
Li et al. Journal of Cloud Computing (2023) 12:118
https://doi.org/10.1186/s13677-023-00483-x

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Journal of Cloud Computing:
Advances, Systems and Applications

An LSTM based cross‑site scripting attack
detection scheme for Cloud Computing
environments
Xiaolong Li1*, Tingting Wang1, Wei Zhang1, Xu Niu1, Tingyu Zhang1, Tengteng Zhao1, Yongji Wang2 and
Yufei Wang2 

Abstract 

Cloud Computing plays a pivotal role in facilitating the Internet of Things (IoT) and its diverse applications. Users
frequently access and store data on remote servers in Cloud Computing environments through web browsers.
Consequently, attackers may exploit vulnerabilities in web browsing to embed malicious code into web pages,
enabling them to launch attacks on remote servers in Cloud Computing environments. Due to its complexity,
prevalence, and significant impact, XSS has consistently been recognized as one of the top ten web security vulner-
abilities by OWASP. The existing XSS detection technology requires optimization: manual feature extraction is time-
consuming and heavily reliant on domain knowledge, while the current confusion technology and complex code
logic contribute to a decline in the identification of XSS attacks. This paper proposes a character-level bidirectional
long-term and short-term memory network model based on a multi-attention mechanism. The bidirectional long-
term and short-term memory network ensures the association of current features with preceding and subsequent
text, while the multi-attention mechanism extracts additional features from different feature subspaces to enhance
the understanding of text semantics. Experimental results demonstrate the effectiveness of the proposed model
for XSS detection, with an F1 score of 98.71%.

Keywords  Network security, XSS detection, Bidirectional long-term and short-term memory network, Multi-head
Attention mechanism

Introduction
The issue of XSS attacks has gained significant atten-
tion due to the rising number of vulnerabilities and the
potential security risks they pose. The “China Internet
Cyber Security Report” [1] by the CNCERT reveals that
XSS vulnerabilities accounted for nearly half of the 1,700
high-risk vulnerabilities discovered in Internet financial

websites in 2018. The Open Web Application Security
Project (OWASP) [2] also highlights the prevalence of
XSS attacks, with two-thirds of applications being vul-
nerable to such attacks.XSS attacks pose a particularly
significant threat to Cloud Computing resources as they
can lead to various security issues, including data theft,
unauthorized access, and service disruption. To miti-
gate these risks, it is crucial to develop effective security
mechanisms for detecting and preventing XSS attacks in
Cloud Computing environments.

While research on XSS attack detection has made pro-
gress, its technology is facing severe challenges [3–8].
XSS attacks are increasingly complex and adaptive, uti-
lizing obfuscation techniques to evade detection [9, 10].
Traditional rule-based and signature-based approaches

*Correspondence:
Xiaolong Li
lxl-777333@163.com
1 Beijing Institute of Control and Electronics Technology, Muxidi North
Street, 100038 Beijing, China
2 State Key Laboratory of Networking and Switching Technology, Beijing
University of Posts and Telecommunications, 100876 Beijing, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00483-x&domain=pdf

Page 2 of 12Li et al. Journal of Cloud Computing (2023) 12:118

have limitations in effectively identifying and mitigating
these evolving attack vectors.To address these challenges,
researchers and practitioners have turned to machine
learning algorithms to improve the accuracy and effi-
ciency of XSS attack detection. However, traditional
machine learning models also encounter difficulties in
the field of XSS detection, including their inability to
effectively handle evolving XSS scripts over time and the
requirement for extensive preprocessing efforts to cap-
ture the complex patterns present in XSS attacks [11, 12].

Therefore, this study aims to overcome the limitations
of traditional machine learning models by proposing a
novel approach that utilizes a character-level bidirec-
tional long-term and short-term memory network model
based on a multi-attention mechanism. This approach
is designed to capture the contextual information and
semantic meaning of textual data, thereby enhancing fea-
ture extraction and detection of obfuscation techniques.
The contributions of this article can be summarized as
follows:

•	 Automated feature extraction: This study proposes
an improved network model structure to automate
the process of feature extraction, thereby enhancing
the efficiency and effectiveness of XSS detection.

•	 Detection of complex obfuscation techniques: Rec-
ognizing the increasing complexity of obfuscation
techniques employed in XSS attacks, this article
introduces advanced mechanisms to detect and deci-
pher these techniques, resulting in improved accu-
racy in XSS detection.

•	 Optimization of semantic features: This article
emphasizes the importance of further exploration
and refinement of semantic features in XSS detec-
tion. By leveraging a multi-attention mechanism, the
proposed model extracts distinctive characteristics
from different feature subspaces, enabling a better
understanding of textual context and enhancing the
detection of XSS attacks.

The rest of the paper is structured as follows: Section
“Preparatory knowledge” provides an introduction to the
preparatory knowledge, including LSTM and attention
mechanisms. Section “The model of detection” presents
the model structure and algorithms. Section “Experimen-
tal results and analysis” describes the experimental setup
and analysis. Section “Related work” concludes the paper
with a summary of the main findings and contributions.

