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Abstract 

The security technology of digital twin is an important guarantee to ensure the security of digital twin operation, 
which mainly includes network security technology, data security technology and privacy protection technology. In 
wireless sensor networks, data aggregation technologies are known as a suitable solution to reduce energy consump-
tion. In addition, due to wireless communications, wireless sensor networks are subject to many attacks. Therefore, it 
is very important to provide data security in the data aggregation process. In this paper, in order to protect data pri-
vacy and verify data integrity, moreover, balance the energy consumption and security during the data aggregation, 
we present a privacy and integrity–preserving data aggregation scheme for wireless sensor networks based on digi-
tal twins technology and homomorphic fingerprinting (HFPIDA). The HFPIDA adopts privacy function to protect 
data privacy and adopts homomorphic fingerprinting technology to verify the aggregation data integrity. Security 
analysis shows that the HFPIDA can effectively preserve data privacy and verify data integrity. Simulation results show 
that the HFPIDA requires less communication and energy overheads, and can achieve higher aggregation accuracy.
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Introduction
Wireless sensor networks (WSNs) are constructed by 
a large number of sensor nodes in a wireless and multi-
hop way. With the rapid development of the Internet of 
Things, Wireless sensor networks are more widely used 
in agricultural monitoring, environmental monitoring 
[1], forest fire detection [2], intelligent transportation, 
smart home [3], medical monitoring [4], logistics man-
agement [5], military and other fields. Because the sensor 
nodes are limited by calculation, storage and communi-
cation, therefore, using data aggregation technology for 
data transmission can greatly reduce the amount of data 
transmission in the network, reduce the energy con-
sumption, and extend the life of the whole network.

As most wireless sensor networks are deployed in open 
environments, they will be attacked by all kinds [6, 7]. 
Attackers may track, steal or tamper with data forwarded 
to the base station (BS). Therefore, when data aggrega-
tion methods are designed, providing security is very 
important and challenging [8, 9]. In some applications, 
the data collected by nodes are sensitive information, 
so in the process of data aggregation, it is necessary not 
only to verify the integrity of the data, but also to pro-
tect the privacy of the data. Some existing data aggrega-
tion methods [10–15] for wireless sensor networks are 
based on the idea of slicing. The node cuts the data into 
slices and sends them encrypted, so that the relay node 
cannot obtain the complete data and realize the protec-
tion of data privacy, however, there are more messages 
exchanges for each node in these methods, which results 
in high communication overhead. In order to meet the 
demands of integrity verification and data privacy pro-
tection at the same time, some methods [16–18] use a lot 
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of encryption or signature mechanisms with high com-
putational complexity and high communication over-
head, which cannot balance the energy consumption and 
security.

In order to balance the energy consumption and secu-
rity during the data aggregation, based on homomorphic 
fingerprinting, a privacy and integrity–preserving data 
aggregation scheme for wireless sensor networks (HFP-
IDA) is proposed in this paper. The main contributions of 
the paper are as follows:

(1)	 The HFPIDA adopts privacy function and homo-
morphic fingerprinting technology to protect data 
privacy and verify the aggregation data integrity. it 
is mainly to perform hash function operation, fin-
gerprinting function operation and XOR operation. 
Fingerprinting function operation is essentially a 
hash function operation, and the computation cost 
of hash function operation is almost negligible com-
pared with the public key operation used in other 
schemes, so the HFPIDA is a security and effective 
scheme, it can balance the energy consumption and 
security during the data aggregation.

(2)	 In the HFPIDA, each node only needs to send one 
packet to its cluster node during the data aggrega-
tion. Therefore, compare with the methods based 
on the idea of slicing, the HFPIDA does not need 
more messages exchanges, does not generate any 
redundant data, and it greatly reduces the commu-
nication overhead of the network, avoids the data 
transmission collision and improves the data aggre-
gation accuracy.

The rest of the paper is organized as follows. In Sect. 2, 
introduces the related work. System model is described 
in Sect.  3. The HFPIDA scheme is described in Sect.  4. 
Security analysis is described in Sect. 5. The performance 
evaluation is implemented in Sect. 6. Section 7 concludes 
this paper.

Related works
Wireless sensor networks are subjected to many attacks 
due to wireless communications. Therefore, it is very 
important to provide data security in the data aggrega-
tion process. Scholars have proposed some security and 
efficient data aggregation schemes.

