
Zhang et al. Journal of Cloud Computing          (2023) 12:116  
https://doi.org/10.1186/s13677-023-00493-9

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Joint DNN partitioning and task offloading 
in mobile edge computing via deep 
reinforcement learning
Jianbing Zhang1, Shufang Ma1, Zexiao Yan1 and Jiwei Huang1* 

Abstract 

As Artificial Intelligence (AI) becomes increasingly prevalent, Deep Neural Networks (DNNs) have become a cru-
cial tool for developing and advancing AI applications. Considering limited computing and energy resources 
on mobile devices (MDs), it is a challenge to perform compute-intensive DNN tasks on MDs. To attack this challenge, 
mobile edge computing (MEC) provides a viable solution through DNN partitioning and task offloading. However, 
as the communication conditions between different devices change over time, DNN partitioning on different devices 
must also change synchronously. This is a dynamic process, which aggravates the complexity of DNN partitioning. 
In this paper, we delve into the issue of jointly optimizing energy and delay for DNN partitioning and task offload-
ing in a dynamic MEC scenario where each MD and the server adopt the pre-trained DNNs for task inference. Taking 
advantage of the characteristics of DNN, we first propose a strategy for layered partitioning of DNN tasks to divide 
the task of each MD into subtasks that can be either processed on the MD or offloaded to the server for computa-
tion. Then, we formulate the trade-off between energy and delay as a joint optimization problem, which is further 
represented as a Markov decision process (MDP). To solve this, we design a DNN partitioning and task offloading 
(DPTO) algorithm utilizing deep reinforcement learning (DRL), which enables MDs to make optimal offloading deci-
sions. Finally, experimental results demonstrate that our algorithm outperforms existing non-DRL and DRL algorithms 
with respect to processing delay and energy consumption, and can be applied to different DNN types.

Keywords  Deep neural networks(DNNs), Mobile edge computing(MEC), DNN partitioning, Task offloading, Deep 
reinforcement learning (DRL)

Introduction
As a core technology supporting modern Artificial Intel-
ligence (AI) mobile applications, Deep Neural Networks 
(DNNs) have widespread applications in computer vision, 
natural language processing, image recognition, virtual 
reality (VR), augmented reality (AR) and other fields 
[1–3]. However, considering that the high computational 
complexity of DNN-based inference tasks, it is difficult 

to execute these DNN-based inference tasks directly on 
mobile devices (MDs) having constrained computation 
and energy resources.

In order to cope with the excessive demand on com-
puting resources for compute-intensive DNN tasks, the 
traditional solution resorts to the cloud datacenter with 
strong computing power for intensive computation [4]. 
In this case, the task data arriving at MDs is transmit-
ted to the remote cloud datacenter for computation, and 
the result is returned to the local devices once the com-
putation is complete. However, this cloud-based method 
involves the transmission of large amounts of data via a 
long-distance wide-area network (WAN), resulting in 
high transmission energy consumption and delay, and 

*Correspondence:
Jiwei Huang
huangjw@cup.edu.cn
1 Beijing Key Laboratory of Petroleum Data Mining, China University 
of Petroleum, Beijing, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00493-9&domain=pdf


Page 2 of 15Zhang et al. Journal of Cloud Computing          (2023) 12:116 

cannot meet the requirements of energy-sensitive and 
delay-sensitive DNN inference tasks. To address this 
issue, mobile edge computing (MEC) [5–7] is proposed 
as an emergent computing mode that places computa-
tional and storage resources on edge nodes near MDs [8], 
enabling compute-intensive DNN-based applications to 
be executed in a real-time responsive manner, i.e., edge 
intelligence [1, 9, 10]. This novel manner can meet the 
low delay and low energy consumption requirements of 
DNN tasks [11–14]. In MEC, we can take advantage of 
the characteristics of DNN to offload part or all of the 
tasks on MDs to the MEC server to support real-time 
edge AI applications [15, 16].

Although edge intelligence technology has brought 
many benefits [17], edge-based DNN inference tasks 
remain heavily reliant on stable and reliable communi-
cation conditions between the MD and the edge server 
[9]. Considering that the network environment is often 
changing and easily disturbed in actual deployment, it is 
particularly important to further optimize DNN parti-
tioning and task offloading in the dynamic network envi-
ronment. Therefore, in response to the ever-changing 
network environment, we need to explore more robust 
and flexible DNN partitioning and task offloading tech-
niques. In addition, since the number of tasks generated 
by MDs is randomly variable, the probability of the state 
transition is unknown.

On these issues mentioned above, in this paper, we first 
dynamically partition DNN tasks by layer into subtasks 
that can be executed on the MD or the MEC server [18]. 
Towards low delay and low energy consumption edge 
intelligence, we utilize the joint optimization method to 
formulate the energy-delay trade-off of MDs as a Markov 
decision process (MDP) [19]. Thereafter, we adopt tra-
ditional deep reinforcement learning (DRL) algorithms, 
including the Deep Q-Network (DQN) and Double Deep 
Q-Network (DDQN) algorithms, to make MDs learn the 
optimal offloading policy while considering the future 
dynamic characteristics of the system environment. Nev-
ertheless, we find that traditional DRL algorithms do not 
converge or converge slowly. To address this problem, we 
design a DNN partitioning and task offloading strategy 
based on Proximal Policy Optimization (PPO) algorithm, 
which can decrease energy consumption, reduce process-
ing delay, and can also be extended to various types of 
DNNs. In the end, numerous simulation experiments are 
carried out to validate the effectiveness of our proposed 
method in enabling on-demand edge intelligence with 
low delay and low energy consumption.

In summary, this paper makes the following main 
contributions:
• We present a novel approach for DNN task parti-

tioning, which utilizes a layered partitioning method to 

divide the tasks of each MD into smaller subtasks that 
can be computed on the MD or offloaded to the server 
for processing.
• We study the optimization of energy consumption 

and processing delay for DNN partitioning and task off-
loading in a dynamic MEC scenario consisting of mul-
tiple MDs with buffer and one MEC server, where each 
MD and the MEC server use the pre-trained DNNs for 
task inference. And we construct the processing delay 
model and energy consumption model for the MEC sys-
tem. Then, we further formulate the optimization prob-
lem as an MDP problem.
• To address the above issue, we propose a DNN parti-

tioning and task offloading (DPTO) algorithm based on 
DRL. At the same time, we evaluate the processing delay, 
energy consumption, and utility of our DPTO algorithm 
in simulation experiments, and numerous experimental 
results indicate that our DPTO algorithm surpasses exist-
ing non-DRL and DRL algorithms, effectively reduces the 
processing delay and energy consumption, and simulta-
neously can be applied to various types of DNNs.

The rest of this paper is structured as follows. Section 
“Related work” presents a detailed overview of the related 
work that is most relevant to this paper. In section “Sys-
tem model and problem formulation”, we first introduce 
the processing delay model and the energy consumption 
model, and then expound the process of modelling the 
joint optimization problem as an MDP problem. Section 
“DRL-based algorithm design” discusses the design of our 
DPTO algorithm based on DRL. In section “Performance 
evaluation”, we conduct extensive simulation experiments 
to evaluate the performance of our proposed approach. 
Finally, in section “Conclusion”, we summarize our con-
tributions and conclude the paper.