Preparatory knowledge
LSTM
Long Short Term Memory (LSTM) is an optimized net-
work compared to traditional recurrent neural networks

(RNNs) [13]. Traditional RNNs suffer from the problems
of gradient explosion and vanishing, which limit their
effectiveness in learning long text sequences. However,
LSTM addresses these issues by utilizing time sequence
information to retain valuable information in the text for
long-term memory. This ensures long-distance depend-
encies between features, thereby optimizing the detec-
tion effect of the recurrent neural network [13–16].

Compared to the traditional recurrent neural network,
LSTM still calculates the hidden state ht based on the
hidden state calculated from the current sequence point
and the previous sequence point. The difference is that in
order to avoid issues like gradient explosion, LSTM intro-
duces input gate it, forget gate ft, output gate ot, and an
internal memory unit ct. The input gate structure mainly
controls the degree of influence of the current state value
on the memory unit, while the forget gate structure con-
trols the degree to which information in the previous
state’s memory unit is forgotten. The output gate struc-
ture controls the degree to which the current output state
is affected by the current memory unit. When LSTM cal-
culates the state of each unit, it passes the state through
multiple gate structures, ensuring that errors from the
last moment are propagated forward and weight modifi-
cations from the previous moment are within a reason-
able range. This way, issues like gradient vanishing are
avoided. The classic LSTM update calculation formula is
as follows:

Among them, it is obtained by performing a linear trans-
formation on the input xt and the previous layer’s hidden
state ht−1 , followed by passing it through the activation
function σ . The input gate it is a vector that controls the
amount of information flowing through each dimension
of the node. The parameters Wi , Ui , and bi are learned and
adjusted during training. The forget gate and the output
gate follow a similar process. This network structure col-
lectively controls the influence of the previous memory
unit on the current state through three components: the
input gate, the forget gate, and the activation function.

(1)it = σ(Wixt +Uiht−1 + bi)

(2)ft = σ(Wf xt + Uf ht−1 + bf)

(3)ot = σ(Woxt +Uoht−1 + bo)

(4)ct = Tanh(Wcxt + Ucht−1)

(5)ct = ft ⊙ ct−1 + it ⊙ (c̃t)

(6)ht = ot ⊙ Tanh(ct)

Page 3 of 12Li et al. Journal of Cloud Computing (2023) 12:118 	

Attention mechanism
The attention mechanism is used to retain the con-
verted intermediate vector of the input sequence and
train a model that can selectively learn from the input
text, ultimately producing the final model result [17].
The attention mechanism enhances the learning abil-
ity in sequence data by weighting and transforming the
sequence. In simple terms, the attention mechanism
acts as a mechanism for assisting judgment, helping the
model ignore irrelevant information and make more
accurate decisions [18, 19].

Attention can be categorized into two types based
on the direction of focus: conscious focused attention
from top to bottom and unconscious attention from
bottom to top, known as saliency-based attention. Sali-
ency-based attention is primarily driven by external
stimuli and does not require active intervention, while
focused attention is based on specific computational
tasks or restricted conditions. The attention mecha-
nism primarily addresses the problem of information
overload, effectively allocating resources more reason-
ably [20–22].

The traditional attention mechanism model is a dot
product model, where weights are calculated through
the query matrix and the key matrix, and the weight
values are transformed into a weight distribution
using an activation function. The weighted matrix is
obtained by applying this weight distribution to the
value matrix [23].

In practical applications, when performing a set of que-
ries, the attention function is calculated simultaneously,
with the values packed into a matrix Q, and the keys and
values packed into K and V, respectively. The calculation
formula for the dot product attention mechanism is as
follows [17]:

The scale factor is
√
dk .

The model of detection
This chapter focuses on the principles underlying model
optimization and the characteristics of the optimized
model. The complete detection process involves the fol-
lowing steps: First, a large amount of raw data is collected
locally through web crawling and log collection and pars-
ing. Next, data processing is performed on the original
dataset to obtain a standardized dataset. This standard-
ized dataset is then input into the detection module.
Finally, the detection module is trained and used for
judgment.

(7)Z = Attention(Q,K ,V) = softmax

(
QKT

√
dk

)
V

The structure of the model
Based on the current research status, most deep learn-
ing studies on XSS are based on traditional network
models. To better capture the code’s timing, existing
research methods utilize LSTM or bidirectional LSTM
to model XSS attacks [24]. However, these methods
may extract features that contain a significant amount
of irrelevant information, increasing the computa-
tional complexity of the model and affecting the learn-
ing of important features. Additionally, for complex
and obfuscated code, a complex process is required for
deobfuscation.

To address these issues, this paper proposes a new
cross-site script detection model called the Character-
level Bidirectional LSTM with Multi-Head Attention
(CMABLSTM) model. This model combines the advan-
tages of bidirectional LSTM and the multi-head attention
mechanism. The network model aims to improve detec-
tion effectiveness through a series of optimizations of the
traditional bidirectional LSTM network. The specific fea-
tures of the model are as follows:

To enhance the understanding of XSS attacks, the
CMABLSTM model dissects XSS attacks at the charac-
ter level. This approach circumvents the limitations of
word knowledge and mitigates the impact of incorrect
semantic comprehension resulting from improper word
segmentation. Consequently, it effectively addresses the
issue of poor detection caused by malicious obfusca-
tion of sample data. Character-level representation can
be described as the progression from a single character
to word representation and then to the entire sentence.
This process treats each word individually and maps it to
character embedding.

