and non-volatile (files) with the aid of rootkits without being noticed. We suggested the VKRHPDV (Volatile Kernel
Rootkit Hidden Process Detection) framework to find the hidden techniques. This system includes process moni-
tors, process comparison analysts, and contaminated process data gathering. Process monitoring is nothing more
than clean process collection in the absence of rootkits, whereas pure process collection has been corrupted by root-
kit injection. The process analyzer compares clean and tainted processes, some of which were concealed. VKRHPDV
can identify process hiding behaviors in all datasets in the shortest period, according to the findings of an extensive
performance analysis carried out on 64 rootkit datasets for each UNIX and Windows kernel in a cloud environment.

Keywords  Cloud, Malware, Rootkits, Process, File

Introduction
The purpose of rootkits is to penetrate a computer sys-
tem or network without authorization and take control
of it. While operating, they want to remain undetected
by the user and other security software. Rootkits [1] fre-
quently target a system’s "root" or administrative level,
which gives them a wide range of rights and power. They
can alter or replace essential system files, listen to sys-
tem calls, and change how the operating system behaves.
This enables them to avoid detection by standard secu-
rity measures and antivirus software. It needs detection
for target systems. There are different types of rootkit
detection, like Signature-based detection [2], Heuristic-
based detection, Memory analysis, Rootkit [3] scanning

tools, System integrity checking, and Network monitor-
ing. These types of rootkit detection detect only a lim-
ited number of rootkits, but it does not update the new
mutation rootkit. This work includes Process comparison
analysts, process monitors, and data collection on tainted
processes. In the absence of rootkits, process monitoring
is nothing more than clean process collection, but clean
process collection has been tainted by rootkit injection.
Process analyzers compare pure and tainted processes,
some of which were hidden. According to the results of
a complete performance investigation performed on 64
rootkit datasets for each UNIX and Windows kernel in a
cloud environment, VKRHPDV can detect process-hid-
ing behaviors in all datasets in a short period.

Related work
Rootkit [4]: This is associated with "criminals waiting
to rob you while you are away in the upstairs room."
Many specialists advise entirely wiping your hard drive
and starting over because it is the hardest malware to

*Correspondence:
Suresh Kumar S
sureshkumarphd2018@gmail.com
1 Department of Computer Science and Engineering, Hindustan Institute
of Technology and Science, Chennai, India

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00549-w&domain=pdf

Page 2 of 12S and T ﻿Journal of Cloud Computing (2023) 12:164

detect and remove. Allowing other details computer
viruses into your computer so that it can collect iden-
tification information from it without your understand-
ing is recommended. Individuals trying to access the
PC for financial gain create such malware. Rootkit [5,
6] identification in distributed computing management
anticipates a crucial job. This inquiry is related to a few
previous studies on distributed computing [7], struc-
ture, and acknowledgment systems in general.

These techniques are described in the most recent
rootkit disclosures [8], which cover signature, conduct,
cross-view, respectability, and equipment. The way to
distinguish rootkits that is most frequently employed
is the mark-based location method [9]. When antivirus
software detects malware, it recognizes a "sign" specific
to the pathogen’s byte case and saves those antecedents
in a DBMS. Location-based coding compares examples
from the framework to database markers [10].

The system’s two distinct views of the system are
presented differently to detect contrasts in cross-view
rootkit discovery. This process obtains an unusual
state perspective of the framework from a vulnerable
malware control area. Whatever the rootkit conceals
will not be detected by the strange state. Because it
presents a genuine perspective on the template rather
than assuming that the framework reports are essen-
tial, this methodology recognizes the external view as
the framework’s verified perspective. The most excel-
lent strategy for dealing with stealth malware is clean
booting, which prevents the infection from hiding.
Given that the OS and the malware are not function-
ing, it cannot protect records or techniques from
an external source. For Windows 2000 systems, the
fresh boot method uses the setup wizard to launch
the framework into Disk OS mode and examine the
archive structure. The framework must be established
in Disk OS mode using external tools when Windows
8.1 is first booted.

The current view of memory or the file system is
compared to a trusted standard obtained when the
system was flawless. Any improvements could reveal
a rootkit’s capabilities on the system. Because external
equipment is unlikely to compete for resources with the
backdoor, equipment-based rootkit discovery was born
as software identification does. External hardware, like
external programming, reduces framework activity.
The benefit of equipment rootkit discovery is that the
rootkits cannot alter the equipment because it uses an
external OS. This research shows a bridge clean boot-
based discovery technique that detects some of the
rootkit’s persistent systems. The proposed system aims
to see rootkit-hidden records.

Methods and materials
Rootkit applications available on the Amazon web ser-
vices stage typically attempt to conceal some information
while they are running. In any case, execution has only
been seen rarely in current software. The system’s boot-
up time is reduced as a result of this. From this point
forward, it is crucial to separate the protest hiding behav-
ior, which is fundamentally classified as a rootkit behav-
ior and significantly impacts the execution of Amazon
web services cloud setup, especially in over-the-top load
assignments. It is crucial to identify the covered docu-
ments to improve the heap characteristics and net exe-
cution of the current cloud configuration. The proposed
rationale defines a transparent system for identifying
non-unstable rootkits.

In light of the study, it is crucial to create and alter-
nately examine the clean process list and contaminated
process list to separate the covered documents automati-
cally. It is sometimes challenging to obtain the appropri-
ate segment document list since the presence of rootkits
rapidly alters the framework’s direction. Even with mini-
mal structural information, guessing the optimum par-
cel record list is still possible. The gauge is consistently
trusted to reflect reality and is never given access to root-
kits. Accordingly, rootkits known as the tainted process
list occasionally trade-off and control what the client
sees.