Related work
Recently, discussions on DNN partitioning and task off-
loading have received more and more attention. Since 
the number of data generated by the computation of 
some intermediate layers of the DNN model is relatively 
small, they are sent to the edge server with less trans-
mission energy consumption and delay than the original 
data through the network, which stimulates the method 
of DNN partitioning and task offloading [1]. In addi-
tion, given the multi-layer structure of the DNN and the 
strong interdependence between neurons in each layer, 
it is difficult to partition computations in the same layer. 
And since there are some restrictions on the granularity 
of DNN partitioning in programming, it is not feasible to 
partition DNN arbitrarily. Therefore, designing an effec-
tive DNN partitioning and task offloading scheme is a 
challenging problem.



Page 3 of 15Zhang et al. Journal of Cloud Computing          (2023) 12:116 	

To cope with this challenge, many researchers have 
made some efforts in the field of DNN partitioning and 
task offloading. For example, a lightweight scheduler, 
i.e., Neurosurgeon, tailored for a basic edge computing 
network consisting of a single user and one server was 
introduced by Kang et al. [18]. The scheduler facilitated 
automatic DNN partitioning between the MD and the 
datacenter. However, applying Neurosurgeon to com-
plex multi-user MEC networks presents some unresolved 
issues. He et al. [20] assumed that a fixed set of partitions 
was used to partition the DNN. The main focus of their 
approach was to optimize the DNN partitioning on the 
MEC server to minimize delay, instead of selecting par-
tition points. Nevertheless, the fixed partition deploy-
ment of DNN on the MEC server may not be practical 
in multi-user MEC networks due to the various types of 
DNNs. In addition, Gao et al. [14] introduced two novel 
approaches that aim to optimize the partitioning and off-
loading of DNN tasks. And these two algorithms have the 
best performance in terms of delay, energy, and the price 
paid to the server for each MD. Furthermore, they are 
also be extended to a wide range of DNN types.

According to the above DNN partitioning and task off-
loading strategy, for MDs with constrained computing 
and energy resources, task offloading to servers for pro-
cessing is a feasible solution [21–23]. Some existing work 
focuses on the delay optimization in task offloading. 
Specifically, Li et  al. [9] introduced a framework called 
Edgent for collaborative inference of DNN utilizing edge 
computing through device-edge synergy. Their approach 
facilitated adaptive partitioning of DNN computation 
between the device and edge, and allowed for premature 
termination of inference at a suitable intermediate DNN 
layer to minimize computation delay. To increase the 
amount of allowable delay-aware DNN service requests, 
Li et al. [24] devised a new strategy that involves optimiz-
ing DNN partitioning and multi-thread execution paral-
lelism. This approach aims to maximize the throughput of 
DNN inference, which is especially crucial in DNN-based 
applications that require real-time processing. Chen et al. 
[4] proposed a solution to the problem of excessive delay 
in offloading by delegating partially compute-intensive 
tasks to remote clouds or edges. The latest researches [25, 
26] investigated task offloading policies aimed at fulfilling 
the low-latency demands of users.

Another area of related work focuses on energy opti-
mization in offloading. For example, Chen et  al. [27] 
addressed the problem of dynamic task offloading in 
digital twin-enabled MEC, and designed an energy-effi-
cient algorithm based on DRL with the goal of maximiz-
ing energy efficiency and workload balancing among the 
ESs. In [28], they proposed a solution that utilizes DRL 
to tackle the challenge of AOI-aware energy control and 

computing offloading in a dynamic IIoT environment. 
The approach designed by the authors enables effective 
energy management and computing offloading, while 
considering the changing nature of the IIoT system. 
Li et  al. [29] developed an energy-efficient algorithm 
to minimize total energy consumption. The trade-off 
between system performance and energy consumption 
was investigated by Zhou et al. [30] in a multi-cloud sys-
tem using UAVs.

The third type of work relates to the joint optimization 
of delay and energy. To be concrete, in the research on 
computing offloading for IOT devices in LEO satellite 
edge computing, Chen et  al. [31] investigated the chal-
lenge of ensuring Qos while minimizing overall costs. To 
address this issue, they proposed a distributed approach 
that takes into account multiple constraints, including 
computing resources, delay and energy consumption, 
to achieve Qos-aware computing offloading. In [32], the 
author investigated the energy and delay trade-off in a 
MEC system using energy harvesting devices. Further-
more, there have been studies [33, 34] that have proposed 
an online Lyapunov optimization technique for balancing 
the energy consumption and delay.

Although there are numerous studies on jointly opti-
mizing energy and delay in task offloading, these exist-
ing offloading methods are not common for offloading 
DNN tasks in dynamic MEC systems. Therefore, unlike 
previous works, this paper primarily concentrates on 
effectively tackling the challenge of reducing the energy 
consumption and processing delay in a dynamic MEC 
scenario through DNN partitioning and task offloading. 
To address this issue, we put forward a DRL-based DPTO 
approach, which is detailed in Section “DRL-based algo-
rithm design”.

System model and problem formulation
Our research focuses on a dynamic MEC scenario, which 
involves a plurality of MDs embedded with task buffers 
for temporarily storing unprocessed tasks and one MEC 
server, as illustrated in Fig. 1. We use U = {1, 2, ..., n} to 
represent the collection of MDs, where n is an integer 
representing the overall amount of MDs in the collection. 
And each MD and the MEC server in this MEC scenario 
use pre-trained DNNs to compute their tasks. We con-
sider a system with time slots, each with length τ . The 
time slots are indexed by t ∈ {0, 1, ...,T − 1} . The uth MD 
receives Du(t) DNN tasks and has Qu(t) tasks currently 
stored in the buffer at the start of time slot t. The sum 
of Du(t) and Qu(t) gives the total size of tasks that the 
uth MD needs to process. In addition, the DNN model 
adopted by the uth MD has Lu layers.

Figure 1 provides a detailed illustration of DNN parti-
tioning and task offloading for MDs. The uth MD has the 



Page 4 of 15Zhang et al. Journal of Cloud Computing          (2023) 12:116 

flexibility to choose between two task execution modes: 
local computation and offloading to the server via a relia-
ble wireless channel for processing. According to the off-
loading policy, it can further decide how many layers to 
compute on the MD and how many layers to compute on 
the MEC server, both of which are indicated by αu,L(t) 
and αu,M(t) . Specifically, when αu,L(t) = Lu , αu,M(t) = 0 , 
means that the tasks are computed locally on the MD, 
but when αu,L(t) = 0 , αu,M(t) = Lu , means that the tasks 
are computed on the MEC server. Specially, when αu,L(t) 
and αu,M(t) are both 0, this indicates that the tasks are 
stored in the buffer temporarily for later processing, 
instead of being computed. The unexecuted tasks are rep-
resented by Q

′

u(t) , which can be modeled as 
Q

′

u(t) = (Du(t)+ Qu(t)) · 1−
αu,L(t)+αu,M(t)

Lu
 . In brief, 

the decision made by the uth MD could be considered as 
an action tuple au = [αu,L(t),αu,M(t)] ∈ A , in which A 
denotes the collection of all the action tuples and 
αu,L(t)+ αu,M(t) ∈ {0, Lu} . The system model uses the 
primary notations listed in Table 1.

Thereafter, we will provide a detailed system model by 
analyzing two aspects, including processing delay model 
and energy consumption model.