He et  al. [10] proposed a privacy-preserving data 
aggregation scheme for wireless sensor networks, which 
included the Slice-Mix-Aggregation privacy protection 
algorithm (SMART). In the SMART, each node cuts the 
data into J slices and sends (J-1) slices to its neighboring 
nodes, each neighboring node waits for a period time to 
receive the slices sent by other nodes, then, all the slices 

perform the mixed calculation and are sent to upper 
nodes. The SMART preserves the data private with slic-
ing technology, each node cuts its own data and mixes 
the data slices of neighboring nodes, which increases the 
difficulty for the attacker to obtain the complete data. 
However, the SMART has high communication overhead 
because there are more message exchanges during the 
data aggregation.

To reduce the communication overhead of the SMART, 
some improved schemes have been proposed [11–15] 
based on the idea of slicing. Li et  al. [11] proposed a 
data aggregation privacy protection scheme based on 
fat tree in wireless sensor networks (FTSMART). For 
the FTSMART scheme, in the slicing phase, all the 
nodes need to cut their data into (n + 1) slices accord-
ing to the number n of their parent nodes in the fat 
tree. In the aggregation phase, each sensor node needs 
to send one aggregated data packet to the upper node. 
In the FTSMART, the fat tree is introduced into the 
data aggregation of wireless sensor network, which has 
greatly improved the deficiencies of the SMART scheme 
in the data privacy protection and the aggregation 
accuracy. Alghamdi et  al. [12] proposed a secure data 
aggregation scheme called sign-share for wireless sen-
sor networks. The network topology is a cluster-based 
hierarchical structure. Each cluster has two aggregators. 
Each node divides its data into several slices and sends 
a part of these data slices to the first aggregator node 
and another part to the second aggregator. The scheme 
applies the end-to-end encryption, which can reduce 
the energy consumption, however, in the data transmis-
sion process, if one of the aggregator nodes loses its data 
for reasons such as attackers, network congestion, and 
so on, then the data of another aggregator node will be 
inefficient. Hua et  al. [13] proposed an energy-efficient 
adaptive slice-based secure data aggregation scheme for 
wireless sensor networks (ASSDA). The network topol-
ogy is a tree-based structure. In the data slicing process, 
each sensor node splits data into several slices with dif-
ferent sizes. Then, large-size data slices are transferred 
to near neighboring nodes and small-size data slices are 
transmitted to far neighboring nodes, which balances 
the energy consumption in the network. Zhou et al. [14] 
proposed an energy-efficient and privacy-preserving 
data aggregation algorithm for wireless sensor networks 
(EPDA). The network topology is a tree-based structure. 
To reduce the communication overhead caused by the 
data slicing process performed by leaf nodes, an aggrega-
tion tree is established between the nodes in the network, 
and the number of leaf nodes is minimized in the aggre-
gation tree. However, the tree creation process has a high 
communication overhead. Fang W et al. [15] proposed a 
novel cluster-based secure data aggregation scheme for 
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WSNs (CSDA). The network topology is a tree-cluster 
hierarchical structure. The CSDA uses data slicing tech-
nique to protect data privacy, and uses the random pair-
wise key encryption technique to ensure data security. 
The CSDA is scalable and improves energy consumption 
in the network due to applying a tree-cluster hierarchical 
topology. However, The CSDA has high communication 
overhead due to using the data slicing technique, and the 
CSDA uses the hop-by-hop encryption technique, which 
increases energy consumption.

Parmar P et al. [19] proposed a secure data aggregation 
protocol using AES in wireless sensor network (SDAPA). 
The network topology is a tree-based hierarchical struc-
ture, each node has two pairwise keys, one shared with 
its parent node and the other shared with its grandpar-
ent node. When a sensor node wants to transmit its data, 
it sends its data to the parent node and the grandparent 
node. The grandparent node compares the data received 
from the child node and the grandchild node, if these val-
ues are not the same, the grandparent node rejects the 
data packets and sends a warning message to the child 
nodes to retrieve the data correctly. In the SDAPA, the 
hop-by-hop authentication process is executed. As a 
result, the malicious node can be quickly removed from 
the network, but it increases the end-to-end delay and 
energy consumption in the data transmission process and 
reduces the network lifetime.

