
Chen et al. Journal of Cloud Computing (2023) 12:20
https://doi.org/10.1186/s13677-023-00398-7

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

A microservice regression testing selection
approach based on belief propagation
Li‑zhe Chen, Ji Wu*   , Hai‑yan Yang and Kui Zhang 

Abstract 

Regression testing is required to assure the quality of each iteration of microservice systems. Test case selection is one
of main techniques to optimize regression testing. Existing techniques mainly involve artifacts acquisition, process‑
ing and maintenance, thus hard to apply in microservice regression testing since it is difficult to obtain and process
required artifacts from multiple development teams, which is normal in cases of microservice systems. This paper
proposes a novel approach, namely MRTS-BP, which takes API gateway logs instead of artifacts as inputs. By mining
service dependencies from API gateway logs, MRTS-BP analyzes service change impacts based on a propagation
calculation, and selects test cases affected by changes based on impact degree values. To evaluate the effectiveness
of MRTS-BP, empirical studies based on four real deployed systems are presented. Retest-all strategy and a regression
testing selection approach based on control flow graphs called RTS-CFG are compared with MRTS-BP. The results
show that, MRTS-BP can significantly reduce both the number of test cases and overall time cost while maintaining
the fault detection capability of selected test suite, and that MRTS-BP can save more time cost than RTS-CFG with the
similar safety and precision.

Keywords  Microservice, Regression testing selection, Log mining, Belief propagation

Introduction
Microservice architecture is an effective architecture pat-
tern popularly used in developing current cloud appli-
cations, for which services are built independently and
integrated at run time by using container technique such
as docker [1–3]. Microservice architecture well supports
frequent business expansion and smooth upgrading by
facilitating independent development and deployment
of services [4]. Whenever service modification happens,
regression testing is required to detect any potential
faults introduced in modifications [5]. Common strat-
egy employed in regression testing is to rerun previously
used test cases (referred to as original test suite), namely
retest-all strategy. The cost of retest-all strategy, however,

might be not acceptable in the case of microservice sys-
tem with a large amount of services deployed and rapid
iterations. For example, WeChat, a social microservice
system, has tens of thousands of services deployed and
takes several months normally to conduct regression
testing with retest-all strategy [6]. To reduce testing cost,
many techniques such as test case prioritization, test
suite minimization and testing selection are proposed
and applied [7].

Regression testing selection (RTS) reduces testing cost
by selecting a subset, selected test suite, from original test
suite to intentionally cover modules which are changed
or affected by other changed modules introduced in last
iteration [5]. Many researches at first identify targeted
modules by change impact analysis and then produce
selected test suite [8–11]. Artifacts such as requirement
specification, design model and code file are required
usually to conduct change impact analysis effectively. For
microservice testing, covering scenarios of service invo-
cations is one of main test objectives [4, 8, 11], and thus a

*Correspondence:
Ji Wu
maple_clz@163.com
School of Computer Science and Engineering, Beijing University
of Aeronautics and Astronautics, Beijing 100191, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00398-7&domain=pdf
http://orcid.org/0000-0002-5511-5361

Page 2 of 21Chen et al. Journal of Cloud Computing (2023) 12:20

service invocation chain is usually set as a test case, also
called a test path. With such test paths, artifact based
RTS extracts service dependencies from artifacts to ana-
lyze which invocation chains may be affected by service
modifications such that corresponding test paths can be
identified and selected. In addition, safety and precision
are also considered while evaluating RTS approaches
[5]. A RTS approach is safe if it will contain all test cases
that can reveal faults in regression testing, and a RTS
approach is precise if it will not contain any unneces-
sary test cases. To assure the safety, RTS approaches nor-
mally expand selected test suite, but that would decrease
the precision. Usually, we want to improve precision (i.e.
to reduce testing cost) while maintain the safety of test
selection at an accepted level.

However, challenges might arise when artifact-based
RTS approaches applied in microservice regression test-
ing: (1) Artifacts acquisition. When the microservice sys-
tem under testing is developed by multiple teams, it faces
several issues while achieving artifacts. Extra communi-
cation is acquired for gathering which results into elevat-
ing total cost. Additionally, expense is increased through
obedience with numerous security strategies [8]; (2) Arti-
facts processing. Diverse development approaches (e.g.
different modeling methods and coding frameworks)
applied [12–14] increase the difficulty to agree on the
integrity, comprehensibility, and consistency of artifacts,
which will seriously hinder the performance of artifacts
processing; (3) Artifacts maintaining. With growths of
system scale in uninterrupted environments, mainte-
nance of artifact versions will cost extra. Especially when
multiple versions of a service need to run together, the
integration of artifacts might bring confuses. Hence,
above three main challenges indicate that artifact-based
RTS approaches are not suitable for microservice regres-
sion testing.