Processing delay model
Since the delay caused by task partitioning is very small 
compared to the total delay during the entire DNN task 
processing, we can disregard it. Therefore, the process-
ing delay consists of four parts: the computation delay 
of the uth MD Tu,loc(t) , the data upload delay from the 

uth MD to the server Tu,up(t) , the computation delay of 
the server Tu,mec(t) , and the data download delay from 
the server to the uth MD Tu,do(t) . We partition DNN 
tasks on the uth MD by layer into subtasks, which are 
represented by the sequence 

{

Mu,1, ...,Mu,l , ...,Mu,Lu

}

 , 
where 1 ≤ l ≤ Lu . Denote Mu,l as the subtask l on the 
uth MD. The input matrix size of each layer in the DNN 
model depends on the specific model structure and the 
dimensions of the input data. In general, for convolu-
tional layers, the input matrix size depends on the size 
of the input image, the number of channels, and the size 
of the convolutional kernel. For fully connected layers, 
the input matrix size is determined by the number of 
output nodes in the previous layer and the number of 
nodes in the current layer. With reference to [35], for 
the inference request on the uth MD, the input matrix 
size is in direct proportion to the computation delay of 
each layer in the DNN. We call fu,l the ratio of the input 
matrix of the DNN layer l on the uth MD to the initial 
data size Du(t) . Specially, fu,1 = 1 . For the subtask Mu,l , 
we denote the input matrix size by Yu,l(t) and it is rep-
resented as follows:

where the value of fu,l can be derived from the histori-
cal data on inference requests during the model training 
process.

With reference to [36–38], we can represent the com-
putation delay Tloc

u,l (t) for the DNN layer l on the uth MD 
as

(1)Yu,l(t) = fu,l · Du(t),

Fig. 1  System Model



Page 5 of 15Zhang et al. Journal of Cloud Computing          (2023) 12:116 	

where ξu,loc(t) represents the processing time taken by 
the uth MD to process one unit of data, and Yu,l(t) is 
given in (1). Similarly, the computation delay Tmec

u,l (t) for 
the DNN layer l of the uth MD on the MEC server as

where ξmec(t) is a constant representing the time required 
by the MEC server to process one unit of data. We sup-
pose that the DNN layer 1 to layer ku is computed on the 
uth MD, and layer ku + 1 to layer Lu is computed on the 
server, where ku represents the DNN layer k on the uth 
MD, and 1 ≤ ku ≤ Lu . Therefore, we can represent the 
computing delay on the uth MD locally as

where Tloc
u,l (t) is given in (2). We can model the comput-

ing delay on the MEC server as follows:

(2)Tloc
u,l (t) = Yu,l(t) · ξu,loc(t),

(3)Tmec
u,l (t) = Yu,l(t) · ξmec(t),

(4)Tu,loc(t) =

l=ku
∑

l=1

Tloc
u,l (t),

where Tmec
u,l (t) could be obtained in (3).

We consider that MDs could send the processed data 
to the MEC server, causing additional transmission delay 
and energy consumption during the transmission period. 
Specifically, based on the Shannon theory [39], we can 
denote the transmission data rate Ru,up(t) from the uth 
MD to the MEC server as

where Bu(t) and hu(t) are the channel bandwidth and 
channel power gain available between the uth MD and 
the MEC server, respectively, N0 represents the power 
spectral density of noise, and the uth MD has the upload 
power Pup

u (t) . In addition, we use Oku(t) to denote the 
output data size from the DNN layer ku on the uth MD 

(5)Tu,mec(t) =

l=Lu
∑

l=ku+1

Tmec
u,l (t),

(6)Ru,up(t) = Bu(t)log2

(

1+
hu(t)P

up
u (t)

Bu(t)N0

)

,

Table 1  Notations and definitions

Notation Definition

n The number of MDs

Du(t) The task size on the uth MD in time slot t

Qu(t) The task size currently stored in the buffer of the uth MD in time slot t

Lu The amount of layers of the DNN model on the uth MD

αu,L(t) The amount of layers computed on the uth MD in time slot t

αu,M(t) The amount of layers computed on the MEC server in time slot t

Q
′

u(t)
The unexecuted task size on the uth MD in time slot t

A The collection of all the action tuples

Mu,l The subtask l on the uth MD

fu,l The ratio of input matrix of the DNN layer l on the uth MD to the initial data size Du(t)

Yu,l(t) The input matrix size of the subtask Mu,l in time slot t

ξu,loc(t) The processing time taken by the uth MD to process one unit of data in time slot t

ξmin
u,loc

The minimum processing time taken by the uth MD to process one unit of data

ξmec(t) The time taken by the server to process one unit of data in time slot t

ξmin
mec

The minimum time taken by the server to process one unit of data

Bu(t) The bandwidth between the uth MD and the MEC server in time slot t

N0 The power spectral density of noise

hu(t) The channel power gain between the uth MD and the MEC server in time slot t

P
up
u (t) The uploading power of the uth MD in time slot t

PM(t) The transmission power of the server in time slot t

Oku (t) The output data size from the DNN layer ku on the uth MD in time slot t

OLu (t) The output data size from the last DNN layer Lu on the uth MD in time slot t

Pexeu (t) The computing power of the uth MD in time slot t

S The collection of all the states

Cu(t) The overall cost for the uth MD in time slot t

Ru(t) The reward value corresponding to (su(t), au(t))



Page 6 of 15Zhang et al. Journal of Cloud Computing          (2023) 12:116 

in time slot t. Thereafter, according to (6), the data upload 
delay from the uth MD to the MEC server is

Similarly, during the download of the output results com-
puted by the MEC server to the MDs, there will also pro-
duce transmission delay. We use Ru,do(t) to indicate the 
data download rate from the MEC server to the uth MD, 
which is given by:

where the transmission power of the MEC server is 
denoted by PM(t) . According to (8), we can obtain the 
data download delay from the MEC server to the uth MD 
Tu,do(t) as

where the output data size from the last DNN layer Lu on 
the uth MD in time slot t is represented by OLu(t).

Specially, when the tasks are computed locally, i.e., 
αu,L(t) = Lu , αu,M(t) = 0 , we do not upload data to the 
MEC server, correspondingly, the download delay is zero, 
and so is the computation delay of the MEC server. On 
the contrary, if αu,L(t) = 0 , αu,M(t) = Lu , i.e., the tasks 
are computed only on the server. Therefore, the local 
computation delay on the uth MD is zero. If αu,L(t) = 0 , 
αu,M(t) = 0 , i.e., the tasks need to wait for later process-
ing. In the current time slot t, the processing delay and 
energy consumption of the uth MD are both equal to 0. 
To sum up, the total processing delay of the uth MD can 
be modeled as

where Tu,M1
(t) = Tu,mec(t)+ Tu,up(t)+ Tu,do(t) and 

Tu,M2
(t) = Tu,loc(t)+ Tu,mec(t)+ Tu,up(t)+ Tu,do(t).

Energy consumption model
The MEC server has an uninterrupted power supply from 
the power grid, so we can disregard the energy consump-
tion of the MEC server for computing and downloading 
the calculation results to the MDs [19]. Furthermore, the 
energy consumption caused by task partitioning is so 
small for the entire DNN task processing process that we 
can ignore it. Therefore, the main energy consumption 
in our system comes from the computing energy of MDs 
and the data transmission energy from MDs to the MEC 

(7)Tu,up(t) =
Oku(t)

Ru,up(t)
.