Boubiche D.E et al. [20] proposed a secure data aggre-
gation watermarking-based scheme in homogeneous 
WSNs (SDAW). The network topology is a cluster-based 
hierarchical structure, each node sends its data to its 
cluster head node, and the cluster head nodes aggregate 
the received data and then forward the aggregated data 
directly to the base station. The scheme uses a light-
weight watermarking technique to secure the network, 
which can detect fake data packets and isolate malicious 
nodes. However, it has a high memory overhead due to 
using a watermarking technique.

Liu X et  al. [21] proposed a query privacy preserv-
ing for data aggregation in wireless sensor networks 
(QPPDA). The network topology is a grid-based struc-
ture, the whole network is divided into a number of cells. 
In the QPPDA, the cell member nodes collect the sensed 
data according to the received query, and encrypt the 
sensed data using a homophobic encryption technique, 
then each node sends encrypted data to aggregator node, 
the aggregator nodes aggregate data received from its 
cell member nodes and send the aggregated data to the 
base station. In the QPPDA, the key generation process 
has high computation overhead by using the homomor-
phic encryption technique, and it cannot verify the data 
integrity.

Elhoseny et  al. [16] proposed an energy efficient 
encryption method for secure dynamic wireless sen-
sor networks. The network topology is a cluster-based 
hierarchical structure, and the clusters are dynamically 
selected. The scheme uses the elliptic curve cryptography 
algorithm to generate binary string as encryption keys, 
and the scheme can prevent the adversary from obtain-
ing the original data. In the meantime, based on the ellip-
tic curve cryptography, Elhoseny et  al. [17] proposed 
a security scheme to protect data privacy for wireless 
sensor networks. However, the two schemes have high 
computation overhead due to using the elliptic curve 
cryptography.

Dener M et al. [18] proposed a secure data aggregation 
protocol for wireless sensor networks in IoT resistant to 
DOS attacks. This protocol uses the blowfish encryption 
algorithm, EAX mode, and RSA algorithm. It can satisfy 
the often-neglected data availability security requirement 
and resistant to DOS attacks, however, double encryp-
tion/decryption operations occur during data clustering, 
which increases sensor node’s communication load.

Goyal et al. [22] proposed a secure authentication data 
aggregation scheme for homogeneous underwater wire-
less sensor networks (SAPDA). The network topology 
is a cluster-based hierarchical structure. Gateway nodes 
are tasked to authenticate cluster nodes to ensure that 
valid cluster nodes manage the clusters. This method has 
two phases: secure authentication of cluster nodes and 
secure data aggregation. In this scheme, all sensed data 
is forwarded to the base station. Hence, it is not scal-
able because the size of the data packets are increased in 
each hop. Chenthil T. R. et al. [23] proposed a multi-slot 
scheduling with a two-layer hexagonal based integrated 
aggregation approach (MSS-TLHIA) for Underwater 
Wireless Sensor Networks. In this approach, initially, the 
entire network is partitioned into several hexagonal grids 
using the golden ratio. Once the network is partitioned 
into coverage areas called clusters, a Cluster Head (CH) 
is selected using the ranking-based fuzzy mechanism. 
Then, an aggregator node is selected in common for both 
the layers of the hexagonal grids. Data aggregation is per-
formed using the aggregator node selection process. In 
order to prevent the energy drain of the aggregator node 
completely and to prolong their lifetime, the aggrega-
tor node is re-selected for every time slot. Furthermore, 
the occurrence of collision is avoided by the multi-slot 
scheduling process. The performance of the proposed 
approach achieves better results in terms of network life-
time, energy consumption and collision rate.

Ozdemir et al. [24] proposed a privacy-preserving data 
aggregation for wireless sensor networks based on poly-
nomial regression. In this scheme, each node uses the 
coefficient of polynomial functions instead of the real 
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data, and send the coefficient to the base station, the 
scheme can protect data privacy and reduce the com-
munication overhead. Based on polynomial regression, 
Sreenivasulu et  al. [25] proposed a non-linear regres-
sion model for preserving data privacy in wireless sensor 
networks.

To sum up, all kinds of current research schemes have 
their own characteristics. The aggregation schemes 
[10–15] based on the idea of slicing need to transmit a 
large number of packets, which will lead to high com-
munication overhead, and these schemes do not take 
into account the aggregation data integrity. To protect 
data privacy and verify data integrity, the aggregation 
schemes [16–18] based on encryption or signature mech-
anisms need high computational complexity. Hence, it is 
required to design new data aggregation scheme, which 
can balance the energy consumption and security.