Furthermore, API gateway layer of microservice system
logs every API invocation at runtime for quality of ser-
vice investigation, including requester, responder, time,
status code, etc. [4]. Given a large amount of API gateway
logs collected, frequent collaboration patterns among
services can be mined to indicate service dependencies.
Based on service dependencies, change impact analy-
sis can be conducted based on belief propagation [15],
which can conquer above challenges, this motivates the
approach presented in this paper, microservice regres-
sion testing selection technique based on belief propaga-
tion (MRTS-BP).

Initially, MRTS-BP generates service dependency
matrix (SDM) by mining service dependencies at busi-
ness level from API gateway layer logs. Secondly, a
directed graph of dependencies among services is estab-
lished from SDM, and is inputted to a change impact

propagation algorithm to measure change impacts quan-
titatively. Thirdly, existent satisfaction, complete satisfac-
tion and k-existent satisfaction are adopted for different
cases to generate selected test suite. Moreover, to evalu-
ate the effectiveness of MRTS-BP, we conduct empirical
studies on four real deployed systems to measure reduc-
tion rate of testing cost, recall, precision and F-measure.
Retest-all strategy and a typical artifact-based RTS called
RTS-CFG [16] are compared with MRTS-BP. The results
show that, MRTS-BP can significantly reduce both the
number of test cases and overall time cost while main-
taining fault detection capability of selected test suite,
and that MRTS-BP can save more time cost than RTS-
CFG with similar safety and precision.

Main contributions of this paper are: (a) data utilizes
to select test cases are extracted from API gateway logs;
(b) change impacts are quantitatively calculated through
mathematical approach; (c) three selection strategies are
proposed to meet practical testing scenarios.

The rest of this paper is structured as follows: Related
work section presents related work on microservice
testing, regression testing selection and belief propaga-
tion. Methodology section presents MRTS-BP in detail,
Empirical study and Results and discussion sections pre-
sent empirical analysis, and Conclusions and future work
section discusses conclusions and future work.

Related work
Microservice testing
Microservice testing comprises unit testing, service test-
ing, and end-to-end testing [4]. However, unit testing is
utilized to identify culpabilities in functions or classes.
Additionally, this process is sustained by two experimen-
tal tools such as xUnit [17] and mockito [18]. In order to
bypass user interference and rapid assessment, the ser-
vice-testing is preferred. End-to-end testing focuses on
behaviors of entire system. Due to challenges by service
autonomy, dynamic binding and access restrictions [8,
11], service testing and end-to-end testing are very dif-
ferent from traditional software, thus leading to many
researches and practices [4]. Whereas, test cases in this
paper cover both services and end-to-end behaviors of
the microservice system under testing.

Furthermore, both procedures at same interval involve
multiple services and their invocations. For instance,
consumer-driven based evaluation includes consumer,
target, and stubbed-services [4]. Therefore, test cases of
these procedures are abstracted as test paths [19–22],
defined as follows:

Definition 2.1test path
Let <si,sj > represent an invocation between two ser-

vices, a test path is a sequence of <si,sj > and each of ele-
ments in the sequence can be a single invocation or a

Page 3 of 21Chen et al. Journal of Cloud Computing (2023) 12:20 	

sequence composed of multiple invocations. A test path
can be formally defined as a recursive regular expression
tp = <<si,sj > (,<si,sj>)* > | < (tp,)+ > .

In our work, since logs of microservice systems col-
lected present interfaces exposed by services, the granu-
larity of “service” in Definition 2.1 is a service interface.

Regression testing selection
Formal definition of regression testing selection problem
is follows as [5]:

Definition 2.2Regression Testing Selection Problem,
RTS issue.

Given: The program, P, the modified version of P, P′
and a test suite, T.
Problem: Find a subset of T, Ts, with which to test P′.

Most of existing RTS approaches mainly concentrate
on formal presentation of change impact scopes from P
to P′ and searching which test cases cover these scopes
[5]. Due to close relationship between RTS approaches
and system architectures, with continuous development
of architecture paradigms, various RTS approaches for
different architecture patterns are proposed, which can
be divided into two categories: independent program ori-
ented RTS and web service oriented RTS.

Early application systems have relatively small set of
functionalities, which are mainly in forms of independ-
ent programs. RTS researches concentrate on change
impact analysis with code files, such as data flow analy-
sis approach, graph traversal approach, firewall approach,
etc. Data flow analysis approach extracts information
detailing locations of definitions and uses, which is
needed by an inter-procedural data flow tester to guide
the selection and execution of test cases [23]. Though
applied in regression testing for spreadsheet programs
[24], such approach is difficult to conducted for codes
that does not cover data flows. Graph traversal approach
relies on graph models such as control dependency
graph [25], program dependency graph [26], system
dependency graph [26], control flow graph [27, 28]. This
approach usually includes two phases: analysis and selec-
tion. In analysis phase, different granularities of graph
models are established from P to P′ to identify change
impact scopes; in selection phase, relationships between
such scopes and test cases are established, and then, test
cases that relates to change scopes are selected. Integra-
tion scopes affected by changes are defined as “firewalls”
in firewall approach, which is proposed for module inte-
gration testing [29, 30]. Based on firewalls figured out
from code files, test cases covering firewalls are selected.

