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Abstract 

Cloud Computing plays a pivotal role in facilitating the Internet of Things (IoT) and its diverse applications. Users 
frequently access and store data on remote servers in Cloud Computing environments through web browsers. 
Consequently, attackers may exploit vulnerabilities in web browsing to embed malicious code into web pages, 
enabling them to launch attacks on remote servers in Cloud Computing environments. Due to its complexity, 
prevalence, and significant impact, XSS has consistently been recognized as one of the top ten web security vulner-
abilities by OWASP. The existing XSS detection technology requires optimization: manual feature extraction is time-
consuming and heavily reliant on domain knowledge, while the current confusion technology and complex code 
logic contribute to a decline in the identification of XSS attacks. This paper proposes a character-level bidirectional 
long-term and short-term memory network model based on a multi-attention mechanism. The bidirectional long-
term and short-term memory network ensures the association of current features with preceding and subsequent 
text, while the multi-attention mechanism extracts additional features from different feature subspaces to enhance 
the understanding of text semantics. Experimental results demonstrate the effectiveness of the proposed model 
for XSS detection, with an F1 score of 98.71%.

Keywords  Network security, XSS detection, Bidirectional long-term and short-term memory network, Multi-head 
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Introduction
The issue of XSS attacks has gained significant atten-
tion due to the rising number of vulnerabilities and the 
potential security risks they pose. The “China Internet 
Cyber Security Report” [1] by the CNCERT reveals that 
XSS vulnerabilities accounted for nearly half of the 1,700 
high-risk vulnerabilities discovered in Internet financial 

websites in 2018. The Open Web Application Security 
Project (OWASP) [2] also highlights the prevalence of 
XSS attacks, with two-thirds of applications being vul-
nerable to such attacks.XSS attacks pose a particularly 
significant threat to Cloud Computing resources as they 
can lead to various security issues, including data theft, 
unauthorized access, and service disruption. To miti-
gate these risks, it is crucial to develop effective security 
mechanisms for detecting and preventing XSS attacks in 
Cloud Computing environments.

While research on XSS attack detection has made pro-
gress, its technology is facing severe challenges [3–8]. 
XSS attacks are increasingly complex and adaptive, uti-
lizing obfuscation techniques to evade detection [9, 10]. 
Traditional rule-based and signature-based approaches 
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have limitations in effectively identifying and mitigating 
these evolving attack vectors.To address these challenges, 
researchers and practitioners have turned to machine 
learning algorithms to improve the accuracy and effi-
ciency of XSS attack detection. However, traditional 
machine learning models also encounter difficulties in 
the field of XSS detection, including their inability to 
effectively handle evolving XSS scripts over time and the 
requirement for extensive preprocessing efforts to cap-
ture the complex patterns present in XSS attacks [11, 12].

Therefore, this study aims to overcome the limitations 
of traditional machine learning models by proposing a 
novel approach that utilizes a character-level bidirec-
tional long-term and short-term memory network model 
based on a multi-attention mechanism. This approach 
is designed to capture the contextual information and 
semantic meaning of textual data, thereby enhancing fea-
ture extraction and detection of obfuscation techniques. 
The contributions of this article can be summarized as 
follows:

•	 Automated feature extraction: This study proposes 
an improved network model structure to automate 
the process of feature extraction, thereby enhancing 
the efficiency and effectiveness of XSS detection.

•	 Detection of complex obfuscation techniques: Rec-
ognizing the increasing complexity of obfuscation 
techniques employed in XSS attacks, this article 
introduces advanced mechanisms to detect and deci-
pher these techniques, resulting in improved accu-
racy in XSS detection.

•	 Optimization of semantic features: This article 
emphasizes the importance of further exploration 
and refinement of semantic features in XSS detec-
tion. By leveraging a multi-attention mechanism, the 
proposed model extracts distinctive characteristics 
from different feature subspaces, enabling a better 
understanding of textual context and enhancing the 
detection of XSS attacks.