The bidirectional long short-term memory (LSTM)
network, building upon the classic LSTM, incorporates
the processing of both past and future dependencies. This
allows for a more comprehensive understanding of rel-
evant information within the XSS payload and facilitates
the extraction of comprehensive abstract features. When
the feature matrix is fed into the bidirectional LSTM net-
work model, the feature sequence undergoes multi-head
attention to emphasize important features while dimin-
ishing irrelevant ones. The final feature vector is then
processed by a Softmax classifier to achieve the desired
classification effect.

As depicted in Fig. 1, the model structure comprises
the following seven main components:

(1) Input layer
The input layer receives a string of character sequences
extracted from the traffic flow, preserving the text con-
tent’s inherent characteristics.

Page 4 of 12Li et al. Journal of Cloud Computing (2023) 12:118

(2) Embedding layer
The input layer parses the data flow into a feature vec-
tor, which serves as the input for the layer. The code,
after undergoing word segmentation, is converted into
a vector. Since the neural network requires a fixed input
length, handling the data dimension properly is crucial.
Currently, the approach is to truncate sequences that
exceed the data dimension and pad sequences that are
too short with -1, ensuring that all data has the same
length.

(3) Bi‑LSTM layer
In this layer, a bidirectional long short-term memory
(LSTM) network is employed for deep feature learning.

This network effectively captures the temporal aspects of
the data and addresses the issues of gradient explosion
and vanishing gradients during long sequence training
[25]. By utilizing this network in this layer, the learn-
ing capability for complex XSS payloads is enhanced.
The processing in this layer can be briefly described as
follows:

For a given traffic flow T, the word vector
V = {v1, v2, . . . , vj} represents the processed input of
the word embedding layer. Initially, the forward Long-
Short Term Memory (LSTM) algorithm reads the ele-
ments of the sequence V from left to right (from v1 to vj )
and passes through the hidden layer to obtain the positive
hidden layer state vector H = (h1, h2, . . . , hj) . Conversely,

Fig. 1  CMABLSTM model structure diagram

Page 5 of 12Li et al. Journal of Cloud Computing (2023) 12:118 	

the LSTM algorithm in the reverse direction reads the
sequence V from right to left and obtains the reverse hid-
den layer state vector F = (f1, f2, . . . , fj) . The hidden layer
state B = [H , F] of the network layer is then obtained
by combining the forward hidden layer state H and the
reverse hidden layer state F. As a result, the bidirectional
LSTM enables the output at the current moment to be
influenced not only by the preceding state but also by the
future state, while also considering deep semantic features.

(4) Multi‑head attention layer
The single-head attention mechanism enhances the abil-
ity to learn important information within a sentence,
thereby capturing long-distance dependencies between
words [26]. On the other hand, multi-head attention not
only strengthens the capacity to learn such dependen-
cies but also improves understanding of the syntax and
semantic structure of sentences.

The multi-head attention mechanism enables the
model to focus on different subsets of data and calcu-
late attention values from multiple dimensions. This
improves the model’s ability to learn feature information
from various locations. The output of the upper network
is divided into n parts, or heads, and each part is multi-
plied by a weight matrix Wi to form input vectors WiX ,
which are then denoted as Qi , Ki , and V i . The attention
weight matrix is calculated using the formula shown in
(3-1).

The individual results zi are combined into Zi , and
then the n heads Zi are concatenated to form ZC , i.e.,
ZC = concat(Z1, . . . ,Zn) , which is then multiplied by the
weight matrix Wo to obtain the final output Z = ZCWo.

(5) Global average pooling layer
Global average pooling, introduced by Lin et al. [27], is a
technique that effectively replaces fully connected layers.
This module computes the average of all feature matrices
and uses softmax for classification. The fully connected
layer tends to overfit, which affects the generalization of
the entire network. Global average pooling combines the
effects of the convolutional layer and the fully connected
layer by calculating the average value of the feature
matrix and associating it with the classification result.

(6) Dropout layer
The generalization layer is an effective technology that
prevents neurons from mutually adapting [28]. After
pooling the weighted attention vector using global
average pooling, a regularization method is applied to

(8)zi = softmax

(
QiK

T
i√
dk

)
Vi

improve the network’s generalization ability and reduce
the risk of overfitting.

(7) Output layer
The output of the network layer, which is the feature
vector, is then fed into the Softmax function for classifi-
cation. The final classification result is obtained by calcu-
lating the classification probability p using the following
formula:

Among them, bs and ws are the bias and weight of the
function.

Among them, y is the label predicted by the model,
p ∈ (0, 1).

Algorithm design
The algorithm design in this section focuses on describ-
ing the specific operation process of the model. The data
collection module collects the original dataset from the
data source. After processing the original dataset, the
training set (TrS) and test set (TeS) required by the net-
work input layer are obtained. The parameter k in line 7
of the algorithm means that the number of Multi-Head
Attention layer’s heads are k. The detection model algo-
rithm of CMABLSTM is designed as follows:

Algorithm 1 Detection model algorithm of CMABLSTM.

Experimental results and analysis
Based on the existing experimental environment and
data, and following the principles and algorithm steps
described in Chapter 2, several comparative experi-
ments have been conducted. This chapter analyzes and

(9)p = softmax(wsZ + bs)

(10)y = argmax(p)

Page 6 of 12Li et al. Journal of Cloud Computing (2023) 12:118

compares the experimental results to demonstrate the
effectiveness of the CMABLSTM-based XSS classifica-
tion detection method proposed in this paper.