(8)Ru,do(t) = Bu(t)log2

(

1+
hu(t)PM(t)

Bu(t)N0

)

,

(9)Tu,do(t) =
OLu(t)

Ru,do(t)
,

(10)Tu(t) =











0, αu,L(t) = 0,αu,M(t) = 0

Tu,loc(t), αu,L(t) = Lu,αu,M(t) = 0

Tu,M1
(t), αu,L(t) = 0,αu,M(t) = Lu

Tu,M2
(t), other,

server. We can model the computing energy consump-
tion of DNN tasks on the uth MD as

where the computing power of the uth MD is denoted by 
Pexe
u (t) . Tu,loc(t) is the computing delay on the uth MD 

and is given in (4). The energy consumption of uploading 
the output data of the DNN layer ku executed by the uth 
MD to the MEC server is

where τ is the duration of each slot.
Specially, when the tasks are computed only on the 

MD, the MD does not need to send data to the MEC 
server. Therefore, the only energy cost for the uth MD 
is the local computing energy cost. On the contrary, 
if the tasks are computed only on the MEC server, the 
only energy consumption Eu(t) is the energy consumed 
to send data from the uth MD to the server. Overall, the 
energy consumption Eu(t) for the uth MD is given by the 
following formula:

where Eu,M(t) = Eu,loc(t)+ Eu,up(t).

Problem formulation
According to the conditions of the current channel, MDs 
decide the amount of DNN layers to be computed on 
the MEC server and locally. When the channel condi-
tions remain good for an extended period, the amount 
of tasks in the buffer Qu(t) will become zero after a time 
slot t > 0 . At this time, the number of tasks arriving at 
the uth MD Du(t) is equal to the number of tasks to be 
processed.

Storing DNN tasks in the buffer temporarily will have a 
substantial influence on the service quality and user satis-
faction. Thus, we denote ω · Q

′

u(t) as the punishment. In 
summary, in time slot t, the total cost of the uth MD con-
sists of processing delay, energy cost, and punishment, 
and it can be modeled as

where µ , υ , ω are the weights of delay, energy cost, and 
punishment respectively.

The objective is to finish the DNN tasks quickly and use 
the least amount of energy, by reducing the system cost 
as much as possible without exceeding the computational 
limits. We define ξmin

u,loc and ξmin
mec  as the minimum time 

taken by the uth MD and the server to process a unit 

(11)Eu,loc(t) = Pexe
u (t)Tu,loc(t),

(12)Eu,up(t) = Pup
u (t) ·min{Tu,up(t), τ },

(13)Eu(t) =











0, αu,L(t) = 0,αu,M(t) = 0

Eu,loc(t), αu,L(t) = Lu,αu,M(t) = 0

Eu,up(t), αu,L(t) = 0,αu,M(t) = Lu
Eu,M(t), other,

(14)Cu(t) = µ · Tu(t)+ υ · Eu(t)+ ω · Q
′

u(t),



Page 7 of 15Zhang et al. Journal of Cloud Computing          (2023) 12:116 	

of data, respectively. Rmax
u,up is the maximum data upload 

speed from the uth MD to the server. Rmax
u,do is the maxi-

mum data download speed from the server to the uth 
MD. In summary, the following expression shows how to 
describe the problem:

where the constraint (16) indicates that the tasks are 
being buffered or computed. Specifically, when the tasks 
are buffered, it means that the sum of the number of lay-
ers computed on the MD and the server is equal to 0. 
However, when the tasks are processed, the sum is the 
amount of layers of the DNN model Lu on the uth MD. 
The constraints (17) and (18) illustrate that the time 
taken by the uth MD and the server to process a unit of 
data is not less than the minimum value, respectively. The 
constraint (19) bounds the maximum data transmission 
rate from the uth MD to the server. The constraint (20) 
bounds the maximum data downloading rate from the 
server to the uth MD.

As discussed above, the decision taken by the uth MD 
is represented by au(t) = [αu,L(t),αu,M(t)] . The cur-
rent state su(t) can be obtained by the uth MD through 
observing the system, which is composed of the arrived 
tasks Du(t) , the channel power gain between the uth 
MD and the server hu(t) , and the tasks stored in buffer 
Qu(t) . Thus, the current state su(t) could be represented 
as su(t) = [Du(t), hu(t),Qu(t)] ∈ S , and S is the state col-
lection. In time slot t, the uth MD computes the immedi-
ate reward Ru(t) after performing the action au(t) in the 
state su(t) . Since we aim to finish the DNN tasks fast and 
ensure the minimum energy consumption, we define the 
reward function Ru(t) as the total cost Cu(t) consumed by 
the uth MD, i.e., Ru(t) = Cu(t) . Therefore, according to 
the action collection A, state collection S, and the imme-
diate reward Ru(t) , we can model the optimization prob-
lem as an MDP problem.

Our goal is to enable each MD to learn the opti-
mal strategy π∗ , i.e., a = π∗(s) . Concretely, we have 

(15)P1 : min lim
T→∞

∑T−1
t=0

∑n
u=1 Cu(t)

n
,

(16)s.t. αu,L(t)+ αu,M(t) ∈ {0, Lu}, ∀u ∈ U ,

(17)ξu,loc(t) ≥ ξmin
u,loc, ∀u ∈ U ,

(18)ξmec(t) ≥ ξmin
mec ,

(19)0 ≤ Ru,up(t) ≤ Rmax
u,up, ∀u ∈ U ,

(20)0 ≤ Ru,do(t) ≤ Rmax
u,do , ∀u ∈ U ,

a = (a1, a2, a3, ..., an) and s = (s1, s2, s3, ..., sn) . Since the 
arrival of tasks by the uth MD Du(t) is random in our 
system model, we don’t know the probability distribu-
tion function (PDF). Therefore, we propose to use DRL to 
solve the MDP problem without explicitly specifying the 
transition probabilities.

DRL‑based algorithm design
If we use the traditional reinforcement learning algo-
rithm Q-learning to tackle the MDP problem described 
in the preceding section, it will produce a huge number 
of states, and the problem of dimensional disaster will be 
encountered in continuous tasks. To overcome this dif-
ficulty, we design a DRL-based DNN partitioning and 
task offloading (DPTO) algorithm. We use a policy-based 
Proximal Policy Optimization (PPO) algorithm with two 
neural networks, which can effectively address the above 
optimization problem P1 . Figure 2 illustrates the frame-
work of the DPTO algorithm.

The fundamental idea of our approach is to incorporate 
neural network technology to resolve the original MDP 
problem. The input to the neural network is the present 
state s(t) of the agent, and then the corresponding action 
a(t) is obtained. By taking the action a(t), the next state 
s(t + 1) of the agent is updated and the reward value 
Ru(t) is computed. According to the objective function 
including reward and action, the weight parameters in 
the neural network are updated by gradient rise, so as to 
obtain the action decision that makes the overall reward 
value smaller.

Our approach utilizes two distinct neural networks, 
namely actor and critic. The state makes the action deci-
sion through the actor network, in which the action is a 
probability value obtained after softmax, and then after 
sampling, the index value of the action will be obtained. 
However, the state obtained an expectation of the 
rewards of the agent through the critic network. Accord-
ing to the status, actions and rewards obtained at each 
time step, we update the parameters of the network.