The rest of the paper is structured as follows: Section 
“Preparatory knowledge” provides an introduction to the 
preparatory knowledge, including LSTM and attention 
mechanisms. Section “The model of detection” presents 
the model structure and algorithms. Section “Experimen-
tal results and analysis” describes the experimental setup 
and analysis. Section “Related work” concludes the paper 
with a summary of the main findings and contributions.

Preparatory knowledge
LSTM
Long Short Term Memory (LSTM) is an optimized net-
work compared to traditional recurrent neural networks 

(RNNs) [13]. Traditional RNNs suffer from the problems 
of gradient explosion and vanishing, which limit their 
effectiveness in learning long text sequences. However, 
LSTM addresses these issues by utilizing time sequence 
information to retain valuable information in the text for 
long-term memory. This ensures long-distance depend-
encies between features, thereby optimizing the detec-
tion effect of the recurrent neural network [13–16].

Compared to the traditional recurrent neural network, 
LSTM still calculates the hidden state ht based on the 
hidden state calculated from the current sequence point 
and the previous sequence point. The difference is that in 
order to avoid issues like gradient explosion, LSTM intro-
duces input gate it, forget gate ft, output gate ot, and an 
internal memory unit ct. The input gate structure mainly 
controls the degree of influence of the current state value 
on the memory unit, while the forget gate structure con-
trols the degree to which information in the previous 
state’s memory unit is forgotten. The output gate struc-
ture controls the degree to which the current output state 
is affected by the current memory unit. When LSTM cal-
culates the state of each unit, it passes the state through 
multiple gate structures, ensuring that errors from the 
last moment are propagated forward and weight modifi-
cations from the previous moment are within a reason-
able range. This way, issues like gradient vanishing are 
avoided. The classic LSTM update calculation formula is 
as follows:

Among them, it is obtained by performing a linear trans-
formation on the input xt and the previous layer’s hidden 
state ht−1 , followed by passing it through the activation 
function σ . The input gate it is a vector that controls the 
amount of information flowing through each dimension 
of the node. The parameters Wi , Ui , and bi are learned and 
adjusted during training. The forget gate and the output 
gate follow a similar process. This network structure col-
lectively controls the influence of the previous memory 
unit on the current state through three components: the 
input gate, the forget gate, and the activation function.

(1)it = σ(Wixt +Uiht−1 + bi)

(2)ft = σ(Wf xt + Uf ht−1 + bf )

(3)ot = σ(Woxt +Uoht−1 + bo)

(4)ct = Tanh(Wcxt + Ucht−1)

(5)ct = ft ⊙ ct−1 + it ⊙ (c̃t)

(6)ht = ot ⊙ Tanh(ct)
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Attention mechanism
The attention mechanism is used to retain the con-
verted intermediate vector of the input sequence and 
train a model that can selectively learn from the input 
text, ultimately producing the final model result [17]. 
The attention mechanism enhances the learning abil-
ity in sequence data by weighting and transforming the 
sequence. In simple terms, the attention mechanism 
acts as a mechanism for assisting judgment, helping the 
model ignore irrelevant information and make more 
accurate decisions [18, 19].

Attention can be categorized into two types based 
on the direction of focus: conscious focused attention 
from top to bottom and unconscious attention from 
bottom to top, known as saliency-based attention. Sali-
ency-based attention is primarily driven by external 
stimuli and does not require active intervention, while 
focused attention is based on specific computational 
tasks or restricted conditions. The attention mecha-
nism primarily addresses the problem of information 
overload, effectively allocating resources more reason-
ably [20–22].

The traditional attention mechanism model is a dot 
product model, where weights are calculated through 
the query matrix and the key matrix, and the weight 
values are transformed into a weight distribution 
using an activation function. The weighted matrix is 
obtained by applying this weight distribution to the 
value matrix [23].

In practical applications, when performing a set of que-
ries, the attention function is calculated simultaneously, 
with the values packed into a matrix Q, and the keys and 
values packed into K and V, respectively. The calculation 
formula for the dot product attention mechanism is as 
follows [17]:

The scale factor is 
√
dk .