Experimental environment
This experiment was conducted using the Ubuntu Server
16.04 LTS operating system, with an i7 quad-core CPU,
16GB of memory, and a GTX1080TI graphics card.
Python 3.7 was used as the programming language, and
the deep learning algorithm library utilized the GPU ver-
sion of TensorFlow 1.14.

Experimental data
The datasets used for cross-site scripting (XSS) and nor-
mal traffic data were primarily collected through crawlers
and honeypot logs. The resulting XSS dataset comprised
31,407 normal data samples and 74,063 attack data sam-
ples, totaling 105,470 data samples. In the experiment,
the malicious and normal samples were combined, and
the training set and test set were randomly selected with
a ratio of 8:2. The positive samples represented the XSS
dataset, labeled as 1, while the negative samples repre-
sented the normal dataset, labeled as 0. The data distribu-
tion is shown in Table 1.

Experimental evaluation indicators
In the evaluation of experimental results, the selection
of evaluation metrics ultimately affects the algorithm’s
effectiveness in a real environment. This paper analyzed
the experimental results from three perspectives: Preci-
sion, Recall, and F1 Score. In this experiment, the normal
data was considered as the negative sample, and the mali-
cious sample data was considered as the positive sample.
The aforementioned three metrics were used to assess the
model’s performance from a data statistics perspective.

Precision represents the actual ratio of samples cor-
rectly classified as positive by the system, and the formula
is shown in (11).

Recall represents the proportion of positive samples cor-
rectly identified by the system, indicating the extent of
positive sample coverage. The formula is shown in (12).

(11)p =
TP

TP + FP

For TP, FP and FN in formulas (11) and (12), respec-
tively, expressed as:

True Positive (TP): The number of positive samples
that are correctly predicted as positive.

F1 score is a comprehensive evaluation index, which is
the harmonic average of precision rate and recall rate.
The formula is shown in (13).

False Positive (FP): The number of negative sample data
that is incorrectly predicted as positive.

False Negative (FN): The number of positive samples
that are incorrectly predicted as negative.

Experimental data processing
In the data processing module, the main task is to stand-
ardize the original data and obtain data with the required
standard input format for the network model. The spe-
cific steps are as follows:

(1) Clean the collected data
Firstly, the invalid data in the dataset is filtered out. Then,
the remaining data is truncated and concatenated, which
involves removing the domain name information from
the URL and concatenating the URL and POST BODY.
Next, the data is denoised, primarily focusing on remov-
ing duplicate and incomplete data. This process yields
valid raw data. An example of simple XSS data is as
follows:

%3Djavascript%3Aalert%28/412/%29

(2) Perform word segmentation processing on the cleaned
data
The data in the existing dataset is segmented at the char-
acter level to preserve data characteristics as much as
possible, thereby improving the recognition of obfus-
cated codes and facilitating feature representation. The
sample segmentation results are shown below:

Original data : clickTAG%3D j a v a s c r i p t%3Aalert
%28/412/%29

The result after segmentation : ’ c ’ , ’ l ’ , ’ i ’ , ’ c ’ , ’k ’ ,
’T ’ , ’A’ , ’G’ , ’% ’ , ’ 3 ’ , ’D’ , ’ j ’ , ’ a ’ , ’v ’ , ’ a ’ , ’ s ’ , ’ c ’ , ’ r
’ , ’ i ’ , ’p ’ , ’ t ’ , ’% ’ , ’ 3 ’ , ’A’ , ’ a ’ , ’ l ’ , ’ e ’ , ’ r ’ , ’ t ’ , ’% ’ ,
’ 2 ’ , ’ 8 ’ , ’/ ’ , ’ 4 ’ , ’ 1 ’ , ’ 2 ’ , ’/ ’ , ’% ’ , ’ 2 ’ , ’9 ’

(3) Vectorize the segmented data
Each character is converted into numerical data and then
transformed into vectors. In this process, consecutive

(12)R =
TP

TP + FN

(13)F1 =
2PR

P + R

Table 1  Dataset distribution table

Label Category Training set Test set Total

1 XSS 59250 14813 74063

0 Normal 25126 6281 31407

Page 7 of 12Li et al. Journal of Cloud Computing (2023) 12:118 	

characters are treated as a sequence and passed through
a bidirectional long short-term memory (LSTM) network
to obtain a vector that connects each character. Since
the code length is not fixed, the input dimensions of the
network model need to be uniform. Therefore, when
converting the code into numerical data, vectors exceed-
ing the dimension are truncated, and vectors with insuf-
ficient length are filled with -1 to ensure that all vectors
have the same length.

Experimental result
The purpose of this chapter is to analyze the detection
results of the CMABLSTM model on the existing test
set. In this experiment, the model’s performance was
evaluated using a vector dimension of 128, the Adam
optimizer, a positive sample test set size of 14,813, and
a negative sample test set size of 6,281. Throughout the
experiment, leveraging theoretical knowledge related to
XSS and deep learning, the network model was designed
and continuously tuned to obtain the final model
structure.