P1 stands for the clean process list, and U1 for the
contaminated process list due to the catalog. The clean
process list P reflects reality and is unaffected by rootkit
manipulation. The corrupted process list U indicates the
user’s perspective, which is open to rootkit attacks. U R1
(Time1) refers to the set of corrupted process collections
of type R1 that are shown to the user at time Time1, and
PR1 (Time1) represents the set of pure process lists of
type R1 at time Time1.

Assume Entry1 is an entity (or process)

When object Entry1 is concealed, then

else If

RE stands for every form of system entity that could
exist, including files, processes, ports, etc.

About each kind of R1’s efficient system,

(1)TimeT1, Entry1st., R1 = R1(Entry1)

(2)PR1(Time1)
∧

/∈ UR1(Time1)

(3)P(pure process)R1 (T1)\U(corrupted process)R1 (T1) =

(4)∀R1 ∈ REntry{T1 for All Time}

Page 3 of 12S and T ﻿Journal of Cloud Computing (2023) 12:164 	

The results P and U can be obtained as follows to ena-
ble the detection

The problem is solved by employing cross-view-based
identification. In this approach, separate lists are created
and analyzed for clean and contaminated processes as
part of cross-view-based detection.

Systems design
The proposed system VKRHPDV design, which is
depicted in Fig. 1, is used to detect the existence of hidde
processes.

User mode is also known as user space or Ring 3. It
is a restricted execution mode where user applications
and processes are run. Examples of user mode activi-
ties include the execution of applications, files being
opened, network resources being accessed, and interac-
tion with the user through the graphical user interface.
Kernel mode is also known as privileged mode, supervi-
sor mode, or Ring 0. Unrestricted access to hardware is
granted to the kernel, allowing it to execute any instruc-
tion and access any memory location. Critical system
operations, such as memory management, interrupt han-
dling, task scheduling, and hardware device control, are
performed in kernel mode.

The three crucial components of VKRHPDV are Pro-
cess Monitor, Compare Process Analyzer, and Process
Enumerator. System calls are received and interpreted
by the OS libraries to perform process activities, and
these system calls are utilized to maintain an excel-
lent and up-to-date sequence collection. The process
collection is then revived, stored in the index, and
provided to the detection method as needed. The

(5)P = ∪R0 ∈ RPR1(T1){TimeT1}

(6)U = ∪R0 ∈ RUR1(T1){TimeT1}

refreshed list can be retrieved by the userland program
running on the Amazon Web Services Windows 2022
new host.

The initial process without the injected rootkit, which
falls under the process monitor, forms the clean pro-
cess collection. This process is then repeated with the
injection of the rootkit, resulting in a group of tainted
methods gathered in the process enumerator. In the
comparing process analyzer, the contaminated process
collection and clean process collection are compared,
where some processes may be hidden. The detection
of hidden processes occurs in the AWS Ubuntu Server
22.04 LTS (HVM) operating system with SSD volume
type.

Designing the clean process list
Process Monitor is the first module in the Volatile Ker-
nel Rootkit Hidden Process Detection View. In AWS, the
Windows operating system is launched. Clean process
collection is one of the operations performed in Process
Monitor.

1.	 Initialize the clean process list when the Aamzon
web service-Windows 2022 server instance has
been initiated.

2.	 add a new procedure to the collection for every new
process.

3.	 For each new process, update the clean process col-
lection.

From the procedure, the accompanying activities were
inferred:

No attack occurs while launching new AWS Win-
dows instances because the rootkit is not injected. The
process is collected and referred to as clean process
collection. This process falls under the purview of the

Fig. 1  The Architecture of Volatile Kernel Rootkit Hidden Process Detection View (VKRHPDV)

Page 4 of 12S and T ﻿Journal of Cloud Computing (2023) 12:164

Process Monitor. This method generates the pure pro-
cess list T1, which contains dynamic processes using
low-processing system call information. It is based on
the knowledge that the operating system uses specific
system calls (in this case, AWS-Windows 2022 Server)
to carry out both new and legacy functions.

On Windows, for instance, several Win32 APIs, such
as Build System and WinExec, are frequently used in
the client space to create new methods. Thus, these
abnormal condition APIs are called a collection of
low-level frameworks. It is also possible to explicitly
use system calls to construct processes. The process
manages creation by responding to those system calls
in any scenario. As a result, by collecting these asso-
ciated system calls, a process can screen its begin-
ning and end. Rootkits must never change the trusted
view. Given this premiere, the growth of trusted opin-
ion should be as minimal as possible given the normal
situation.

The information used for reliable perspective is lim-
ited enough that rootkits cannot significantly impact
or overtake it. From one perspective, it is challenging
to create a procedure with only an operating system
because these system calls are attacked and, in gen-
eral, unrecognized, regardless of whether it is possible
to develop a technique without declaring any abnor-
mal state Windows APIs. This dramatically expands on
current rootkit design ideas as a rootkit must execute
particular Windows operating system components to
evade these system calls. Of course, terminating a pro-
cess is less demanding than creating one, and it may
be possible to complete an operation without a regular
cycle. False positives could happen if those system calls
for process termination are followed through with. In
any case, rootkits will benefit from using such frame-
works because they cannot conceal any system.