The model of detection
This chapter focuses on the principles underlying model 
optimization and the characteristics of the optimized 
model. The complete detection process involves the fol-
lowing steps: First, a large amount of raw data is collected 
locally through web crawling and log collection and pars-
ing. Next, data processing is performed on the original 
dataset to obtain a standardized dataset. This standard-
ized dataset is then input into the detection module. 
Finally, the detection module is trained and used for 
judgment.

(7)Z = Attention(Q,K ,V ) = softmax

(
QKT

√
dk

)
V

The structure of the model
Based on the current research status, most deep learn-
ing studies on XSS are based on traditional network 
models. To better capture the code’s timing, existing 
research methods utilize LSTM or bidirectional LSTM 
to model XSS attacks [24]. However, these methods 
may extract features that contain a significant amount 
of irrelevant information, increasing the computa-
tional complexity of the model and affecting the learn-
ing of important features. Additionally, for complex 
and obfuscated code, a complex process is required for 
deobfuscation.

To address these issues, this paper proposes a new 
cross-site script detection model called the Character-
level Bidirectional LSTM with Multi-Head Attention 
(CMABLSTM) model. This model combines the advan-
tages of bidirectional LSTM and the multi-head attention 
mechanism. The network model aims to improve detec-
tion effectiveness through a series of optimizations of the 
traditional bidirectional LSTM network. The specific fea-
tures of the model are as follows:

To enhance the understanding of XSS attacks, the 
CMABLSTM model dissects XSS attacks at the charac-
ter level. This approach circumvents the limitations of 
word knowledge and mitigates the impact of incorrect 
semantic comprehension resulting from improper word 
segmentation. Consequently, it effectively addresses the 
issue of poor detection caused by malicious obfusca-
tion of sample data. Character-level representation can 
be described as the progression from a single character 
to word representation and then to the entire sentence. 
This process treats each word individually and maps it to 
character embedding.

The bidirectional long short-term memory (LSTM) 
network, building upon the classic LSTM, incorporates 
the processing of both past and future dependencies. This 
allows for a more comprehensive understanding of rel-
evant information within the XSS payload and facilitates 
the extraction of comprehensive abstract features. When 
the feature matrix is fed into the bidirectional LSTM net-
work model, the feature sequence undergoes multi-head 
attention to emphasize important features while dimin-
ishing irrelevant ones. The final feature vector is then 
processed by a Softmax classifier to achieve the desired 
classification effect.

As depicted in Fig.  1, the model structure comprises 
the following seven main components:

(1) Input layer
The input layer receives a string of character sequences 
extracted from the traffic flow, preserving the text con-
tent’s inherent characteristics.
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(2) Embedding layer
The input layer parses the data flow into a feature vec-
tor, which serves as the input for the layer. The code, 
after undergoing word segmentation, is converted into 
a vector. Since the neural network requires a fixed input 
length, handling the data dimension properly is crucial. 
Currently, the approach is to truncate sequences that 
exceed the data dimension and pad sequences that are 
too short with -1, ensuring that all data has the same 
length.

(3) Bi‑LSTM layer
In this layer, a bidirectional long short-term memory 
(LSTM) network is employed for deep feature learning. 

This network effectively captures the temporal aspects of 
the data and addresses the issues of gradient explosion 
and vanishing gradients during long sequence training 
[25]. By utilizing this network in this layer, the learn-
ing capability for complex XSS payloads is enhanced. 
The processing in this layer can be briefly described as 
follows:

For a given traffic flow T, the word vector 
V = {v1, v2, . . . , vj} represents the processed input of 
the word embedding layer. Initially, the forward Long-
Short Term Memory (LSTM) algorithm reads the ele-
ments of the sequence V from left to right (from v1 to vj ) 
and passes through the hidden layer to obtain the positive 
hidden layer state vector H = (h1, h2, . . . , hj) . Conversely, 

Fig. 1  CMABLSTM model structure diagram
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the LSTM algorithm in the reverse direction reads the 
sequence V from right to left and obtains the reverse hid-
den layer state vector F = (f1, f2, . . . , fj) . The hidden layer 
state B = [H , F ] of the network layer is then obtained 
by combining the forward hidden layer state H and the 
reverse hidden layer state F. As a result, the bidirectional 
LSTM enables the output at the current moment to be 
influenced not only by the preceding state but also by the 
future state, while also considering deep semantic features.