Policy Gradient is used to update the parameters of the 
policy to minimize the cumulative reward. Specifically, 
the goal of the Policy Gradient is to compute the proba-
bility distribution of each action and to choose the action 
through this distribution in order to minimize the cumu-
lative reward. We take the following gradient estimator:

where πθ represents a random policy parameterized by θ , 
R̂(t) denotes an estimation of the advantage function in 
time slot t, and the expectation Êt represents the empiri-
cal average of limited batch of samples.

(21)ĝ = Êt

[

∇θ logπθ (a(t)|s(t))R̂(t)
]

,



Page 8 of 15Zhang et al. Journal of Cloud Computing          (2023) 12:116 

The learning ratio is a hyperparameter that governs 
the extent to which the parameters in the algorithm are 
updated, and it determines the step size of each param-
eter update. We introduce a measure to quantify the 
difference between the previous and updated policies, 
and define it as the probability ratio of actions under 
the two policies, as shown below:

Generating the policy distribution and selecting actions 
based on that distribution are the responsibilities of 
the actor network. During training, the actor network 
is updated by adjusting its parameters to minimize the 
expected reward. However, to prevent the policy from 
changing too drastically and causing instability, the 
update is limited within an acceptable ratio of ǫ , which 
is controlled by a hyperparameter called the clipping 
parameter. Based on PPO-Clip algorithm, the loss func-
tion of the actor network is denoted as follows:

where clip = clip(rt(θ), 1− ǫ, 1+ ǫ) . The clip function 
bounds the excessive update, which can prevent the bad 
policy of agent caused by the uncertainty of Monte Carlo 
sampling.

(22)rt(θ) =
πθ (a(t)|s(t))

πθold(a(t)|s(t))
.

(23)L
clip
t (θ) = Êt

[

min
(

rt(θ)R̂(t), clipR̂(t)
)]

,

Algorithm 1 The DNN partitioning and task offloading 

Fig. 2  Framework of DPTO algorithm



Page 9 of 15Zhang et al. Journal of Cloud Computing          (2023) 12:116 	

(DPTO) algorithmWe update the critic network using 
data from the experience pool after updating the actor 
network. To achieve this, we compute the advantage 
function using the experience data, which represents the 
difference between the anticipated reward of taking an 
action and the anticipated reward of following the cur-
rent policy. Specifically, the advantage function can be 
mathematically defined using the following formula:

where,

And we set � = 1 . The value of V (s(t + 1)) and V (s(t)) 
can be obtained by utilizing the critic network. Given the 
neural network structure we adopt, which shares param-
eters between the policy and the value function, a loss 
function is required that incorporates the policy agent 
and the value function error. Specifically, we define the 
loss function as follows:

where c1 and c2 are coefficients. Z represents the entropy 
reward of the possibility of global exploration of new 
policies by the critic network and Z = S[πθ ](s(t)) . L

vf
t (θ) 

is the square difference loss. This goal can be further 
enhanced by increasing entropy reward to ensure full 
exploration. This goal is approximately minimized in 
each iteration.

Algorithm  1 provides a detailed description of the 
DPTO algorithm.

Performance evaluation
This section presents the results of extensive simula-
tion experiments carried out to validate the effective-
ness of our proposed DPTO algorithm. The open source 
machine learning framework Pytorch in Python was used 
for constructing and training the neural networks.

Experimental setup
Metrics
The evaluation of our proposed method is based on three 
defined metrics: processing delay, energy consump-
tion, and system cost, which are specified in Eqs. (10), 
(13), and (14), respectively. To further evaluate the per-
formance of our proposed method, we compare it with 
existing non-DRL and DRL algorithms.

Parameter setting
We adopt some of the parameter settings used in 
[14] for our simulation experiments. Optimizing the 

(24)
R̂(t) = δt + (γ �)δt+1 + · · · + · · · + (γ �)T−t+1δT−1,

(25)δt = R(t)+ γV (s(t + 1))− V (s(t)).

(26)L
clip+vf+s
t (θ) = Êt

[

L
clip
t (θ)− c1L

vf
t (θ)+ c2Z

]

,

hyperparameters of DRL network training is an ongo-
ing process that requires continuous adjustments to 
achieve the best convergence and performance. Specifi-
cally, we assume that the MEC system architecture con-
sists of one MEC server and five MDs, where we use 
the Orange Pi Win Plus as the MD, and the computing 
power and offloading power of each MD are 4.05 W and 
4 W, respectively. We consider the MEC server to have a 
transmission power of 600 W and set the available chan-
nel bandwidth between the uth MD and the MEC server 
to 10 KHz. The power spectral density of noise is -30 
dbm/KHz. The uth MD and the MEC server require dif-
ferent amounts of time to process one KB of data, with 
processing times ranging from 0.0001 to 0.001 seconds 
and 0.00001 to 0.00005 seconds, respectively.

According to [19], we suppose that the channel power 
gain between the uth MD and the server, which is denoted 
as hu(t) , follows the Markov property. Specifically, we 
have P(mu/10000 ≤ hu(t + 1) ≤ mu|hu(t) = mu) = 0.9 
and P(0 ≤ hu(t + 1) ≤ mu/10000|hu(t) = mu) = 0.1 , 
where mu = 1.2× 106 . The computational tasks Du(t) are 
randomly generated, with sizes randomly selected from 
the range 1 MB to 5 MB. Considering that it is possible 
for a subtask producing output data that is less or more 
than its original input data, the value of the parameter 
fu,l is varied from 0.1 to 2 [35]. For the three weights of 
the total cost Cu(t) of the uth MD, we set µ = 20 , υ = 5 , 
ω = 1 . We train four DNN models with different compu-
tation difficulty over the cifar-10 dataset [40], including 
VGG16, VGG13, ALEXNET, and LENET, and the diffi-
culty decreased from VGG16 to LENET in turn. Table 2 
provides a detailed overview of the parameter settings 
used in our system.

Experimental results
Comparison experiments with non‑DRL algorithms
To evaluate the performance of our proposed DPTO 
algorithm, we compare it with the following three tradi-
tional non-DRL algorithms, where the adopted DNN is 
the VGG16 model.

(1) Local execution: The computation of all layers of 
DNN tasks is processed on local MDs.

(2) Offloading execution: The computation of all lay-
ers of DNN tasks is offloaded to the MEC server for 
processing.

(3) Random: The DNN tasks are randomly layered and 
offloaded to the server for computation.

The average processing delay and average energy con-
sumption of the four algorithms under different band-
widths are illustrated in Fig.  3(a) and (b), respectively. 
From the figure, we can see that the delay and energy 
consumed by DNN tasks computed on local MDs do 
not change with the change in bandwidth. Since local 



Page 10 of 15Zhang et al. Journal of Cloud Computing          (2023) 12:116 

execution does not need to offload data to the server, 
it has nothing to do with bandwidth. However, in the 
other three methods, the average processing delay and 
average energy consumption decrease as the bandwidth 
increases. As the bandwidth between the MD and the 
server increases, the data uploading and download-
ing rates will also increase, reducing average processing 
delay and energy consumption. When there are sufficient 
bandwidth resources in the dynamic network environ-
ment, we tend to offload subtasks to the server for pro-
cessing. On the contrary, when bandwidth resources 
are scarce, we tend to compute subtasks on local MDs. 
These two figures also show that the DPTO algorithm is 

superior to the other three non-DRL algorithms. This is 
because the DPTO algorithm utilizes deep neural net-
works as strategy functions to improve strategies through 
backpropagation and gradient optimization to better 
adapt to complex environments.