Tainted process collection
The Tainted Process Collection is the second module
in the Volatile Kernel Rootkit Hidden Process Detec-
tion View. In AWS, the Windows operating system is
launched. Tainted process collection is one of the opera-
tions performed in Process Enumerator. To detect all
rootkit-hidden records, create an infected process list
and differentiate it from the clean process list. The cor-
rupted process list contains processes that are unmis-
takable to system clients; therefore, it is critical that
every covered report be avoided. On a fundamental
level, there are three places to get the tainted process
list system:

•	 The tainted operating system itself
•	 The corrupted operating system’s kernel space
•	 The contaminated operating system’s client space

The primary option is navigating the corrupted oper-
ating system’s dynamic simulation list to determine the
operating procedures. However, this list also includes
operations that client-level rootkits and snare [10, 11]
based kernel-level rootkits cover-up. Because these
procedures are typically invisible to clients, there may
be Zero negatives when comparing the polluted OS
process list to the clean process list.

The catalog record rundown of the compromised
operating system would include a few documents hid-
den by client data rootkits [12] and specific kernel-
level rootkits, leading to Zero negatives for the second
option. As a result, it is decided to create a process list
of the corrupted operating system in the user space of
the corrupted operating system. In contrast to the clean
process collection, the process collection of a contami-
nated operating system does not expect to be unaf-
fected by rootkits, and its development should be as
abnormal as possible, with the end goal of completely
exposing all rootkit controls.

Comparing the process analyser
Comparing process analyzer is used to compare clean
process collection and tainted process collection. While
comparing the process, if there is a difference, the pro-
cess is hidden or not hidden. When instructed by the
procedure, the compare process analyzer [13] adapts
the contaminated process collection from the corre-
spondence support in the corrupted operating system.
It is decoded, and its validity is checked before the cor-
rupted process list is compared to the unmistakable
segment record shown. If the confirmation stops work-
ing, a notification message shows a potential attack on
the contaminated operating system.

The breakdown report analyzer looks at the two
document lists once the clean process collection and
the tainted process collection are ready. The record
analyzer searches the folder collection of corrupted
Operating Systems for each document list in the spot-
less segment record list. If the report is also found in
the corrupted OS’s process collection, it continues with
the accompanying document in the clean process col-
lection until all records are dealt with. If any descrip-
tion from the pure process collection is missing from
the catalog of tainted OS, it is considered a covered
archive. The record analyzer then refers to the covered

Page 5 of 12S and T ﻿Journal of Cloud Computing (2023) 12:164 	

report and provides more information about it. When
hidden processes are found, rootkits may have infil-
trated that process.

The following algorithm-1compares the clean and
tainted process lists to identify hidden processes:

Algorithm 1. cmpCPL-PLT

Algorithem :1
The rootkit was injected into the machine with the clean
operating system. The term clean process collection was
given to the process collected from this operating system,
which is kept in the process monitor. The same machine
was corrupted and became known as having a tainted
operating system after the rootkit was introduced. The
process was collected and updated by the impaired oper-
ating system. After an update, when the clean process
collection and tainted process collection are compared, if
there is a difference, the process should be hidden; other-
wise, it should not be hidden.

The issue declaration states that the two perspec-
tives under consideration, T1 and U1, must be created
simultaneously. In any case, there could be a brief delay
between stages three and four; as a result, this meth-
odology examines two nonconcurrent sees developed
on separate occasions. This may be fine on an inactive
framework. Still, it may impact the identification result of
a functioning system where processes are created regu-
larly. Check to see if this will cause any zero positives or
zero negatives.

The clean process collection at time1 is distinguished
from the tainted group at time2. This recognition calcula-
tion deduces that time2 comes after (time1 time2). When
a system starts, it is indicated by an A timep1; when it
ends, it is stated by a T’p1. Within the day and age, the
following things could happen between time1 and time2.

•	 If ∄p1 time1 < timep1 < time2 or time1 < time’p1
< time2 is made or ended somewhere in the scope
of time1 and time2, then the time qualification can
essentially be ignored because the system remains

the same, and the outcome of the discovery is unaf-
fected.

•	 If ∃p1 the procedure P1, which starts before time1
and ends somewhere between t1 and t2, happens
with the true objective that time1 < timep1 < time2
or time1 < time’p1 < time2, Recognize that if p1 is
actually not one of the covered documents, p1 ∈ T1
anyway p1 ∉ U may produce a false positive.

•	 If ∃p1, which is made and ended at between time1
and time2, has the main objective that time1 <
timep1 < time2 < time’p1 < time2. Recognize that
p1 ∉ T1 regardless of p1 ∉U, so the outcome is unaf-
fected. In any case, p1 may have a zero negative if the
record is covered.

•	 The procedure ∃p1, which is performed there
between time1 and time2, has the ultimate goal of
time1 < timep1 < time2 < time’ p1 < time2. The cal-
culation shows that the result is unaffected by p1 ∉
T1 regardless of p1 ∉U. However, a false negative is
possible if p1 is a covered document.

Based on the above examination, the identification may
result in zero positives or zero negatives. When the fol-
lowing scenario happens, the trusted in view (clean frag-
ment file collection) would be renewed and would appear
differently in comparison to another most tainted pro-
cess list. This refreshing and contrasting would continue
until the system became consistent, as it was in the initial
condition. The likelihood of false positive focuses in the
second scenario is low because the time interval between
time1 and time2 is close to zero, and there is no reason to
think that false negatives will be a problem. For starters,
potential results for the last two conditions are limited
because the break between time1 and time2 is practically
nothing. As shown in the third condition, a brief strategy
does not need to be concealed: the client will most likely
not see whether it is covered. According to the definition,
this is not a rootkit procedure in this case. As a result,
zero negatives, in this case, will be insignificant before
long.