(4) Multi‑head attention layer
The single-head attention mechanism enhances the abil-
ity to learn important information within a sentence, 
thereby capturing long-distance dependencies between 
words [26]. On the other hand, multi-head attention not 
only strengthens the capacity to learn such dependen-
cies but also improves understanding of the syntax and 
semantic structure of sentences.

The multi-head attention mechanism enables the 
model to focus on different subsets of data and calcu-
late attention values from multiple dimensions. This 
improves the model’s ability to learn feature information 
from various locations. The output of the upper network 
is divided into n parts, or heads, and each part is multi-
plied by a weight matrix Wi to form input vectors WiX , 
which are then denoted as Qi , Ki , and V i . The attention 
weight matrix is calculated using the formula shown in 
(3-1).

The individual results zi are combined into Zi , and 
then the n heads Zi are concatenated to form ZC , i.e., 
ZC = concat(Z1, . . . ,Zn) , which is then multiplied by the 
weight matrix Wo to obtain the final output Z = ZCWo.

(5) Global average pooling layer
Global average pooling, introduced by Lin et al. [27], is a 
technique that effectively replaces fully connected layers. 
This module computes the average of all feature matrices 
and uses softmax for classification. The fully connected 
layer tends to overfit, which affects the generalization of 
the entire network. Global average pooling combines the 
effects of the convolutional layer and the fully connected 
layer by calculating the average value of the feature 
matrix and associating it with the classification result.

(6) Dropout layer
The generalization layer is an effective technology that 
prevents neurons from mutually adapting [28]. After 
pooling the weighted attention vector using global 
average pooling, a regularization method is applied to 

(8)zi = softmax

(
QiK

T
i√
dk

)
Vi

improve the network’s generalization ability and reduce 
the risk of overfitting.

(7) Output layer
The output of the network layer, which is the feature 
vector, is then fed into the Softmax function for classifi-
cation. The final classification result is obtained by calcu-
lating the classification probability p using the following 
formula:

Among them, bs and ws are the bias and weight of the 
function.

Among them, y is the label predicted by the model, 
p ∈ (0, 1).

Algorithm design
The algorithm design in this section focuses on describ-
ing the specific operation process of the model. The data 
collection module collects the original dataset from the 
data source. After processing the original dataset, the 
training set (TrS) and test set (TeS) required by the net-
work input layer are obtained. The parameter k in line 7 
of the algorithm means that the number of Multi-Head 
Attention layer’s heads are k. The detection model algo-
rithm of CMABLSTM is designed as follows:

Algorithm 1 Detection model algorithm of CMABLSTM.

Experimental results and analysis
Based on the existing experimental environment and 
data, and following the principles and algorithm steps 
described in Chapter  2, several comparative experi-
ments have been conducted. This chapter analyzes and 

(9)p = softmax(wsZ + bs)

(10)y = argmax(p)
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compares the experimental results to demonstrate the 
effectiveness of the CMABLSTM-based XSS classifica-
tion detection method proposed in this paper.

Experimental environment
This experiment was conducted using the Ubuntu Server 
16.04 LTS operating system, with an i7 quad-core CPU, 
16GB of memory, and a GTX1080TI graphics card. 
Python 3.7 was used as the programming language, and 
the deep learning algorithm library utilized the GPU ver-
sion of TensorFlow 1.14.