Figure 4 shows the comparisons of four different algo-
rithms under different DNN types, and verify the scal-
ability of our DPTO algorithm to various DNN types. 
Figure  4(a) indicates how the average processing delay 
varies with various types of DNNs, and Fig. 4(b) indicates 
how the average energy consumption varies with vari-
ous types of DNNs. By analyzing these two figures, we 
can notice that the trend is that the average processing 

Fig. 3  Comparisons of different algorithms under different bandwidths. (a) Average processing delay. (b) Average energy consumption

Fig. 4  Comparisons of different algorithms under different DNN types. (a) Average processing delay. (b) Average energy consumption



Page 11 of 15Zhang et al. Journal of Cloud Computing          (2023) 12:116 	

delay and energy consumption of all four algorithms 
decrease as the computation difficulty of the DNN 
decreases. When dealing with DNN tasks that have rela-
tively high computation difficulty (i.e., VGG16, VGG13, 
and ALEXNET), local execution can be both time-con-
suming and energy-consuming because the computation 
and energy resources available to local MDs are limited. 
Conversely, when dealing with DNN tasks that have 
relatively low computation difficulty (i.e., LENET), off-
loading execution and random execution become slow 
and energy-consuming due to high uploading delay and 
energy consumption. And we can also see that the DPTO 
algorithm is always outperforming other three non-DRL 
algorithms with respect to the average processing delay 
and energy consumption, regardless of the type of DNNs. 
This is because the DPTO algorithm provides flexible 
policy optimization methods, adopts adaptive adjust-
ment of hyperparameters, and considers real-time condi-
tions and optimization objectives.

Comparison experiments with DRL algorithms
The following experiments will compare our DPTO 
algorithm with two commonly utilized DRL algorithms, 
which are used to resolve dynamic optimization prob-
lems that have a discrete action space. These two algo-
rithms are widely used and are listed below.

(1) Deep Q-Network (DQN): DQN is a DRL algorithm 
based on value rather than policy. Its primary idea is to 
use neural network techniques to estimate the Q-value 
function, which helps to solve reinforcement learning 
problems that have a high-dimensional state space. In 
this algorithm, the neural network takes the environmen-
tal state as input and produces the Q-value for every fea-
sible action as output. The algorithm follows the ε-greedy 
strategy to choose an action and updates the neural net-
work parameters to minimize the objective function at 

each time step. In the updating process, it uses the expe-
rience replay technology to alleviate the data correlation 
problem, and at the same time uses the target network to 
reduce the fluctuation of the objective function.

(2) Double Deep Q-Network (DDQN): DDQN aims 
to overcome the overestimation problem of Q-value in 
the DQN algorithm. In this algorithm, the Q-network 
parameters used when selecting the action and fitting 
the target are not the same set of parameters, but param-
eters at different times, which can decouple the select-
ing action from the evaluating action. It trains two Q 
networks and selects the smaller Q-value to compute 
TD-error at the same time, which could reduce the over-
estimation error. In addition, by using the output of the 
evaluation network to determine the optimal action of 
the target network, the DDQN algorithm can more effec-
tively mitigate the overestimation problem.

We train our proposed method and two other DRL 
algorithms for 500 iterations, and compare their conver-
gence rate and performance according to experimental 
results. To achieve stable training and efficient learning, 
we set both the DQN and DDQN algorithms to have an 
experience pool size of 10000 and a batch size of 200. The 
reward values during the initial 500 epochs are presented 
in Fig. 5. And the experimental results demonstrate that 
the DPTO and DDQN algorithms achieve gradual con-
vergence within the first 34 and 110 epochs, respectively. 
In contrast, the DQN algorithm does not converge even 
after 500 iterations. Because the DQN algorithm uses 
maximization operations to select actions, which can 
lead to the problem of overestimating the value function. 
As shown in Fig. 5, out of the three algorithms, the DPTO 
algorithm achieves the fastest convergence speed and the 
lowest reward value. On the one hand, this is because the 
DPTO algorithm limits the amplitude of policy updates 
in each update, which can keep policy updates within a 
controllable range. On the other hand, the DPTO algo-
rithm optimizes the policy directly and uses multiple 
sampling trajectories for policy updates.

Figure 6 gives the processing costs of the DPTO algo-
rithm and the other two DRL algorithms under differ-
ent bandwidths. We can notice that as the bandwidth 
between the MD and the server increases, the process-
ing costs of the three algorithms all decrease. The DQN 
algorithm is the worst and most unstable. This is due 
to the fact that there are some differences between the 
target network and the action network in the DQN 
algorithm, which leads to unstable training and non-
convergence, and also the DQN algorithm needs to 
represent the state as a fixed-length vector, which lim-
its the expressive ability of the state space and leads to 
poor performance in some tasks. Our DPTO algorithm 
has the best performance under different bandwidths. 

Table 2  Simulation parameter setting

Parameter Value

n 5

Pexeu 4.05 W

P
up
u 4 W

PM 600 W

Du 1MB ∼ 5MB

Bu 10 KHz

N0 -30 dbm/KHz

hu 1.2× 106

ξu,loc [0.0001, 0.001]

ξmec [0.00001, 0.00005]

fu,l 0.1 ∼ 2



Page 12 of 15Zhang et al. Journal of Cloud Computing          (2023) 12:116 

Because the DQN and DDQN algorithms use the 
greedy strategy based on the Q-value to optimize the 
strategy. However, the DPTO algorithm optimizes the 
strategy by constraining the maximum and minimum 

values of the objective function, which can better 
ensure the stability and convergence of the strategy.

Figure  7 indicates the comparisons of three differ-
ent DRL algorithms under different DNN types, where 

Fig. 5  Comparisons of rewards for different DRL algorithms during training

Fig. 6  System cost under different bandwidths



Page 13 of 15Zhang et al. Journal of Cloud Computing          (2023) 12:116 	

Fig. 7(a) displays how the average processing delay varies 
with various DNN types, and Fig. 7(b) displays how the 
average energy consumption varies with various DNN 
types. Obviously, we can see that the three DRL algo-
rithms have lower average processing delay and energy 
consumption when the DNN computation difficulty is 
lower. This is because the higher the computation diffi-
culty of DNN tasks, the higher the computational delay 
and energy consumption. Furthermore, our DPTO algo-
rithm consistently outperforms the DQN and DDQN 
algorithms in both processing delay and energy con-
sumption, regardless of the DNN types. Because the 
DPTO algorithm is based on PPO, and PPO uses online 
data directly for training, it can make efficient use of sam-
pled data and has better stability.

Conclusion
This paper investigates the joint optimization of energy 
and delay for DNN partitioning and task offloading in 
a MEC system consisting of a MEC server and multiple 
MDs with buffers. We partition the DNN tasks into sub-
tasks by layer and offload all or part of them to the server 
for processing. Then, we formulate the processing delay 
and energy consumption as a joint optimization problem 
and further model it as an MDP problem. To tackle this 
problem, we design a DRL-based approach, which can 
help MDs to choose the best offloading policy. Finally, 
through a large number of experiments, we find that our 
DPTO algorithm achieves superior performance in mini-
mizing both processing delay and energy consumption 
compared to the existing non-DRL and DRL algorithms, 
and can be extended to different DNN types.