Implementation
A root account must be created in the Amazon Web
Services Management Console to activate Amazon Web
Services. Then, choose "Launch Instance" on the Ama-
zon Elastic Compute Cloud Dashboard to build and cus-
tomize your virtual computer. You can configure your
instance features in this wizard. Initializing your instance
could take some time. SSH, PUTTY, and RDP are all
options for connecting AWS instances. By choosing the
Elastic Compute Cloud instance, clicking "Actions," then
"Instance State," and lastly, "Terminate."

Page 6 of 12S and T ﻿Journal of Cloud Computing (2023) 12:164

Figure 2 demonstrates the implementation process. In
this trial, rootkit tests for VKRHPDV are being run in a
cloud environment provided by Amazon Web Services.
To begin, run the VKRHPDV on an Amazon-provided
(first event tainted OS) Microsoft Windows Server 2022
Full Locale English AMI with an Intel Xeon Family 3.70
GHz CPU and 16GB RAM. With administration pack
First, the framework is a standard foundation. Second,
use another example AWS Ubuntu Server 22.04 LTS
(HVM) with an Intel Xeon Family 3.70 GHz CPU and
16GB RAM to run the VKRHPDV.

VKRHPDV contains three essential components: Pro-
cess Monitor, Comparing Process Analyzer, and the pro-
cess collection of spoiled OS (process Enumerator). The
OS libraries use these template calls to maintain a perfect,
fresh segment collection by obtaining and decoding them
when performing process actions. When the approach
seems novel, the process rundown will be renewed and
saved in the repository. The created list is evaluated using
the corrupted OS’s archive analyzer. The procedure screen
maintains the dynamic processes and the apparent segment
record list. How the process screen is configured depends
on the operating system to handle system calls related to
operations. It screens process workouts comprising the
procedure creation and the end to keep the archive visible.

The rootkit was first presented in Windows, and its
popularity will keep rising when it is made available on
the internet. While detached, the rootkit’s behavior is
minimal. After the window is closed, the limit (volume)
envelope is mounted to Ubuntu. The lead will be dis-
tinguished when setting up into another OS. Based on
these qualifications, distinct proof of covered documents
is created, a process known as VKRHPDV discovery.
A clean boot is an identification technique that keeps
malicious processes from hiding. Because the rootkit
operates while the operating system is in use, it pro-
tects archives or operations from being accessed from
external sources. For the Windows 2000 system, the
ideal boot procedure, for instance, tests the file struc-
ture while booting the system into disc operating system
mode from the boot menu. This assignment turns off a
few rootkit features, which suggests that the certified
positive rate should rise from 68.421% while the false
positive rate stays at 0%.

Proposed algorithm
The three essential components of VKRHPDV are Pro-
cess Monitor, Comparing Process Analyzer, and the
tainted process list (process Enumerator). System calls are
acquired and interpreted by the OS libraries to execute

Fig. 2  Deployment of Volatile Kernel Rootkit Hidden Process Detection View (VKRHPDV)

Page 7 of 12S and T ﻿Journal of Cloud Computing (2023) 12:164 	

procedures, and these requirements and support are uti-
lized to maintain a pristine collection of processes. Once
the method is completed, the process list is updated and
stored in the index. Once the technique is operational,
the process list will be updated and stored in the index.
This index is utilized to construct the collection of con-
taminated OS processes, aiming to maintain maximum
irregularity within the given conditions to represent the
view observed by consumers accurately. The resulting
group is then analyzed using the tainted OS report ana-
lyzer, which establishes process relationships. Maintain-
ing these dynamic procedures and the distinct process
collection is entrusted to the process display. When con-
figured, the operating system handles system calls related
to methods. The process display monitors various process
activities, such as initiating and completing procedures, to
maintain a visible record. As a result, regular feedback is
provided. The implementation of this model, as depicted
in Fig. 2 VKRHPDV, elucidates the process. The model is
used for performance analysis and seamlessly integrated
into the Amazon Web Services cloud environment. Accu-
racy, P precision, recall, F score, and G mean are accuracy
parameters. In terms of efficiency, this model surpasses its
predecessors.

Begin the EC2 Windows example setup. Create a
procedure in VKRHPDV that looks like a clean seg-
ment document and a tainted process list. Display
the rootkit in the tainted OS’s index rundown. One by
one, annex the 3TB/5TB/ 7TB volumes to the Win-
dows model. The Windows envelope is moved to 3TB/
5TB /7TB volume one by one, and then the Windows
precedent is closed, limiting the 3TB/5TB/7TB vol-
ume from Windows cases one by one. Start the EC2
Ubuntu instance. Join the three tb/5tb/7tb volume to
the Ubuntu model individually. Install Ubuntu on the
three tb/5tb/7tb volume. The clean and tainted pro-
cesses are examined, and what makes a difference is
discovered. If there is a distinction, it is a direct result
of the covered documents.