Experimental data
The datasets used for cross-site scripting (XSS) and nor-
mal traffic data were primarily collected through crawlers 
and honeypot logs. The resulting XSS dataset comprised 
31,407 normal data samples and 74,063 attack data sam-
ples, totaling 105,470 data samples. In the experiment, 
the malicious and normal samples were combined, and 
the training set and test set were randomly selected with 
a ratio of 8:2. The positive samples represented the XSS 
dataset, labeled as 1, while the negative samples repre-
sented the normal dataset, labeled as 0. The data distribu-
tion is shown in Table 1.

Experimental evaluation indicators
In the evaluation of experimental results, the selection 
of evaluation metrics ultimately affects the algorithm’s 
effectiveness in a real environment. This paper analyzed 
the experimental results from three perspectives: Preci-
sion, Recall, and F1 Score. In this experiment, the normal 
data was considered as the negative sample, and the mali-
cious sample data was considered as the positive sample. 
The aforementioned three metrics were used to assess the 
model’s performance from a data statistics perspective.

Precision represents the actual ratio of samples cor-
rectly classified as positive by the system, and the formula 
is shown in (11).

Recall represents the proportion of positive samples cor-
rectly identified by the system, indicating the extent of 
positive sample coverage. The formula is shown in (12).

(11)p =
TP

TP + FP

For TP, FP and FN in formulas (11) and (12), respec-
tively, expressed as:

True Positive (TP): The number of positive samples 
that are correctly predicted as positive.

F1 score is a comprehensive evaluation index, which is 
the harmonic average of precision rate and recall rate. 
The formula is shown in (13).

False Positive (FP): The number of negative sample data 
that is incorrectly predicted as positive.

False Negative (FN): The number of positive samples 
that are incorrectly predicted as negative.

Experimental data processing
In the data processing module, the main task is to stand-
ardize the original data and obtain data with the required 
standard input format for the network model. The spe-
cific steps are as follows:

(1) Clean the collected data
Firstly, the invalid data in the dataset is filtered out. Then, 
the remaining data is truncated and concatenated, which 
involves removing the domain name information from 
the URL and concatenating the URL and POST BODY. 
Next, the data is denoised, primarily focusing on remov-
ing duplicate and incomplete data. This process yields 
valid raw data. An example of simple XSS data is as 
follows:

%3Djavascript%3Aalert%28/412/%29

(2) Perform word segmentation processing on the cleaned 
data
The data in the existing dataset is segmented at the char-
acter level to preserve data characteristics as much as 
possible, thereby improving the recognition of obfus-
cated codes and facilitating feature representation. The 
sample segmentation results are shown below:

Original data : clickTAG%3D j a v a s c r i p t%3Aalert 
%28/412/%29

The result after segmentation : ’ c ’ , ’ l ’ , ’ i ’ , ’ c ’ , ’k ’ , 
’T ’ , ’A’ , ’G’ , ’% ’ , ’ 3 ’ , ’D’ , ’ j ’ , ’ a ’ , ’v ’ , ’ a ’ , ’ s ’ , ’ c ’ , ’ r 
’ , ’ i ’ , ’p ’ , ’ t ’ , ’% ’ , ’ 3 ’ , ’A’ , ’ a ’ , ’ l ’ , ’ e ’ , ’ r ’ , ’ t ’ , ’% ’ , 
’ 2 ’ , ’ 8 ’ , ’/ ’ , ’ 4 ’ , ’ 1 ’ , ’ 2 ’ , ’/ ’ , ’% ’ , ’ 2 ’ , ’9 ’

(3) Vectorize the segmented data
Each character is converted into numerical data and then 
transformed into vectors. In this process, consecutive 

(12)R =
TP

TP + FN

(13)F1 =
2PR

P + R

Table 1  Dataset distribution table

Label Category Training set Test set Total

1 XSS 59250 14813 74063

0 Normal 25126 6281 31407
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characters are treated as a sequence and passed through 
a bidirectional long short-term memory (LSTM) network 
to obtain a vector that connects each character. Since 
the code length is not fixed, the input dimensions of the 
network model need to be uniform. Therefore, when 
converting the code into numerical data, vectors exceed-
ing the dimension are truncated, and vectors with insuf-
ficient length are filled with -1 to ensure that all vectors 
have the same length.