In the future, we will investigate DNN partitioning 
and task offloading in a scenario with multiple MDs and 
multiple servers. We will also explore other optimization 
techniques to further improve the performance of DNN 
partitioning and task offloading in the context of MEC 
systems. Furthermore, considering the importance of pri-
vacy issues during task offloading, we will delve into the 
content related to privacy issues in DNN partitioning and 
task offloading.

Abbreviations
AI	� Artificial intelligence
DNNs	� Deep neural networks
MDs	� Mobile devices
MEC	� Mobile edge computing
MDP	� Markov decision process
DPTO	� DNN partitioning and task offloading
DRL	� Deep reinforcement learning

Acknowledgements
We would like to express our sincere thanks to all reviewers. The reviewers’ 
comments and suggestions have played a positive role in improving the qual-
ity of our paper.

Authors’ contributions
Jianbing Zhang was mainly responsible for the conception of this manuscript 
and the design of the system model. Shufang Ma contributed to the design 
and implementation of the system modelling methods and algorithms. In 
addition, she also helped to revise the manuscript. Zexiao Yan was in charge 
of the experimental data collection and analysis, as well as the execution of 
the experiments. Jiwei Huang put forward many valuable suggestions on the 
motivation and significance of the manuscript and proofread the final version. 
The final manuscript was reviewed and approved by all authors.

Authors’ information
Jianbing Zhang received the Ph.D. degree from the Institute of Remote Sens-
ing and Digital Earth at Chinese Academy of Sciences in 2006. He is now an 
assistant professor in the Department of Computer Science and Technology at 
the China University of Petroleum, Beijing, China. His current research interests 
include web services and GIS services.

Fig. 7  Comparisons of different DRL algorithms under different DNN types. (a) Average processing delay. (b) Average energy consumption



Page 14 of 15Zhang et al. Journal of Cloud Computing          (2023) 12:116 

 Shufang Ma is currently working toward the M.Eng. Degree in computer 
technology at the China University of Petroleum, Beijing, China. Her current 
research interests include edge intelligence and deep reinforcement learning.
 Zexiao Yan is currently working toward the M.Eng. Degree in computer 
technology at the China University of Petroleum, Beijing, China. His current 
research focuses on deep learning and change detection.
 Jiwei Huang received the B.Eng. and Ph.D. degrees in computer science 
and technology from Tsinghua University, Beijing, China, in 2009 and 2014, 
respectively. He is currently a Professor and the Dean with the Department 
of Computer Science and Technology, China University of Petroleum, Beijing, 
China. His research interests include services computing, Internet of Things, 
and edge computing.

Funding
This work is supported by National Natural Science Foundation of China (No. 
61972414) and Beijing Nova Program (No. Z201100006820082).

Availability of data and materials
Data are available on the website: Cifar-10: https://​www.​cs.​toron​to.​edu/​~kriz/​
cifar.​html.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 6 May 2023   Accepted: 25 July 2023

References
	1.	 Chen J, Ran X (2019) Deep learning with edge computing: A review. 

Proc IEEE 107(8):1655–1674
	2.	 Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Van-

houcke V, Rabinovich A (2015) Going deeper with convolutions. 2015 
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). p 
1–9. https://​doi.​org/​10.​1109/​CVPR.​2015.​72985​94

	3.	 Wang D, Nyberg E (2015) A long short-term memory model for answer 
sentence selection in question answering. In Proceedings of the 53rd 
Annual Meeting of the Association for Computational Linguistics and 
the 7th International Joint Conference on Natural Language Processing 
(Volume 2: Short Papers). Association for Computational Linguistics, 
Beijing, China. p 707–712. https://​doi.​org/​10.​3115/​v1/​P15-​2116

	4.	 Chen Z, Hu J, Chen X, Hu J, Zheng X, Min G (2020) Computation off-
loading and task scheduling for dnn-based applications in cloud-edge 
computing. IEEE Access 8:115537–115547

	5.	 Mao Y, You C, Zhang J, Huang K, Letaief KB (2017) A survey on mobile 
edge computing: The communication perspective. IEEE Commun Surv 
Tutor 19(4):2322–2358

	6.	 Mach P, Becvar Z (2017) Mobile edge computing: A survey on 
architecture and computation offloading. IEEE Commun Surv Tutor 
19(3):1628–1656

	7.	 Xiao Z, Dai X, Jiang H, Wang D, Chen H, Yang L, Zeng F (2020) Vehicular 
task offloading via heat-aware MEC cooperation using game-theoretic 
method. IEEE Internet Things J 7(3):2038–2052

	8.	 Lin L, Liao X, Jin H, Li P (2019) Computation offloading toward edge 
computing. Proc IEEE 107(8):1584–1607

	9.	 Li E, Zeng L, Zhou Z, Chen X (2020) Edge AI: On-demand accelerating 
deep neural network inference via edge computing. IEEE Trans Vis 
Comput Graph 19(1):447–457

	10.	 Xu D, Li T, Li Y, Su X, Tarkoma S, Jiang T, Crowcroft J, Hui P (2021) Edge 
intelligence: Empowering intelligence to the edge of network. Proc IEEE 
109(11):1778–1837

	11.	 Tang X, Chen X, Zeng L, Yu S, Chen L (2021) Joint multiuser DNN parti-
tioning and computational resource allocation for collaborative edge 
intelligence. IEEE Internet Things J 8(12):9511–9522

	12.	 Dong F, Wang H, Shen D, Huang Z, He Q, Zhang J, Wen L, Zhang T (2022) 
Multi-exit DNN inference acceleration based on multi-dimensional opti-
mization for edge intelligence. IEEE Trans Mob Comput 1. https://​doi.​org/​
10.​1109/​TMC.​2022.​31724​02

	13.	 Dong C, Hu S, Chen X, Wen W (2021) Joint optimization with DNN par-
titioning and resource allocation in mobile edge computing. IEEE Trans 
Netw Serv Manag 18(4):3973–3986

	14.	 Gao M, Shen R, Shi L, Qi W, Li J, Li Y (2023) Task partitioning and offloading 
in DNN-task enabled mobile edge computing networks. IEEE Trans Mob 
Comput 22(4):2435–2445

	15.	 Li W (2020) Geoai: Where machine learning and big data converge in 
giscience. J Spat Inf Sci 20:71–77

	16.	 Li W, Batty M, Goodchild MF (2020) Real-time GIS for smart cities. J Geog 
Inf Sci 34(2):311–324

	17.	 Zhou Z, Chen X, Li E, Zeng L, Luo K, Zhang J (2019) Edge intelligence: Pav-
ing the last mile of artificial intelligence with edge computing. Proc IEEE 
107(8):1738–1762

	18.	 Kang Y, Hauswald J, Gao C, Rovinski A, Mudge T, Mars J, Tang L (2017) 
Neurosurgeon: Collaborative intelligence between the cloud and mobile 
edge. SIGARCH Comput Archit News 45(1):615–629