Preliminaries and system model
Preliminaries
Homomorphic fingerprinting
Hendricks et  al. first proposed the homomorphic fin-
gerprinting in [26]. The fingerprinting functions of 
homomorphic fingerprinting belong to a family of uni-
versal hash functions also. Let IFqω denote a field of 
order qω , Let K  be the set of fingerprinting key, and let 
Pqω : K → IFqω [x] be a deterministic algorithm that out-
puts monic irreducible polynomials of prime degree γ 
with coefficients in IFqω , the polynomials are chosen with 
probabilities taken over the choice of input r ∈ K  uni-
formly at random, then a fingerprinting function

can be defined as

For any r ∈ K  and d, d ′
∈ IF

γ
qω , b ∈ IFqω , a fingerprint-

ing function is homomorphic if

and

Let (encode, decode) be a linear erasure code with 
coefficients bij ∈ IFqω , for i ∈ [1, n]andj ∈ [1,m] , if 
d1, . . . , dn ← encodeδ(B) , then for a homomorphic fin-
gerprinting function, the following equation holds

where r ∈ K  and i ∈ [1, n].

(1)fp(r, d) : K × IF δ
qω → IF

γ
qω

(2)
fp(r, d(x)) : p(x) ← Pqω(r); return(d(x)modp(x))

(3)fp(r, d)+ fp r, d
′

= fp(r, d + d
′

)

(4)b · fp(r, d) = fp(r, b · d)

(5)fp(r, di) = encode
γ
i (fp(r, d1), . . . , fp(r, dm))

Network model
The network model is shown in Fig.  1, the sensor net-
work is composed of sensor nodes, cluster head (CH) 
nodes and base station. Before deployment, each node j 
is assigned a random number gj , a symmetric key Kj,BS 
shared with base station and a public large prime P . After 
the network is deployed to the target area, all nodes don’t 
move. Adopting the method of reference [27], all nodes 
are arranged in a cluster-based hierarchical topology. In 
order to balance the consumption of energy, the cluster 
head nodes are dynamically selected. Each sensor node 
sends the collected data to the cluster head node of its 
cluster. After receiving the sensing data sent by the mem-
ber sensor nodes, the cluster head node will perform the 
data aggregation operation, and finally sends the aggre-
gated data to base station. Base station will verify data 
integrity after receiving all the aggregated data. If the 
aggregation data is valid, the base station will accept the 
aggregation data, otherwise it will delete them. As a gate-
way for external communication, the base station has 
unlimited computing, storage and communication capa-
bilities, and is absolutely trusted. This paper only consid-
ers summation aggregation operation.

Adversary model
It assumes that the sensor nodes and cluster head nodes 
may be captured except the base station, once a node is 
captured, the attacker can easily obtain its security infor-
mation, such as identity, key, etc. Attacker can launch 
passive attacks or uses the captured malicious nodes to 
launch active attacks. The specific attacks that attacker 
can launch are as follows.

(1)	 By eavesdropping on the communication between 
nodes, Attacker can obtain the aggregation data 
sent by the node to the base station, and infer the 
corresponding original data through these stolen 
aggregation data, thereby destroying the privacy of 
the data.

(2)	 Injecting false data into the network.
(3)	 Replay attack is launched by stealing packets from 

nodes.
(4)	 The captured malicious cluster head node can not 

only tamper with the aggregation data and destroy 
the integrity of the data, it can also try to infer the 
corresponding original data by aggregating the data, 
thereby destroying the privacy of the data.

This paper does not consider the captured malicious 
sensor nodes to tamper with their own sensing data, 
because we think that it is difficult to detect malicious 
sensor nodes to tamper with their own sensing data only 
by relying on security protocols, and a small number of 
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captured sensor nodes do not pose a security threat to 
the network.

Privacy and integrity–preserving data aggregation 
scheme based on homomorphic fingerprinting: 
HFPIDA
Every time base station wants to collect the sensing data 
in the network, it first selects a random number r, r ǫ IFqω 
and broadcasts it to all nodes in the network. After a time 
period, when all nodes receive the random number r , 
they send the sensing data to the their cluster head node. 
The cluster head node aggregates the data and sends it to 
base station. Finally, base station will verify the integrity 
of the aggregation data. In order to protect the privacy 
and integrity of data, HFPIDA consists of four steps: pri-
vacy data generation, data aggregation, data recovery and 
verification. This section will describe each step in detail.