CMABLSTM is a network model that combines the Bi-
LSTM model with a multi-head attention mechanism at
the character level. In this experiment, the Adam optimi-
zation method was used with the two exponential decay
rates set to (beta1=0.9, beta2=0.98), and the default
learning rate set to 1.0. The activation function applied
the Softmax function for model classification. To prevent
overfitting, a regularization layer was connected after
each network model to improve the model’s generaliza-
tion ability. Additionally, to better capture features, global
average pooling technology was employed to replace the

fully connected layer. This involved using average pooling
to condense the multi-dimensional feature vectors from
the last layer into single points, which were then com-
bined to form the final feature vector. Finally, a Softmax
calculation was performed for classification judgment.

(1) Multiple‑head attention mechanism (MHAM) layer
evaluation experiment
It was observed during the experiment that the MHAM
layer significantly influenced the detection results when
the number of heads was set either too large or too
small. In this chapter, the default number of internal
hidden nodes was set to 128, and the performance of
the MHAM network structure with different numbers
of heads (which must be divisible by the vector dimen-
sion) was compared. The experiment settings included
[1, 2, 4, 8, 16, 32]. The results are presented in Table 2.
From Table 2, it was evident that the model performed
the best when the number of heads was set to 4. As the
number of heads increased beyond 4, the performance of
the network model gradually decreased. Consequently,
the number of heads in this layer of the network model
was set to 4.

(2) Vector dimension comparison experiment
The experiment revealed that the vector dimension of
the network model’s embedding layer had a direct impact
on the detection results when set too large or small. This
chapter involves experiments carried out to compare
vector dimensions [64, 128, 256] under default network
structures. Figure 2 displays the experimental results.

Fig. 2  Experiments comparing vector dimensions

Page 8 of 12Li et al. Journal of Cloud Computing (2023) 12:118

The most optimal experimental results occurred when
the vector dimension was set to 128.

(3) Evaluation experiment of global average pooling layer
Due to the complexity of the network model in this chap-
ter, in order to prevent severe overfitting, a global average
pooling layer was added to the model for experiments.
This chapter carried out comparative experiments to
evaluate the importance of adding a global average pool-
ing layer to the model, and the experimental results are
shown in Fig. 3.

In actual datasets, there are often imbalanced dis-
tributions of positive and negative samples, where the
ratio of positive and negative samples can vary in differ-
ent test sets. The ROC curve remains unchanged even
when the dataset distribution changes. To better dem-
onstrate the effectiveness of model training, this sec-
tion presents the experimental results as ROC curves.
Figure 4 shows the ROC curve graphs (the ROC curve
of the test dataset is enlarged in the upper left corner
for clearer visualization). From the ROC curve graph,
we can observe that the area under the curve is close to
1, indicating good prediction performance with a high
accuracy rate.

Comparative experimental methods and evaluation
To validate the effectiveness and advantages of the CMA-
BLSTM model, this article conducted several sets of
comparative experiments, comparing the results with
traditional machine learning algorithms and deep learn-
ing algorithms.

(1) Traditional machine learning
This chapter compares various deep learning model meth-
ods, including LSTM, Bi-LSTM, the joint network struc-
ture of Bi-LSTM and Attention (ABLSTM), the joint
network structure of Bi-LSTM and Multi-Head Attention
(MABLSTM), and the network structure proposed in this
article. Both character-level feature extraction and word-
2vec feature extraction methods were used in the experi-
ment. The experimental results are presented in Table 3,
demonstrating the detection performance of each model
based on three indicators.

(2) Deep learning model
This chapter compares the deep learning model meth-
ods. The models involved are LSTM, Bi-LSTM, the
joint network structure of Bi-LSTM and Attention
(ABLSTM), the joint network structure of Bi-LSTM
and Multi-Head Attention (MABLSTM), and The net-
work structure in this article. The character-level fea-
ture extraction method and word2vec feature extraction
method were used in the experiment. The experimental

Fig. 3  Experiment evaluating global pooling layers

Table 2  Dataset distribution table

Number of heads Precision Recall F1-score

1 98.99% 97.81% 98.39%

2 99.17% 98.02% 98.59%

4 99.32% 98.11% 98.71%

8 99.33% 98.03% 98.67%

16 99.08% 97.94% 98.50%

32 98.72% 97.38% 98.04%

Page 9 of 12Li et al. Journal of Cloud Computing (2023) 12:118 	

results are shown in Table 4, showing the detection
effect of each model from three indicators.

Visualizing the data in Table 4, Fig. 5 clearly shows
that the accuracy, recall rate, and F1 score of the pro-
posed method are higher than those of the other mod-
els (MABLSTM, ABLSTM, LSTM, BLSTM). Thus, the
method proposed in this article outperforms other
deep learning models in terms of evaluation results.

Comparing the aforementioned models, this method
achieves an F1 score of 99.48%, surpassing the evaluation
results of the other models. In summary, the advantage
of the model presented in this paper lies in its utilization
of bidirectional LSTM to effectively capture long-term
dependencies in text information. Additionally, the
adoption of a character vector processing mechanism
facilitates the retention of content related to confusing
information. Lastly, through the employment of the multi-
head attention mechanism, the model can effectively
focus on syntactic features from multiple dimensions. The
experiments demonstrate that this method significantly
enhances the detection capability of XSS attacks.