	19.	 Zhang G, Ni S, Zhao P (2022) Learning-based joint optimization of energy 
delay and privacy in multiple-user edge-cloud collaboration MEC sys-
tems. IEEE Internet Things J 9(2):1491–1502

	20.	 He W, Guo S, Guo S, Qiu X, Qi F (2020) Joint DNN partition deployment 
and resource allocation for delay-sensitive deep learning inference in IoT. 
IEEE Internet Things J 7(10):9241–9254

	21.	 Li K, Zhao J, Hu J et al (2022) Dynamic energy efficient task offloading 
and resource allocation for noma-enabled IoT in smart buildings and 
environment. Build Environ. https://​doi.​org/​10.​1016/j.​build​env.​2022.​
109513

	22.	 Chen Y, Zhao J, Wu Y et al (2022) Qoe-aware decentralized task offloading 
and resource allocation for end-edge-cloud systems: A game-theoretical 
approach. IEEE Trans Mob Comput. https://​doi.​org/​10.​1109/​TMC.​2022.​
32231​19

	23.	 Huang J, Wan J, Lv B et al (2023) Joint computation offloading and 
resource allocation for edge-cloud collaboration in internet of vehicles 
via deep reinforcement learning. IEEE Syst J. https://​doi.​org/​10.​1109/​
JSYST.​2023.​32492​17

	24.	 Li J, Liang W, Li Y, Xu Z, Jia X, Guo S (2023) Throughput maximization 
of delay-aware DNN inference in edge computing by exploring DNN 
model partitioning and inference parallelism. IEEE Trans Mob Comput 
22(5):3017–3030

	25.	 Liu G, Dai F, Huang B, Qiang Z, Wang S, Li L (2022) A collaborative compu-
tation and dependency-aware task offloading method for vehicular edge 
computing: a reinforcement learning approach. J Cloud Comput 11

	26.	 Zhang J, Ma B, Huang J (2020) Deploying GIS services into the edge: A 
study from performance evaluation and optimization viewpoint. Secur 
Commun Netw 2020:1–13

	27.	 Chen Y, Gu W, Xu J, et al (2022) Dynamic task offloading for digital twin-
empowered mobile edge computing via deep reinforcement learning. 
China Commun. https://​doi.​org/​10.​23919/​JCC.​ea.​2022-​0372.​202302

	28.	 Huang J, Gao H, Wan S, et al (2023) Aoi-aware energy control and compu-
tation offloading for industrial IoT. Futur Gener Comput Syst 139:29–37

	29.	 Li S, Zhang N, Jiang R, Zhou Z, Zheng F, Yang G (2022) Joint task offload-
ing and resource allocation in mobile edge computing with energy 
harvesting. J Cloud Comput Adv Syst Appl 11(1):1–14

	30.	 Zhou Y, Ge H, Ma B et al (2022) Collaborative task offloading and resource 
allocation with hybrid energy supply for UAV-assisted multi-clouds. J 
Cloud Comput 11. https://​doi.​org/​10.​1186/​s13677-​022-​00317-2

	31.	 Chen Y, Hu J, Zhao J, Min G (2023) Qos-aware computation offloading in 
LEO satellite edge computing for IoT: A game-theoretical approach. Chin 
J Electron. https://​doi.​org/​10.​23919/​cje.​2022.​00.​412

	32.	 Zhang G, Zhang W, Cao Y, Li D, Wang L (2018) Energy-delay tradeoff for 
dynamic offloading in mobile-edge computing system with energy 
harvesting devices. IEEE Trans Ind Inform 14(10):4642–4655

https://www.cs.toronto.edu/%7ekriz/cifar.html
https://www.cs.toronto.edu/%7ekriz/cifar.html
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.3115/v1/P15-2116
https://doi.org/10.1109/TMC.2022.3172402
https://doi.org/10.1109/TMC.2022.3172402
https://doi.org/10.1016/j.buildenv.2022.109513
https://doi.org/10.1016/j.buildenv.2022.109513
https://doi.org/10.1109/TMC.2022.3223119
https://doi.org/10.1109/TMC.2022.3223119
https://doi.org/10.1109/JSYST.2023.3249217
https://doi.org/10.1109/JSYST.2023.3249217
https://doi.org/10.23919/JCC.ea.2022-0372.202302
https://doi.org/10.1186/s13677-022-00317-2
https://doi.org/10.23919/cje.2022.00.412


Page 15 of 15Zhang et al. Journal of Cloud Computing          (2023) 12:116 	

	33.	 Xu J, Chen L, Zhou P (2018) Joint service caching and task offloading for 
mobile edge computing in dense networks. IEEE INFOCOM 2018 - IEEE 
Conference on Computer Communications. p 207–215. https://​doi.​org/​
10.​1109/​INFOC​OM.​2018.​84859​77

	34.	 Chen L, Zhou S, Xu J (2018) Computation peer offloading for energy-
constrained mobile edge computing in small-cell networks. IEEE/ACM 
Trans Networking 26(4):1619–1632

	35.	 Xu Z, Zhao L, Liang W, Rana OF, Zhou P, Xia Q, Xu W, Wu G (2021) Energy-
aware inference offloading for DNN-driven applications in mobile edge 
clouds. IEEE Trans Parallel Distrib Syst 32(4):799–814

	36.	 Chen J, Chen S, Wang Q, Cao B, Feng G, Hu J (2019) iraf: A deep reinforce-
ment learning approach for collaborative mobile edge computing IoT 
networks. IEEE Internet Things J 6(4):7011–7024

	37.	 Jeong HJ, Lee HJ, Shin CH, Moon SM (2018) Ionn: Incremental offloading 
of neural network computations from mobile devices to edge servers. 
In Proceedings of the ACM Symposium on Cloud Computing (SoCC’18). 
Association for Computing Machinery, New York. p 401–411. https://​doi.​
org/​10.​1145/​32678​09.​32678​28

	38.	 Yang Q, Luo X, Li P, Miyazaki T, Wang X (2019) Computation offloading for 
fast CNN inference in edge computing. In Proceedings of the Conference 
on Research in Adaptive and Convergent Systems (RACS’19). Association 
for Computing Machinery, New York. p 101–106. https://​doi.​org/​10.​1145/​
33388​40.​33556​69

	39.	 Shannon CE (2001) A mathematical theory of communication. ACM 
SIGMOBILE Mob Comput Commun Rev 5(1):3–55

	40.	 Krizhevsky A, Hinton G, Sutskever I (2009) Learning multiple layers of 
features from tiny images. Tech. Rep. TR2009-08, Computer Science 
Department, University of Toronto

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/INFOCOM.2018.8485977
https://doi.org/10.1109/INFOCOM.2018.8485977
https://doi.org/10.1145/3267809.3267828
https://doi.org/10.1145/3267809.3267828
https://doi.org/10.1145/3338840.3355669
https://doi.org/10.1145/3338840.3355669

	Joint DNN partitioning and task offloading in mobile edge computing via deep reinforcement learning
	Abstract 
	Introduction
	Related work
	System model and problem formulation
	Processing delay model
	Energy consumption model
	Problem formulation

	DRL-based algorithm design
	Performance evaluation
	Experimental setup
	Metrics
	Parameter setting

	Experimental results
	Comparison experiments with non-DRL algorithms
	Comparison experiments with DRL algorithms


	Conclusion
	Acknowledgements
	References