Privacy data generation
Suppose that a sensor node j in cluster i senses the data 
dj , it first hides the data dj in a privacy function fj(xj) , 
then calculates the homomorphic fingerprinting fpj of 
the data dj as the authentication information of the data, 
and finally sends the relevant data to the cluster head 
node CHi . The specific execution process is as follows.

(1)	Sensor node j gets the hash value h
(

kj,BS
)

 of the 
symmetric key kj,BS shared with base station by the 
secure one-way hash function h(.) , then, sensor node 
j constructs the privacy function fj

(

xj
)

 with the 
h
(

kj,BS
)

 , rand number gj , data dj and a public large 
prime P as follows.

 Where ⊕ denotes the XOR operation, mod denotes modulo 
operation.

(2)	Then it calculates the homomorphic fingerprinting 
fpj of the data dj according to the formula 2 as fol-
lows.

The homomorphic fingerprinting fpj will be used as the 
authentication information of the data dj.

(6)fj
(

xj
)

=
(

xj − h
(

kj,BS
)

⊕ gj
)

+ dj(mod)P

(7)
fpj = fp

(

r, dj
)

: p (x) ← Pqω (r); return(d(x)mod p(x))

Internet

Control Center

Base station

Cluster head node

Sensor node

Cluster Monitoring area

Fig. 1  Network model
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(3)	Finally, it sends the data (fj
(

xj
)

, fpj , gj) to the cluster 
head node CHi , where fj

(

xj
)

 denotes the privacy 
function, fpj denotes the homomorphic fingerprint-
ing and gj denotes a rand number.

Data aggregation
Suppose there are m sensor nodes in cluster i. 
If the cluster head node CHi receives the data 
{(f j

(

xj
)

, fpj , gj), j = 1 . . .m} sent by all nodes in the clus-
ter, it first aggregates the privacy functions of m sensor 
nodes in the cluster to obtain the aggregation privacy 
function Fi(x1, x2, . . . , xm) , then, it aggregates the data 
authentication information of m sensor nodes to obtain 
the aggregation homomorphic fingerprinting FPi , and 
finally sends the relevant data to the base station. The 
specific execution process is as follows.

(1)	The CHi aggregates the privacy functions fj
(

xj
)

 of m 
sensor nodes and gets the aggregation privacy func-
tion Fi(x1, x2, . . . , xm) as follow.

(2)	Then it aggregates the data authentication informa-
tion fpj of m sensor nodes and gets the aggregation 
homomorphic fingerprinting FPi according to the 
formula 3 as follow.

(3)	Then it sets Gi = {null} , and performs set union 
operation for random number gj of m sensor nodes 
to get random number set Gi as follow.

(4)	Finally, CHi sends the data (Fi(x1, x2, . . . , xm), FPi,Gi) 
to the base station, where Fi(x1, x2, . . . , xm) denotes 

(8)Fi(x1, x2, . . . , xm) =
∑m

j=1 fj
(

xj
)

(9)=
∑m

j=1

(

xj − h
(

kj,BS
)

⊕ gj
)

+
∑m

j=1dj (mod) P

(10)FPi =
∑m

j=1fpj

(11)=
∑m

j=1fp
(

r, dj
)

= fp
(

r,
∑m

j=1dj

)

(12)
Gi = Gi ∪ gj , j = 1 . . .m, where ∪ denotes set union operation

the aggregation privacy function, FPi denotes the 
aggregation homomorphic fingerprinting and Gi 
denotes random number set in cluster i.

Data recovery
Suppose the whole network is divided into n clus-
ters, each cluster has m sensor nodes. When 
the base station receives the aggregation data 
{ (Fi(x1, x2, . . . , xm), FPi,Gi), i = 1 . . . n } sent by all n clus-
ter head nodes, it performs the following operations to 
recover the original data.

(1)	The base station aggregates the privacy functions 
Fi(x1, x2, . . . , xm) of n cluster head nodes and gets the 
aggregation privacy function FBS(x11, . . . , xnm) as fol-
lowing.