Algorithm 2 a. a Function VKRHPD for Windows

Algorithem‑2 a
An AWS account was created, and Windows instances
were launched into the AWS account. For testing pur-
poses, seventy-four rootkits were used. The clean process
collection and tainted process collection were collected.
One by one, 3TB/5TB/7TB were attached to the Win-
dows instances. First, 3TB was connected, and the Vola-
tile Kernel Rootkit Hidden Process Detection View was
executed. The clean process collection and tainted pro-
cess collection were compared. The process was hidden
if there was any difference; otherwise, it was not hidden.
The time taken to detect this was known as the Rootkit
detection time, and then 3TB was detached. Next, 5TB
was attached, and the detection time was calculated
before detaching. Finally, 7TB was connected, the detec-
tion time was calculated, and the detection time varied
based on the storage capacity (3TB/5TB/7TB). If the stor-
age was minimum, the detection time was also minimum;
if it was high, the detection time was also increased. The
calculated detection time results are shown in Table 3.

Algorithm 2 b. b VKRHPD for Ubuntu

Algorithem‑2 b
An AWS account was created, and Ubuntu instances
were launched into the AWS account. For testing pur-
poses, seventy-four rootkits were used. The clean process
collection and tainted process collection were collected.
One by one, 3TB/5TB/7TB were attached to the Ubuntu
instances. First, 3TB was connected, and the Volatile
Kernel Rootkit Hidden Process Detection View was
executed. The clean process collection and tainted pro-
cess collection were compared. The process was hidden
if there was any difference; otherwise, it was not hidden.
The time taken to detect this was known as the Rootkit
detection time, and then 3TB was detached. Next,5TB
was attached, and the detection time was calculated
before detaching. Finally, 7TB was connected, the detec-
tion time was calculated, and the detection time varied
based on the storage capacity (3TB/5TB/7TB). If the stor-
age was minimum, the detection time was also minimum;

Page 8 of 12S and T ﻿Journal of Cloud Computing (2023) 12:164

Fig. 3  Rootkit detection time for Windows and Ubuntu. a Detection Time of 3 TB. b Detection Time of 5 TB. c Detection Time of 7 TB

Page 9 of 12S and T ﻿Journal of Cloud Computing (2023) 12:164 	

if it was high, the detection time was also increased. The
calculated detection time results are shown in Table 3.

In the Ubuntu instance, the detection time was signifi-
cantly less when compared with the Windows instance.
The compared detection times of Ubuntu and Windows
instances are shown in Fig. 3 (a, b, c).

Performance analysis
VKRHPDV was tested on a model set consisting of nine-
teen rootkit tests, most freely available on the internet
[14], to determine the feasibility of an outcross view and
clean boot-based rootkit identification system. Table 1
[15] summaries the characteristics of the data parameter
rootkit tests based on if they are a portion of a user space
string, as well as which systems (catching and DKOM)
they change during the cover process.

The experiment is run on the perfect boot system in
Win 2022 against 74 rootkits, with each test failing to
delineate the cloud. The rootkit is presented for each
test and run against a fresh boot system. This system

produces no false positives (zero false positives, 100%
certified negatives). We anticipate that the ideal Win-
dows instance system will remain pristine.

In this research, 74 rootkits were tested for rootkit
detection. Six rootkits are in the validation set, while the
other 68 are invalid. True positive 13 rootkits of the 68
rootkits(55 are added with 13) are distinguished, while
the additional 55 are not. True positive 13 rootkits are
added with false negative six rootkits, and together, 19
rootkits were tested and listed above in Table 2. This
result is 23.63% obvious positive and 76.36% false nega-
tive. An erroneous rootkit installation setup caused the
false negative. Assailants learn how to install the rootkit
perfectly, and the false negative rate decreases. The limi-
tation of rootkit-covered records is illustrated in Table 1.
(legal and ill-legal rootkits).

A few other rootkits conceal transparent files, while
others hide files and folders. Before testing, virus total
examines each rootkit [16] and assigns a specific name
from K7, Symantec, McAfee, and others. Table 1 shows
that the first six rootkits are in the confirmation set, while
the remaining rootkits from 7 to 19 are not. Agent WXK,
Form.fam, Virus.Boot.ASBV, W32/Trojan2.NFKE,NYB,
and HackTool/Perl are six Win32 rootkits. CleanLog
encloses all of the files, and the rootkits are validly set.

In the analyses, VKRHPDV has viably recognized cov-
ered records for all the models. The acknowledgment
results are shortened in Table 3. VKRHPDV can distin-
guish hid documents if a rootkit test can viably cover