Experimental result
The purpose of this chapter is to analyze the detection 
results of the CMABLSTM model on the existing test 
set. In this experiment, the model’s performance was 
evaluated using a vector dimension of 128, the Adam 
optimizer, a positive sample test set size of 14,813, and 
a negative sample test set size of 6,281. Throughout the 
experiment, leveraging theoretical knowledge related to 
XSS and deep learning, the network model was designed 
and continuously tuned to obtain the final model 
structure.

CMABLSTM is a network model that combines the Bi-
LSTM model with a multi-head attention mechanism at 
the character level. In this experiment, the Adam optimi-
zation method was used with the two exponential decay 
rates set to (beta1=0.9, beta2=0.98), and the default 
learning rate set to 1.0. The activation function applied 
the Softmax function for model classification. To prevent 
overfitting, a regularization layer was connected after 
each network model to improve the model’s generaliza-
tion ability. Additionally, to better capture features, global 
average pooling technology was employed to replace the 

fully connected layer. This involved using average pooling 
to condense the multi-dimensional feature vectors from 
the last layer into single points, which were then com-
bined to form the final feature vector. Finally, a Softmax 
calculation was performed for classification judgment.

(1) Multiple‑head attention mechanism (MHAM) layer 
evaluation experiment
It was observed during the experiment that the MHAM 
layer significantly influenced the detection results when 
the number of heads was set either too large or too 
small. In this chapter, the default number of internal 
hidden nodes was set to 128, and the performance of 
the MHAM network structure with different numbers 
of heads (which must be divisible by the vector dimen-
sion) was compared. The experiment settings included 
[1, 2, 4, 8, 16, 32]. The results are presented in Table  2. 
From Table  2, it was evident that the model performed 
the best when the number of heads was set to 4. As the 
number of heads increased beyond 4, the performance of 
the network model gradually decreased. Consequently, 
the number of heads in this layer of the network model 
was set to 4.

(2) Vector dimension comparison experiment
The experiment revealed that the vector dimension of 
the network model’s embedding layer had a direct impact 
on the detection results when set too large or small. This 
chapter involves experiments carried out to compare 
vector dimensions [64, 128, 256] under default network 
structures. Figure  2 displays the experimental results. 

Fig. 2  Experiments comparing vector dimensions
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The most optimal experimental results occurred when 
the vector dimension was set to 128.

(3) Evaluation experiment of global average pooling layer
Due to the complexity of the network model in this chap-
ter, in order to prevent severe overfitting, a global average 
pooling layer was added to the model for experiments. 
This chapter carried out comparative experiments to 
evaluate the importance of adding a global average pool-
ing layer to the model, and the experimental results are 
shown in Fig. 3.

In actual datasets, there are often imbalanced dis-
tributions of positive and negative samples, where the 
ratio of positive and negative samples can vary in differ-
ent test sets. The ROC curve remains unchanged even 
when the dataset distribution changes. To better dem-
onstrate the effectiveness of model training, this sec-
tion presents the experimental results as ROC curves. 
Figure 4 shows the ROC curve graphs (the ROC curve 
of the test dataset is enlarged in the upper left corner 
for clearer visualization). From the ROC curve graph, 
we can observe that the area under the curve is close to 
1, indicating good prediction performance with a high 
accuracy rate.

Comparative experimental methods and evaluation
To validate the effectiveness and advantages of the CMA-
BLSTM model, this article conducted several sets of 
comparative experiments, comparing the results with 
traditional machine learning algorithms and deep learn-
ing algorithms.

(1) Traditional machine learning
This chapter compares various deep learning model meth-
ods, including LSTM, Bi-LSTM, the joint network struc-
ture of Bi-LSTM and Attention (ABLSTM), the joint 
network structure of Bi-LSTM and Multi-Head Attention 
(MABLSTM), and the network structure proposed in this 
article. Both character-level feature extraction and word-
2vec feature extraction methods were used in the experi-
ment. The experimental results are presented in Table  3, 
demonstrating the detection performance of each model 
based on three indicators.