(2)	 It sets GBS = {null} , and calculates 
GBS = GBS ∪ Gi = {g11, . . . , gnm}, i = 1 . . . n , where 
∪ denotes set union operation. Then it takes out 
each random number gij from GBS in turn, and finds 
out the key kij,BS shared by the corresponding node 
and base station.

(3)	 It calculates the independent variable 
xij = h

(

kij,BS
)

⊕ gij of the privacy function 
FBS(x11, . . . , xnm) according to gij and kij,BS in 
turn. Then it substitutes xij into the function 
FBS(x11, . . . , xnm) to recover the original data DBS 
as following.

(13)FBS(x11, . . . , xnm) =
∑n

i=1Fi(x1, x2, . . . , xm)

(14)=
∑n

i=1

∑m
j−1fij

(

xij
)

(15)
=

∑n
j=1(

∑m
j−1

(

xij − h
(

kij,BS
)

⊕ gij
)

+
∑m

j=1
dij(mod)P )

(16)
=

∑n
i=1

∑m
j=1

(

xij − h
(

kij,BS
)

⊕ gij
)

+
∑n

i=1

∑m
j=1 dij (mod) P

(17)DBS = FBS(x11, . . . , xnm)

(18)= FBS

(

h
(

k11,BS
)

⊕ g11, . . . , h
(

knm,BS

)

⊕ gnm
)

(19)
=

∑n
i=1

∑m
j−1

(

h
(

kij,BS
)

⊕ gij − h
(

kij,BS
)

⊕ gij
)

+
∑n

i=1

∑m
j=1dij (mod) P
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Data verification
After recovering the original data DBS , the base station 
first aggregates the homomorphic fingerprinting FPi 
sent by n cluster head nodes to obtain the aggregation 
homomorphic fingerprinting FPBS , then it calculates 
the homomorphic fingerprinting FP′BS of the recov-
ered original data DBS , and finally verifies data integ-
rity by comparing the results of FPBS and FP′BS . The 
specific integrity verification process is as follows.

(1)	 The base station aggregates the homomorphic fin-
gerprinting FPi of n cluster head nodes and gets 
the aggregation homomorphic fingerprinting FPBS 
according to the formula 3 as following.

(2)	The base station gets the homomorphic finger-
printing FP′BS of the recovered original data DBS by  
calculating.

(3)	The base station verifies data integrity by comparing the 
results of FPBS and FP′BS , if FPBS is equals to the FP′BS , 
it accepts the data DBS , otherwise, it means that the 
data has been tampered with and will not be accepted.

Security analysis
In Sect.  3.3, it introductions that attackers can launch 
passive attacks or use captured malicious nodes to launch 
active attacks, which will destroy the privacy and integ-
rity of data. This section will discuss how the HFPIDA 
scheme proposed in this paper protects the privacy and 
integrity of data and resists replay attack.

Data privacy analysis
In the HFPIDA, sensor node j hides its data in a pri-
vacy function fj(xj) , that is, the data is encrypted by 

(20)=
∑n

i=1

∑m
j=1dij

(21)FPBS =
∑n

i=1FPi

(22)=
∑n

i−1

∑m
j=1fpij = fp(r,

∑n
i=1

∑m
j=1dij)

(23)FP′BS = fp(r,DBS)

(24)= fp(r,
∑n

i=1

∑m
j=1 dij)

disturbing the data, and then sent to the cluster head 
node. Because any intermediate node or attacker has 
no the key shared by node j and base station, they can-
not obtain the sensing data sent by the sensor node to 
the cluster head node by eavesdropping on the com-
munication between nodes. When the cluster head 
node CHi receives the data sent by m nodes in the clus-
ter, it first calculates the aggregation privacy function 
Fi(x1, x2, . . . , xm) =

∑m
j=1

(

xj − h
(

kj,BS
)

⊕ gj
)

+
∑m

j=1 dj(mod)P   , 
and then sends it to the base station. Any intermedi-
ate node or attacker has no the keys shared by m nodes 
and base station, they cannot obtain the aggregation 
data 

∑m
j=1 dj sent by the cluster head node CHi to the 

base station by eavesdropping on the communication 
between nodes. Therefore, the HFPIDA can resist vari-
ous passive attacks launched by attackers and protect 
the privacy of single data and aggregation data.