Table 1  Parameter information

S.No Rootkit s name Rootkits size Hidden Operation process

1 Win32:Agent-WXK 6.84 kb GoogleCrashHandler64.exe 26

2 Form.fam 676 kb LiteAgent.exe 26

3 Virus.Boot.ASBV 29 kb wininit.exe 27

4 W32/Trojan2.NFKE 82.5 kb inetinfo.exe 29

5 NYB 791 kb chrome.exe 37

6 HackTool/Perl.CleanLog 22.86kb lsass.exe 29

7 Rootkit.Win32.Agent.enz 79 b Svchost.exe 22

8 Rootkit.Win32.Agent.fht 8 kb dllhost.exe 29

9 Rootkit.Win32.Agent.xp 122 kb rdpclip.exe 29

10 Rootkit.Win32.Qandr.ac 1.27 mb Taskhost.exe 25

11 Rootkit.Win32.Qandr.ak 88 kb LogonUI.exe 24

12 bakuryu 46 kb taskhostex.exe 23

13 shell.jpg 27 kb WUDFHost.exe 29

14 f6e671d8630df5d8045ff4243da94f74 1 kb MpUXSrv.exe 26

15 afe8df184dccf6db48cf27916d0d0da6 5 kb Svchost.exe 29

16 6eddd98e0463acaa3aa0eeab26b1d3c9 142 b Taskhost.exe 24

17 80da4801d2b70d7044e9d660a05c676 109 b Dllhost.exe 25

18 4356aded80ee30d1f85321ecc28694b3 519 b Scchost.exe 25

19 e08de794d84c472b1fd9a862bd729556 519 b Vmtoolsd.exe 27

Table 2  Ambiguity matrix of VKRHPDV examination

Predicted

- +

- 6 0

Actual

+ 55 13

Page 10 of 12S and T ﻿Journal of Cloud Computing (2023) 12:164

them. This examination assumes that the limit volume
remains reliable; thus, the invention time will be shorter.
The storage is 3 TB, 5 TB, and 7 TB. In this case, the 3 TB
volume exceeded the other two volumes regarding area
time.

In Fig. 3 (a, b, c) illustrate how as volume size grows, so
does time consumption. This system has high accuracy
and a short rootkit [17, 18] recognition time compared to
other rootkit methodologies, such as the point tactic and
the device location procedure. The revelation time will be
reduced if this examination’s limit volume remains constant.
The storage capacities are 3 TB, 5 TB, and 7 TB. The dis-
covery system recognizes rootkit [19] shapes by creating
and differentiating two unmistakable points of view. The
advancement of the tainted process list is done in the cus-
tomer measurement of the infected OS [20]. On the other
hand, as in a contaminated Operating System, the advance-
ment of the clean process list and the relationship of the two
points of view are carried out (before the present rootkit).
On the tainted OS [21], there are a manageable number of
processes running. Our view examination calculation pro-
vides a small workload with the infected OS [22].

VKRHPDV dynamically maintains an archive list to gen-
erate the clean process list by retrieving and interpreting
specific framework-specific system calls. The additional
work may add to the runtime overhead.

Specification of detection
This template has five performance metrics in this meas-
ure. The first metric is the detection accuracy of the rootkit,
which is written as

Precision measures how many positive classifications
are correct, i.e., the probability that a detected anomaly
variance has been correctly classified. In contrast, accu-
racy is the degree to which the detector correctly clas-
sifies any newly tested data sample. The recall metric
assesses the detector’s capability to recognize variances
accurately or the probability that an abnormal model

(7)Accuracy =
Rootkit Tested − True Positives− FalseNegatives

Rootkit Tested

(8)Precision =
True Positives

True Positives+ False Positives

(9)Recall =
True Positives

True Positives + False Negatives

(10)Fscore = 2x

(
Precision Recall

Precision + Recall

)

(11)Gmean =
√
Precision ∗ Recall

Table 3  True positive rootkit detection time

Rootkit Name 3 TB Volume (Detection Time)(198) 5 TB Volume (Detection Time)(208) 7 TB Volume (Detection Time)
(214)

Windows mSec Ubuntu m Sec Windows mSec Ubuntu mSec Windows mSec Ubuntu Sec

Win32:Agent-WXK 205 200 212 210 218 215

Form.fam 206 198 213 209 216 214

Virus.Boot.ASBV 204 202 213 211 218 216

W32/Trojan2.NFKE 205 198 214 208 219 215

NYB-F 205 202 213 210 219 216

HackTool/Perl.CleanLog 207 205 214 211 217 215

Virus.BAT.Qwerty.b 204 202 213 211 220 217

Downloader-AWM.gen 203 200 214 210 218 220

PWS-Gamania.gen.a 205 203 214 211 216 219

W32Fujacks 204 201 214 212 217 219

BackDoor-DIQ 206 198 215 208 218 214

Vanquish.exe 202 199 212 209 216 215

Vanquish.dll 205 200 212 208 217 215

Virus.BAT.Qwerty.a 206 202 214 210 216 216

Virus.Boot.Catman 205 203 213 208 217 215

Virus.DOS.Trivial.140 210 204 212 209 216 214

Virus.Unix.Sillysh.b 205 201 213 210 217 215

Trojan.Starter.1695 206 200 214 212 216 216

W-boot.A 205 199 215 213 220 214

Page 11 of 12S and T ﻿Journal of Cloud Computing (2023) 12:164 	

will be appropriately identified. The final two metrics,
the harmonic mean (F score) and geometric mean (G
mean) give a more comprehensive picture of a detec-
tor’s performance by partially accounting for all of the
results (Fig. 4).

Conclusions and future work
This paper uses an original thought of the Volatile Kernel
rootkit hidden process detection View (VKRHPDV) of
a procedure to rootkit [23] recognition. This procedure’s
accuracy is excellent, and the rootkit [24, 25] ecognition
time is fast compared to other rootkit finding techniques
like mark-based systems and equipment-based recognition
techniques. The discovery time will be reduced if the limit
volume in this examination remains constant. The storage
is 3TB, 5TB, and 7 TB. In this case, the acknowledgment
time in the 3 TB volume is shorter than in the other two
volumes. Despite maintaining a 0% false positive rate, the
cross-view fresh boot procedure detects 68.421% of rootkit
attempts on Windows Server 2022. The not recommended
rootkit foundation does not cover records and envelopes.
Furthermore, rootkits that distinguish Amazon Web
service cloud condition have a high false negative rate.
Because the attacker will present the rootkit adequately
on the cloud case, the false negative rate should decrease
in this action. Future work will be based on distinguishing
open ports and memory levels in cloud conditions.