Related work
XSS attack detection methods
Gulit Habibi et al. [29] employed SVM with n-gram
features for the detection of XSS attacks, effectively
improving the accuracy of traditional machine learn-
ing models in XSS attack detection tasks. However, this
study still fails to address the limitation of traditional
machine learning models in handling evolving XSS
scripts over time. Additionally, it requires consider-
able preprocessing work. Jitendra Kumar et al. [30] uti-
lized Convolutional Neural Network (CNN) as a viable
approach for detecting XSS attacks. Their research
has shown promising results in detecting XSS attacks
in web applications. However, due to inherent limita-
tions of CNN, this approach faces challenges in captur-
ing long-term dependencies and sequential patterns in
XSS scripts. Fang et al. [31] developed an XSS detec-
tion model based on long short-term memory networks

Fig. 4  The ROC curve of the test data set is enlarged in the upper left corner

Table 3  Demonstration of ental results

Model name Precision Recall F1-score

CMABLSTM 99.32% 98.11% 98.71%

XGBoost 94.92% 93.40% 94.15%

SVM 94.33% 90.26% 92.30%

Table 4  Demonstration of experimental results

Model name Precision Recall F1-score

CMABLSTM 99.32% 98.11% 98.71%

MABLSTM 99.02% 97.99% 98.50%

ABLSTM 98.90% 97.03% 97.95%

LSTM 97.31% 96.08% 96.69%

BLSTM 98.36% 96.21% 97.27%

Page 10 of 12Li et al. Journal of Cloud Computing (2023) 12:118

(LSTMs) applied to text sequences. Their experimental
results demonstrated that leveraging LSTM can effec-
tively improve the effectiveness of XSS detection. How-
ever, the analysis revealed that the model was prone to
significant confusion in XSS detection, leading to less-
than-ideal results.

In summary, while previous studies have made some
progress in XSS attack detection, they still have limita-
tions. This study extends the existing work by utilizing
a character-level bidirectional long short-term memory
network model with multiple attention mechanisms to
address the limitations of traditional machine learn-
ing models in XSS attack detection. It also optimizes
the extraction of semantic features and the detection of
obfuscation techniques, resulting in improved accuracy
and efficiency in XSS attack detection.

Advanced applications of LSTM
To provide advanced applications of LSTM technology
in related fields, we highlight three notable examples. Qi
[32] proposes a recommendation model called PPCM
for location-based social networks. It addresses the chal-
lenge of acquiring preferences from sparse users by con-
sidering group influence and privacy protection using
LSH. The model captures long- and short-term depend-
encies using LSTM with an attention mechanism and
temporal sliding window. By leveraging POI categories,
it efficiently mines user interests despite limited data.
Evaluation on real check-in datasets from New York City
and Tokyo demonstrates improved recommendation per-
formance compared to other models. Liu [33] focuses

on the collection of user check-in data in location-based
social networks and proposes an improved model called
ITGCN for successive point-of-interest (POI) recom-
mendation. ITGCN captures dynamic user and POI rep-
resentations while considering high-order connectivity
through a self-attention aggregator. The experimental
results show that ITGCN outperforms existing methods,
providing valuable insights for travel enterprises’ man-
agement systems and future planning. Liu [34] addresses
the challenge of controlling the greenhouse climate and
proposes a greenhouse climate prediction model. The
model, called GCP-lstm, focuses on six climatic factors
that affect crop growth and uses long short-term mem-
ory (LSTM) to capture the nonlinear climate changes. A
5-minute time sliding window is employed to consider
the short-term impact on future trends. The model also
exhibits robustness in handling abnormal data from sen-
sors. The method is evaluated on datasets of three veg-
etables, tomato, cucumber, and pepper, showing better
performance compared to other models.

Drawing inspiration from these advanced applica-
tions of LSTM, our work on XSS attack detection utiliz-
ing a LSTM model with multiple attention mechanisms
extends the capabilities of traditional machine learning
models. By incorporating LSTM’s ability to capture long-
term dependencies, our model aims to improve accuracy
and efficiency in detecting XSS attacks. We demonstrate
how leveraging LSTM and attention mechanisms can
optimize the extraction of semantic features and detec-
tion of obfuscation techniques, thereby enhancing the
performance of XSS attack detection.

Fig. 5  Comparative experiment cart of deep learning model

Page 11 of 12Li et al. Journal of Cloud Computing (2023) 12:118 	

Conclusion
This paper presents an enhanced network model struc-
ture for detecting XSS malicious attacks, with the objec-
tive of bolstering the protection of Cloud Computing
against such attacks, which can lead to significant con-
fusion and involve intricate logic. The salient features
of this network structure are as follows: it initiates
with character-level features to effectively preserve text
details and prevent the compromise of the semantic
structure due to improper text segmentation. Moreover,
the structure employs bidirectional LSTM to capture
the temporal context of the text, ensuring that the cur-
rent features are associated not only with the preceding
text but also with the subsequent text. Additionally, the
multi-head attention mechanism is employed to lever-
age different feature subspaces, enabling the model to
extract more distinctive characteristics and enhance its
comprehension of the textual context. Through experi-
mental analysis conducted in this study, it has been
demonstrated that the proposed CMABLSTM model
surpasses other similar detection techniques in terms
of XSS detection, achieving an impressive F1 score of
98.71%. This innovative approach to XSS detection plays
a pivotal role in fortifying Cloud Computing against
XSS attacks. By implementing this model, Cloud Com-
puting systems can enhance their ability to safeguard
themselves and mitigate the risks posed by XSS attacks,
thereby ensuring the security and integrity of the overall
Cloud Computing infrastructure. However, this manu-
script only uses the CMABLSTM model to detect XSS
vulnerability attacks. In the future, our research will
focus on investigating the suitability of this model for
diverse web vulnerability detection and vulnerability
mining tasks within the Cloud Computing environment.
Specifically, we will explore its applicability in areas such
as buffer overflow, SQL injection, and cross-site request
forgery.