(2) Deep learning model
This chapter compares the deep learning model meth-
ods. The models involved are LSTM, Bi-LSTM, the 
joint network structure of Bi-LSTM and Attention 
(ABLSTM), the joint network structure of Bi-LSTM 
and Multi-Head Attention (MABLSTM), and The net-
work structure in this article. The character-level fea-
ture extraction method and word2vec feature extraction 
method were used in the experiment. The experimental 

Fig. 3  Experiment evaluating global pooling layers

Table 2  Dataset distribution table

Number of heads Precision Recall F1-score

1 98.99% 97.81% 98.39%

2 99.17% 98.02% 98.59%

4 99.32% 98.11% 98.71%

8 99.33% 98.03% 98.67%

16 99.08% 97.94% 98.50%

32 98.72% 97.38% 98.04%
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results are shown in Table  4, showing the detection 
effect of each model from three indicators.

Visualizing the data in Table  4, Fig.  5 clearly shows 
that the accuracy, recall rate, and F1 score of the pro-
posed method are higher than those of the other mod-
els (MABLSTM, ABLSTM, LSTM, BLSTM). Thus, the 
method proposed in this article outperforms other 
deep learning models in terms of evaluation results.

Comparing the aforementioned models, this method 
achieves an F1 score of 99.48%, surpassing the evaluation 
results of the other models. In summary, the advantage 
of the model presented in this paper lies in its utilization 
of bidirectional LSTM to effectively capture long-term 
dependencies in text information. Additionally, the 
adoption of a character vector processing mechanism 
facilitates the retention of content related to confusing 
information. Lastly, through the employment of the multi-
head attention mechanism, the model can effectively 
focus on syntactic features from multiple dimensions. The 
experiments demonstrate that this method significantly 
enhances the detection capability of XSS attacks.

Related work
XSS attack detection methods
Gulit Habibi et  al. [29] employed SVM with n-gram 
features for the detection of XSS attacks, effectively 
improving the accuracy of traditional machine learn-
ing models in XSS attack detection tasks. However, this 
study still fails to address the limitation of traditional 
machine learning models in handling evolving XSS 
scripts over time. Additionally, it requires consider-
able preprocessing work. Jitendra Kumar et al. [30] uti-
lized Convolutional Neural Network (CNN) as a viable 
approach for detecting XSS attacks. Their research 
has shown promising results in detecting XSS attacks 
in web applications. However, due to inherent limita-
tions of CNN, this approach faces challenges in captur-
ing long-term dependencies and sequential patterns in 
XSS scripts. Fang et  al. [31] developed an XSS detec-
tion model based on long short-term memory networks 

Fig. 4  The ROC curve of the test data set is enlarged in the upper left corner

Table 3  Demonstration of ental results

Model name Precision Recall F1-score

CMABLSTM 99.32% 98.11% 98.71%

XGBoost 94.92% 93.40% 94.15%

SVM 94.33% 90.26% 92.30%

Table 4  Demonstration of experimental results

Model name Precision Recall F1-score

CMABLSTM 99.32% 98.11% 98.71%

MABLSTM 99.02% 97.99% 98.50%

ABLSTM 98.90% 97.03% 97.95%

LSTM 97.31% 96.08% 96.69%

BLSTM 98.36% 96.21% 97.27%
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(LSTMs) applied to text sequences. Their experimental 
results demonstrated that leveraging LSTM can effec-
tively improve the effectiveness of XSS detection. How-
ever, the analysis revealed that the model was prone to 
significant confusion in XSS detection, leading to less-
than-ideal results.

In summary, while previous studies have made some 
progress in XSS attack detection, they still have limita-
tions. This study extends the existing work by utilizing 
a character-level bidirectional long short-term memory 
network model with multiple attention mechanisms to 
address the limitations of traditional machine learn-
ing models in XSS attack detection. It also optimizes 
the extraction of semantic features and the detection of 
obfuscation techniques, resulting in improved accuracy 
and efficiency in XSS attack detection.