Abbreviations
VKRHPDV	� Volatile Kernel Rootkit Hidden Process Detection View
OS	� Operating System
Win	� Windows 8.1
TB	� Terabyte
DKOM	� Direct kernel object manipulation
Ubu	� Ubuntu
SSH	� Secure shell
RDP	� Remote Desktop Protocol

Acknowledgements
Our Research supervisor Dr SudalaiMuthu T for his encouragement and guid-
ing us throughout the research work and to our parents and wife.

Authors’ contributions
S. Suresh Kumar is a Research scholar at the Hindustan Institute of Technology
in Chennai, India. He obtained his Bachelor of Engineering in Computer Sci-
ence and Engineering from the University of Madras, Chennai and his Master
of Engineering in Computer Science and Engineering from Anna University,
Chennai. His current research is focused on cloud computing security. He
published many manuscript.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 26 November 2022 Accepted: 12 November 2023

References
	1.	 Tian D, Ying Q, Jia X, Ma R, Hu C, Liu W (2021) MDCHD: a novel malware

detection method in cloud using hardware trace and deep learning.
Computer Networks 198:108394. https://​doi.​org/​10.​1016/j.​comnet.​2021.​
108394. (ISSN 1389-1286)

	2.	 MoonLeeHeoKimPaekKang HHIKYBB (2017) Detecting and preventing
kernel rootkit attacks with bus snooping. IEEE Transactions on Depend-
able and Secure Computing 14(2):145–157. https://​doi.​org/​10.​1109/​
TDSC.​2015.​24438​03

	3.	 Zhou H, Fei C, Ni L, Wu B, Li G, Han K (2022) “Detecting Kernel Rootkits in
a Virtualized Infrastructure with Low-Level Architectural Features,” 2022

Fig. 4  Performance Measure

https://doi.org/10.1016/j.comnet.2021.108394
https://doi.org/10.1016/j.comnet.2021.108394
https://doi.org/10.1109/TDSC.2015.2443803
https://doi.org/10.1109/TDSC.2015.2443803

Page 12 of 12S and T ﻿Journal of Cloud Computing (2023) 12:164

IEEE 5th International Conference on Electronics and Communication
Engineering (ICECE), Xi’an, China. pp 244–247. https://​doi.​org/​10.​1109/​
ICECE​56287.​2022.​10048​623

	4.	 Krishnamurthy P, Salehghaffari H, Duraisamy S, Karri R, Khorrami F (2019)
“Stealthy Rootkits in Smart Grid Controllers,” 2019 IEEE 37th International
Conference on Computer Design (ICCD), Abu Dhabi, United Arab Emir-
ates. pp 20–28. https://​doi.​org/​10.​1109/​ICCD4​6524.​2019.​00012

	5.	 Xing X, Jin X, Elahi H, Jiang H, Wang G (2022) A malware detection
approach using autoencoder in deep learning. IEEE Access 10:25696–
25706. https://​doi.​org/​10.​1109/​ACCESS.​2022.​31556​95

	6.	 I. Kuzminykh and M. Yevdokymenko, "Analysis of Security of Rootkit
Detection Methods," 2019 IEEE International Conference on Advanced
Trends in Information Theory (ATIT), Kyiv, Ukraine, 2019, pp. 196-199,
https://​doi.​org/​10.​1109/​ATIT4​9449.​2019.​90304​28

	7.	 Mohammadhadi Alaeiyan, Saeed Parsa, Mauro Conti, “Analysis
and classification of context-based malware behavior”,Computer
Communications,volume 136, February 2019, Pages 76-90, 10.1016/ j.co
m c o m . 2019 .01.003.

	8.	 Xiao J, Lu L, Wang H, Zhu X (2016) “HyperLink: Virtual Machine Introspec-
tion and Memory Forensic Analysis without Kernel Source Code,” 2016
IEEE International Conference on Autonomic Computing (ICAC), Wuerz-
burg, Germany. pp 127–136. https://​doi.​org/​10.​1109/​ICAC.​2016.​46

	9.	 S. Kumar Verma, N. Anjum, A. Sharma and A. Mishra, "iSIMP with
Integrity Validation using MD5 Hash," 2021 International Conference on
Computational Performance Evaluation (ComPE), Shillong, India, 2021,
pp. 094-097, https://​doi.​org/​10.​1109/​ComPE​53109.​2021.​97524​33.

	10.	 Alshamrani SS. Analysis of MachineLearning Based Technique for Mal-
ware Identification and Classification of Portable Document FormatFiles,
Hindawi Security and Communication Networks Volume 2022, Article ID
7611741, 10 pages https://​doi.​org/​10.​1155/​2022/​76117​41.

	11.	 Donghai Tian, Rui Ma , Xiaoqi Jia, and Changzhen Hu, “A Kernel Rootkit
Detection Approach based on Virtualization and Machine Learning” IEEE
Access PP (99):1-1 july, 2019.

	12.	 Chin-Ling Chen, Supaporn Punya, “An enhanced WPA2/PSK for prevent-
ing authentication cracking”, The International Journal of Informatics
and Communication Technology (IJ-ICT), Vol.10, No.2, August 2021, pp.
85-92,DOI: https://​doi.​org/​10.​11591/​ijict.​v10i2.​pp85-​92.

	13.	 Sanjay Sharma, C. Ramakrishna and Sanjay K. Sahay, “Detection of
Advanced Malware by Machine Learning Techniques” Access AISC,
Volume 742, 2019.