Acknowledgements
We sincerely thank the editors and reviewers for their valuable comments on
this paper.

Authors’ contributions
All authors were involved in the research for this paper. Xiaolong Li and
Tina Wang led the entire work. Wei Zhang carried out the detailed research,
including background study and review compilation. Niu Hui and Ting-Yu
Zhang were responsible for the modeling and experimental analysis part of
the whole paper. Zhao Fujitou and Wang Yongji were responsible for writing
the thesis as well as the experimental evaluation. Yufei Wang was responsible
for the correction and layout of the thesis. All authors read and approved the
final draft.

Funding
Not applicable.

Availability of data and materials
All code used to support this work is available from the authors upon request.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 29 May 2023 Accepted: 5 July 2023

References
	1.	 Center, N.I.E. China Internet Cyber Security Report. https://​www.​cert.​org.​

cn/​publi​sh/​main/​upload/​File/​2018a​nnual.​pdf. 2021-10-03
	2.	 OWASP. OWASP Top Ten. https://​owasp.​org/​www-​proje​ct-​top-​ten/.

2021-10-29
	3.	 Bhardwaj A, Chandok SS, Bagnawar A, Mishra S, Uplaonkar D (2022)

Detection of cyber attacks: XSS, sqli, phishing attacks and detecting intru-
sion using machine learning algorithms. 2022 IEEE Global Conference on
Computing. Power and Communication Technologies (GlobConPT), IEEE,
pp 1–6

	4.	 Perumal S, et al (2021) Stacking ensemble-based XSS attack detec-
tion strategy using classification algorithms. In: 2021 6th International
Conference on Communication and Electronics Systems (ICCES), IEEE, pp
897–901

	5.	 Habibi G, Surantha N (2020) XSS attack detection with machine learning
and n-gram methods. In: 2020 International Conference on Information
Management and Technology (ICIMTech), IEEE, pp 516–520

	6.	 Luo J, Xu G (2021) XSS attack detection methods based on xlnet and gru.
2021 4th International Conference on Robotics. Control and Automation
Engineering (RCAE), IEEE, pp 171–175

	7.	 Lei L, Chen M, He C, Li D (2020) XSS detection technology based on
LSTM-attention. 2020 5th International Conference on Control. Robotics
and Cybernetics (CRC), IEEE, pp 175–180

	8.	 Jingyu Z, Hongchao H, Shumin H, Huanruo L (2021) A XSS attack detec-
tion method based on subsequence matching algorithm. In: 2021 IEEE
International Conference on Artificial Intelligence and Industrial Design
(AIID), IEEE, pp 83–86

	9.	 Hadpawat T, Vaya D (2017) Analysis of prevention of XSS attacks at client
side. Int J Comput Appl 173(10):1–4

	10.	 Santithanmanan K (2022) The detection method for XSS attacks on nfv
by using machine learning models. In: 2022 International Conference on
Decision Aid Sciences and Applications (DASA), IEEE, pp 620–623

	11.	 Chui KT, Gupta AK (2022) Analysis of machine learning based XSS attack
detection techniques. Cyber Secur Insights Mag Insights2Techinfo 1:7–10

	12.	 Birje MN, Challagidad PS, Goudar R, Tapale MT (2017) Cloud computing
review: concepts, technology, challenges and security. Int J Cloud Com-
put 6(1):32–57

	13.	 Yu Y, Si X, Hu C, Zhang J (2019) A review of recurrent neural networks:
LSTM cells and network architectures. Neural Comput 31(7):1235–1270

	14.	 Landi F, Baraldi L, Cornia M, Cucchiara R (2021) Working memory connec-
tions for LSTM. Neural Netw 144:334–341

	15.	 Liu Z, Zhou W, Li H (2019) Ab-LSTM: Attention-based bidirectional LSTM
model for scene text detection. ACM Trans Multimed Comput Commun
Appl (TOMM) 15(4):1–23

	16.	 Chen T, Wang Z, Li G, Lin L (2018) Recurrent attentional reinforcement
learning for multi-label image recognition. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 32. AAAI Press

	17.	 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser
L, Polosukhin I (2017) Attention is all you need. Advances in neural
information processing systems 30:5998–6008

	18.	 Hubballi N, Singh Y, Garg D (2023) XSSmitigate: Deep packet inspection
based XSS attack quarantine in software defined networks. In: 2023 IEEE
International Conference on Consumer Electronics (ICCE), IEEE, pp 1–6

	19.	 Brauwers G, Frasincar F (2023) A general survey on attention mechanisms
in deep learning. IEEE Transactions on Knowledge and Data Engineering
35:3279–98

https://www.cert.org.cn/publish/main/upload/File/2018annual.pdf
https://www.cert.org.cn/publish/main/upload/File/2018annual.pdf
https://owasp.org/www-project-top-ten/