Advanced applications of LSTM
To provide advanced applications of LSTM technology 
in related fields, we highlight three notable examples. Qi 
[32] proposes a recommendation model called PPCM 
for location-based social networks. It addresses the chal-
lenge of acquiring preferences from sparse users by con-
sidering group influence and privacy protection using 
LSH. The model captures long- and short-term depend-
encies using LSTM with an attention mechanism and 
temporal sliding window. By leveraging POI categories, 
it efficiently mines user interests despite limited data. 
Evaluation on real check-in datasets from New York City 
and Tokyo demonstrates improved recommendation per-
formance compared to other models. Liu [33] focuses 

on the collection of user check-in data in location-based 
social networks and proposes an improved model called 
ITGCN for successive point-of-interest (POI) recom-
mendation. ITGCN captures dynamic user and POI rep-
resentations while considering high-order connectivity 
through a self-attention aggregator. The experimental 
results show that ITGCN outperforms existing methods, 
providing valuable insights for travel enterprises’ man-
agement systems and future planning. Liu [34] addresses 
the challenge of controlling the greenhouse climate and 
proposes a greenhouse climate prediction model. The 
model, called GCP-lstm, focuses on six climatic factors 
that affect crop growth and uses long short-term mem-
ory (LSTM) to capture the nonlinear climate changes. A 
5-minute time sliding window is employed to consider 
the short-term impact on future trends. The model also 
exhibits robustness in handling abnormal data from sen-
sors. The method is evaluated on datasets of three veg-
etables, tomato, cucumber, and pepper, showing better 
performance compared to other models.

Drawing inspiration from these advanced applica-
tions of LSTM, our work on XSS attack detection utiliz-
ing a LSTM model with multiple attention mechanisms 
extends the capabilities of traditional machine learning 
models. By incorporating LSTM’s ability to capture long-
term dependencies, our model aims to improve accuracy 
and efficiency in detecting XSS attacks. We demonstrate 
how leveraging LSTM and attention mechanisms can 
optimize the extraction of semantic features and detec-
tion of obfuscation techniques, thereby enhancing the 
performance of XSS attack detection.

Fig. 5  Comparative experiment cart of deep learning model
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Conclusion
This paper presents an enhanced network model struc-
ture for detecting XSS malicious attacks, with the objec-
tive of bolstering the protection of Cloud Computing 
against such attacks, which can lead to significant con-
fusion and involve intricate logic. The salient features 
of this network structure are as follows: it initiates 
with character-level features to effectively preserve text 
details and prevent the compromise of the semantic 
structure due to improper text segmentation. Moreover, 
the structure employs bidirectional LSTM to capture 
the temporal context of the text, ensuring that the cur-
rent features are associated not only with the preceding 
text but also with the subsequent text. Additionally, the 
multi-head attention mechanism is employed to lever-
age different feature subspaces, enabling the model to 
extract more distinctive characteristics and enhance its 
comprehension of the textual context. Through experi-
mental analysis conducted in this study, it has been 
demonstrated that the proposed CMABLSTM model 
surpasses other similar detection techniques in terms 
of XSS detection, achieving an impressive F1 score of 
98.71%. This innovative approach to XSS detection plays 
a pivotal role in fortifying Cloud Computing against 
XSS attacks. By implementing this model, Cloud Com-
puting systems can enhance their ability to safeguard 
themselves and mitigate the risks posed by XSS attacks, 
thereby ensuring the security and integrity of the overall 
Cloud Computing infrastructure. However, this manu-
script only uses the CMABLSTM model to detect XSS 
vulnerability attacks. In the future, our research will 
focus on investigating the suitability of this model for 
diverse web vulnerability detection and vulnerability 
mining tasks within the Cloud Computing environment. 
Specifically, we will explore its applicability in areas such 
as buffer overflow, SQL injection, and cross-site request 
forgery.
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