	14.	 Panker T, Nissim N (2021) Leveraging malicious behavior traces from
volatile memory using machine learning methods for trusted unknown
malware detection in Linux cloud environments. Knowl. Based Syst.
226:107095

	15.	 Lin Y, Huang S, Hong M, Chen S, Li X, Lin D, “MD5 Encryption Algorithm
Enhanced Competitive Swarm Optimizer for Feature Selection,”, (2019)
IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big
Data & Cloud Computing, Sustainable Computing & Communications,
Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom).
Xiamen, China 2019:1250–1254. https://​doi.​org/​10.​1109/​ISPA-​BDClo​ud-​
Susta​inCom-​Socia​lCom4​8970.​2019.​00178

	16.	 Wang Q, Qian Q (2022) Malicious code classification based on opcode
sequences and textCNN network. J Inf Secur Appl 67:103151

	17.	 Diaz JA, Bandala A (2021) Portable Executable Malware Classifier Using
Long Short Term Memory and Sophos-ReversingLabs 20 Million Dataset”,
In Proceedings of the TENCON 2021—2021 IEEE Region 10 Conference (TEN-
CON), Auckland, New Zealand, 7–10 December. pp 881–884

	18.	 Ullah A, Laassar I, Şahin CB, Dinle OB, Aznaoui H, “Cloud and internet-of-
things secure integration along with security concerns”, International
Journal of Informatics and Communication Technology, Vol. 12, No.
1, https://​doi.​org/​10.​11591/​ijict.​v12i1.​pp62-​71.

	19.	 J. Zhang, F. Zou and J. Zhu, "Android Malware Detection Based on Deep
Learning," 2018 IEEE 4th International Conference on Computer and
Communications (ICCC), Chengdu, China, 2018, pp. 2190-2194, doi:
https://​doi.​org/​10.​1109/​CompC​omm.​2018.​87810​37.

	20.	 Rezende E, Ruppert G, Carvalho T, Ramos F, de Geus P (2017) “Malicious
Software Classification using Transfer Learning of ResNet-50 Deep Neural
Network.”, In Proceedings of the 2017 16th IEEE International Conference
on Machine Learning and Applications (ICMLA), Cancun, Mexico, 18–21
December. pp 1011–1014

	21.	 J. Zhao, S. Zhang, B. Liu and B. Cui, "Malware Detection Using Machine
Learning Based on the Combination of Dynamic and Static Features,"
2018 27th International Conference on Computer Communication and
Networks (ICCCN), Hangzhou, China, 2018, pp. 1-6, https://​doi.​org/​10.​
1109/​ICCCN.​2018.​84874​59.

	22.	 J. Zhao, S. Zhang, B. Liu and B. Cui, "Malware Detection Using Machine
Learning Based on the Combination of Dynamic and Static Features,"
2018 27th International Conference on Computer Communication and
Networks (ICCCN), Hangzhou, China, 2018, pp. 1-6, doi: https://​doi.​org/​10.​
1109/​ICCCN.​2018.​84874​59.

	23.	 Vinayakumar R, Alazab M, Soman KP, Poornachandran P, Venkatraman S
(2019) Robust intelligent malware detection using deep learning. IEEE
Access 7:46717–46738. https://​doi.​org/​10.​1109/​ACCESS.​2019.​29069​34

	24.	 Nadim M, Akopian D, Lee W (2021) “A Review on Learning-based
Detection Approaches of the Kernel-level Rootkit,” 2021 International
Conference on Engineering and Emerging Technologies (ICEET), Istanbul,
Turkey. pp 1–6. https://​doi.​org/​10.​1109/​ICEET​53442.​2021.​96597​10

	25.	 Win TY, Tianfield H, Mair Q (2015) “Detection of Malware and Kernel-Level
Rootkits in Cloud Computing Environments,” 2015 IEEE 2nd International
Conference on Cyber Security and Cloud Computing, New York, NY, USA.
pp 295–300. https://​doi.​org/​10.​1109/​CSClo​ud.​2015.​54

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/ICECE56287.2022.10048623
https://doi.org/10.1109/ICECE56287.2022.10048623
https://doi.org/10.1109/ICCD46524.2019.00012
https://doi.org/10.1109/ACCESS.2022.3155695
https://doi.org/10.1109/ATIT49449.2019.9030428
https://doi.org/10.1109/ICAC.2016.46
https://doi.org/10.1109/ComPE53109.2021.9752433
https://doi.org/10.1155/2022/7611741
https://doi.org/10.11591/ijict.v10i2.pp85-92
https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00178
https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00178
https://doi.org/10.11591/ijict.v12i1.pp62-71
https://doi.org/10.1109/CompComm.2018.8781037
https://doi.org/10.1109/ICCCN.2018.8487459
https://doi.org/10.1109/ICCCN.2018.8487459
https://doi.org/10.1109/ICCCN.2018.8487459
https://doi.org/10.1109/ICCCN.2018.8487459
https://doi.org/10.1109/ACCESS.2019.2906934
https://doi.org/10.1109/ICEET53442.2021.9659710
https://doi.org/10.1109/CSCloud.2015.54

	Volatile Kernel Rootkit hidden process detection in cloud computing
	Abstract
	Introduction
	Related work
	Methods and materials
	Systems design
	Designing the clean process list
	Tainted process collection
	Comparing the process analyser
	Algorithem :1

	Implementation
	Proposed algorithm
	Algorithem-2 a
	Algorithem-2 b

	Performance analysis
	Specification of detection

	Conclusions and future work
	Acknowledgements
	References