Page 12 of 12Li et al. Journal of Cloud Computing (2023) 12:118

	20.	 Wang J, Liu L (2020) A multi-attention deep neural network model base
on embedding and matrix factorization for recommendation. Int J Cogn
Comput Eng 1:70–77

	21.	 Zhao X, Sun K, Gong S, Wu X (2023) Rf-biLSTM neural network incorporat-
ing attention mechanism for online ride-hailing demand forecasting.
Symmetry 15(3):670

	22.	 Ye J, Wang H, Li M, Wang N (2021) Iot-based wearable sensors and bidi-
rectional lstm network for action recognition of aerobics athletes. Journal
of Healthcare Engineering 2021(Article ID 9601420)

	23.	 Augustyniak Ł, Kajdanowicz T, Kazienko P (2019) Aspect detection using
word and char embeddings with (bi) LSTM and crf. In: 2019 IEEE second
international conference on artificial intelligence and knowledge engi-
neering (AIKE), IEEE, pp 43–50

	24.	 Qiqin C, Liang W (2020) Application research of biLSTM in cross-site
scripting detection. J Front Comput Sci Technol 14(8):1338

	25.	 Sunny MAI, Maswood MMS, Alharbi AG (2020) Deep learning-based stock
price prediction using lstm and bi-directional LSTM model. In: 2020 2nd
Novel Intelligent and Leading Emerging Sciences Conference (NILES),
IEEE, pp 87–92

	26.	 Mnih V, Heess N, Graves A, et al (2014) Recurrent models of visual atten-
tion. Advances in neural information processing systems 27:2204–2212

	27.	 Lin M, Chen Q, Yan S (2013) Network in network. arXiv preprint arXiv:​1312.​
4400

	28.	 Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR
(2012) Improving neural networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:​1207.​0580

	29.	 Habibi G, Surantha N (2020) XSS attack detection with machine learning
and n-gram methods. In: 2020 International Conference on Information
Management and Technology (ICIMTech), pp 516–520. https://​doi.​org/​10.​
1109/​ICIMT​ech50​083.​2020.​92109​46

	30.	 Kumar J, Santhanavijayan A, Rajendran B (2022) Cross site scripting
attacks classification using convolutional neural network. In: 2022
International Conference on Computer Communication and Informatics
(ICCCI), pp 1–6. https://​doi.​org/​10.​1109/​ICCCI​54379.​2022.​97408​36

	31.	 Fang Y, Li Y, Liu L, Huang C (2018) Deepxss: Cross site scripting detection
based on deep learning. In: Proceedings of the 2018 International Confer-
ence on Computing and Artificial Intelligence. Springer, pp. 47–51

	32.	 Qi L, Liu Y, Zhang Y, Xu X, Bilal M, Song H (2022) Privacy-aware point-of-
interest category recommendation in internet of things. IEEE Internet
Things J 9(21):21,398–21,408. https://​doi.​org/​10.​1109/​JIOT.​2022.​31811​36

	33.	 Liu Y, Wu H, Rezaee K, Khosravi MR, Khalaf OI, Khan AA, Ramesh D, Qi
L (2023) Interaction-enhanced and time-aware graph convolutional
network for successive point-of-interest recommendation in traveling
enterprises. IEEE Trans Ind Inform 19(1):635–643. https://​doi.​org/​10.​1109/​
TII.​2022.​32000​67

	34.	 Liu Y, Li D, Wan S, Wang F, Dou W, Xu X, Li S, Ma R, Qi L (2022) A long
short-term memory-based model for greenhouse climate prediction. Int
J Intell Syst 37(1):135–151

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/1312.4400
http://arxiv.org/abs/1312.4400
http://arxiv.org/abs/1207.0580
https://doi.org/10.1109/ICIMTech50083.2020.9210946
https://doi.org/10.1109/ICIMTech50083.2020.9210946
https://doi.org/10.1109/ICCCI54379.2022.9740836
https://doi.org/10.1109/JIOT.2022.3181136
https://doi.org/10.1109/TII.2022.3200067
https://doi.org/10.1109/TII.2022.3200067

	An LSTM based cross-site scripting attack detection scheme for Cloud Computing environments
	Abstract
	Introduction
	Preparatory knowledge
	LSTM
	Attention mechanism

	The model of detection
	The structure of the model
	(1) Input layer
	(2) Embedding layer
	(3) Bi-LSTM layer
	(4) Multi-head attention layer
	(5) Global average pooling layer
	(6) Dropout layer
	(7) Output layer

	Algorithm design

	Experimental results and analysis
	Experimental environment
	Experimental data
	Experimental evaluation indicators
	Experimental data processing
	(1) Clean the collected data
	(2) Perform word segmentation processing on the cleaned data
	(3) Vectorize the segmented data

	Experimental result
	(1) Multiple-head attention mechanism (MHAM) layer evaluation experiment
	(2) Vector dimension comparison experiment
	(3) Evaluation experiment of global average pooling layer

	Comparative experimental methods and evaluation
	(1) Traditional machine learning
	(2) Deep learning model

	Related work
	XSS attack detection methods
	Advanced applications of LSTM

	Conclusion
	Acknowledgements
	References