Attackers can capture some sensor nodes or cluster 
head nodes, so the attackers can obtain the keys and 
random numbers shared by these captured malicious 
nodes and base station, and then try to infer the aggre-
gation data 

∑m
j=1 dj in the aggregation privacy func-

tion Fi(x1, x2, . . . , xm) =
∑m

j=1

(

xj − h
(

kj,BS
)

⊕ gj
)

+
∑m

j=1 dj(mod)P 
through these keys and random numbers. However, since 
these captured malicious nodes do not have the keys 
shared by other sensor nodes and base station, the aggre-
gation data in the privacy function cannot be inferred. 
Therefore, the HFPIDA can resist the active attacks 
launched by attackers and protect the privacy of aggrega-
tion data.

Data integrity analysis
In the HFPIDA, sensor node j calculates the homo-
morphic fingerprinting fpj = fp

(

r, dj
)

 of the data dj as 
the authentication information of the data, and cluster 
head node CHi calculates the aggregation homomor-
phic fingerprinting FPi =

∑m
j=1 fpj as authentication 

information of the aggregation data. The captured clus-
ter head node may tamper with the aggregation data 
or inject false data, but the base station can find such 
tampering or injecting false data in the data verification 
step in Sect.  4.4. Therefore, the HFPIDA can protect 
the integrity of data.

Resisting replay attack analysis
In the HFPIDA, every time the base station wants to 
collect the sensing data in the network, it will send a 
random number r, r ∈ IFqω to all nodes. If the attacker 
attempts to launch a replay attack by sending the pre-
vious data, because the random number r is different 
every time, and the random r used to calculate the 
homomorphic fingerprinting fpj = fp

(

r, dj
)

 is also dif-
ferent, and the base station can find this attack in the 
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data verification step in Sect.  4.4. Therefore, the HFP-
IDA can resist the replay attack launched by sending 
the previous data.

The performance evaluation
 In this paper, the performances of HFPIDA, SMART 
and FTSMART are evaluated from the aspects of the 
communication overhead, the energy consumption 
and the aggregation accuracy. The simulation experi-
ment environment is carried out on OMNeT + + plat-
form, with 200 nodes randomly distributed in a square 
area of 400 m × 400 m, the nodes will not move after 
deployment, and the base station is deployed in the 
center of the area. The packet size is 128bytes, and 
the cluster sizes range from 5 to 12. The parameter 
settings of the experimental simulation are shown in 
Table 1.

Communication overhead
We adopt the total amount of the packets transmission 
during data aggregation as a measure of communication 
overhead.

In the SMART, if each node has M-1 neighboring 
nodes, each node cuts its data into M slices and sends 
(M-1) slices to its neighboring nodes in the slicing phase, 
after mixing, each node sends the new packet to its upper 
node in the aggregation phase. Therefore, the communi-
cation overhead of the SMART is given by

 Where COSMART denotes the communication overhead 
of the SMART, and N denotes the total number of the 
nodes in the network.

In the FTSMART, the number of each node’s par-
ent is different, if a node has n parent nodes, the node 
cuts its data into (n + 1) slices and sends the (n) slices 
to its parent nodes in the slicing phase, each node needs 
to send one packet to its upper node in the aggregation 
phase. Therefore, the communication overhead of the 
FTSMART is given by

(25)COSMART = N ∗ (M − 1)+ N ∗ 1 = N ∗M

 Where COFTSMART denotes the communication over-
head of the FTSMART, N denotes the total number of 
the nodes in the network, Ti denotes the amount of the 
packets generated by node i, and nmax denotes the maxi-
mum number of the parents for all nodes.

In the HFPIDA, each node only needs to send one 
packet to its cluster node during the data aggregation. 
Therefore, the communication overhead of the HFPIDA 
is given by

 Where COHFPIDA denotes the communication overhead 
of the HFPIDA, N denotes the total number of the nodes 
in the network.

We set the number of the neighboring nodes for each 
node in the SMART is 2, the simulation experiment 
results of the communication overhead of HFPIDA, 
SMART and FTSMART are demonstrated in Fig.  2. It 
can be observed form the Fig. 2 that the communication 
overhead of SMART is lower than that of SMART and 
FTSMART. Since each node of HFPIDA does not need 
to send slices to other neighbor nodes and only send one 
packet to its cluster, it vastly reduce the communication 
overhead in the whole network.

Energy consumption
The amount of energy consumption directly affects the 
life of the network, so one of the important metrics to 
demonstrate the performance of the data aggregation 
scheme is the energy consumption. The energy costs 
are composed of the cost of transmission, reception and 
computation. The total energy consumption in an arbi-
trary node is given by

 Where ETotal denotes the total energy consumption, 
Et denotes the energy consumption of transmission 
packet, Er denotes the energy consumption of receiving 
packet and Ec denotes the energy consumption of the 
computation.

The computation cost of the SMART and FTSMART 
is mainly to perform slicing operation, encryption and 
decryption operation, the computational cost of HFPIDA 
is mainly to perform hash function operation, fingerprint 
function operation, XOR operation and privacy function 
addition operation. Fingerprint function operation is essen-
tially a hash function operation, and the computation cost 
of hash function operation is almost negligible compared 
with the public key operation used in other schemes, XOR 
operation is the most basic operations in cryptography. So 

(26)COFTSMART =
∑N

i=1
Ti(Tiǫ[1, 2, ..., nmax + 1])

(27)COHFPIDA = N

(28)ETotal = Et + Er + Ec

Table 1  Simulation parameters

Parameter Value

Network deployment area (m) 400 × 
400

Number of nodes in the network 200

Transmission range(m) 30

Initial energy of each node (J) 4

Transmit power (mw) 50

Receiving power(mw) 10

The simulation time (S) 100
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the energy consumption of the computation of HFPIDA is 
lower than that of SMART and FTSMART.

Figure  3 demonstrates the total energy consumption 
of the HFPIDA, SMART and FTSMART under different 
number of nodes. It can be observed from the Fig. 3 that, 
as the number of the nodes increases, the energy con-
sumption of the three schemes increases, too. However, 

the energy consumption of the SMART and FTSMART is 
higher than HFPIDA, that is because each node needs to 
send slices to other neighbor nodes or its parents, there are 
more messages exchanges for each node in the SMART 
and FTSMART, and the energy consumption of the com-
putation in the SMART and FTSMART is higher than 
HFPIDA, too.

Fig. 2  Communication overhead

Fig. 3  Energy consumption



Page 10 of 11Zhang et al. Journal of Cloud Computing          (2023) 12:140 

Aggregation accuracy
The aggregation accuracy is another important metric 
to demonstrate the performance of the data aggrega-
tion scheme, due to packet losses, delays, collisions and 
noisy communication channels frequently occur in wire-
less sensor networks, the accuracy of the aggregation 
result does not achieve 100%. The aggregation accuracy 
is given by

 Where PAC denotes the aggregation accuracy, D denotes 
the final aggregation result obtained by the base station, 
Dt denotes the sum data of all nodes in whole network.

Figure  4 shows the aggregation accuracy of the HFP-
IDA, SMART and FTSMART under different time 
interval. It can be observed from the Fig. 4 that the aggre-
gation accuracy increases as the time interval increases. 
That is because the packets have less chance to collide 
with the longer time interval. It can be observed from the 
Fig. 4 that the aggregation accuracy of the HFPIDA is the 
highest, and the aggregation accuracy of the SMART is 
the lowest. That is because the communication overhead 
of HFPIDA is the lowest, the communication overhead of 
SMART is the highest, the more packet transmitted, the 
more the probability of collision during the aggregation, 
the more packet lost, which greatly affect aggregation 
accuracy.

(29)PAC =
D

Dt

Conclusion
In the process of data aggregation in wireless sensor net-
works, it is a challenging task to meet both data privacy 
protection and data integrity verification. In order to 
protect data privacy and verify data integrity, moreover, 
balance the energy consumption and security during the 
data aggregation, a privacy and integrity–preserving data 
aggregation scheme for wireless sensor networks based 
on homomorphic fingerprinting (HFPIDA) is proposed in 
this paper. In the HFPIDA, it only uses lightweight homo-
morphic fingerprint technology and privacy function, and 
does not produce any redundant data. Security analysis 
demonstrates that the HFPIDA is efficient to resist vari-
ous passive and active attacks launched by attackers, and 
protects the data privacy and data integrity. Simulation 
results show that The HFPIDA requires less communi-
cation and energy overheads, and can improve the data 
aggregation accuracy. In the future, the researches on sup-
porting multi-parameters data aggregation and the secu-
rity protection of multi-parameters data aggregation for 
wireless sensor networks will be huge challenges.
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