With the wide deployment of web applications, a large
number of RTS researches concentrate on the issue of

web services regression testing selection. Since web ser-
vice testing concentrates on service compositions [8, 11],
change impact analysis are conducted based on specifica-
tions and behavior models of web services. Treating web
services testing as black box testing, web service descrip-
tion language (WSDL) based specifications for functions
from an end-users point of view, are required as inputs
to figure out change scopes to select test cases [31, 32].
In analogy to graph traversal approach, a two-stage RTS
based on control flow graphs is proposed for web service
regression testing selection [16] (referred to as RTS-CFG
in the following). Such approach includes initialization
stage and key stage: in initialization stage, artifacts of sys-
tem under testing are collected and control flow graphs
are established to represent service invocation logic; in
critical stage, test cases are selected according to dan-
gerous edges of control flow graphs. Considering dif-
ferent granularities of services, various RTS approaches
are proposed. For service endpoints, a RTS approach
is presented based on path analysis [21]. This approach
compares the invocation path changes between service
endpoints before and after iteration, and then selects test
cases covering such changes. For service interfaces, a RTS
approach based on service interface contract analysis is
proposed [20]. In this approach, conflicts caused by con-
tract changes are figured out to select test cases covering
such conflicts. For services as a whole, a RTS approach is
presented based on business process modeling [22]. Such
approach requires structured business logic specifica-
tions as inputs and follows the graph traversal method.
For large scale systems, a RTS approach needs to inject
additional codes into services to collect relationship data
between JAVA codes and test cases [14], but its imple-
mentation depends on Google’s infrastructure, which
makes it not universal.

Compared with program oriented RTS, web service
oriented RTS approach tends to select test cases based
on change analysis of artifacts such as specifications
and models. When such RTS approaches are applied
in microservice regressing testing, artifacts collection,
consistency checking, information extraction and mod-
eling are necessary, but require substantial efforts to
implement since microservice systems are usually devel-
oped by multiple teams and using different techniques.
Whereas, MRTS-BP is proposed to replace artifacts pro-
cessing with extracting service dependencies from API
gateway logs based on frequent pattern mining [33].

Frequent pattern mining
General process of frequent pattern mining is: given a
frequent threshold, when the frequency of an item set
in transaction set exceeds the threshold, the item set is
considered as a frequent item set, which can be used

Page 4 of 21Chen et al. Journal of Cloud Computing (2023) 12:20

to generate association rules [33]. The frequency of an
item set in the transaction set is called “support”, which
is computed as the ratio of the number of transactions
containing the item set to the size of the transaction set.
Frequent item sets with k elements are called k-frequent
item sets. Non-empty subsets of a frequent item set must
be frequent item sets. Therefore, the support of a fre-
quent item set must be less than or equal to that of its
non-empty subsets.

There are many types of frequent pattern mining algo-
rithms, such as candidate set based algorithms, tree
based algorithms and recursive suffix based algorithms
[33], which are customized according to meet practical
requirements of mining problems. In our approach, the
mining problem is to extract service dependencies as a
basis for change impact analysis.

Belief propagation
Belief propagation algorithm (BP) is a repetitive process
for estimated interpretation based on graph structure.
There are numerous applications of BP which include:
forward propagation algorithm, the Viterbi algorithm,
decoding algorithms of low density parity check (LDPC)
and turbo codes. Such methodologies are utilized for dif-
ferent scenarios [15]. Generally, BP algorithm is follows
as.

(1)	 Initialization: setting initial value of each node.
(2)	 Propagation: update all message values and node

confidence values.
(3)	 Determining whether node confidence values are

convergent. Incase convergent, inference results
obtained according to confidence values. Other-
wise, it will jump back to step (2) and propagate
iteratively.

In recent years, studies on BP algorithm comprise
application and optimization. According to its applica-
tion, scholars predominantly focus on communication
coding and signal processing. In order to reduce com-
plexity of sparse code multiple access, dynamic edge
assortment procedure based on BP algorithm is intro-
duced. Through iterative calculation, range boundaries
of nodes are detected [34]. However, nonlinear equaliza-
tion method utilized neural network where BP algorithm
is applied to remove signal noises [35]. Additionally, for
massive multiple-input multiple-output channel detec-
tion, BP is used purely based on deep neural network
[36]. In optimization aspect, investigators primarily focus
on implementation and convergence condition. Further-
more, LDPC along computational process assists in par-
allelization and merging memory access [37]. Beside this,
convergence problem of BP algorithm and numerical

polynomial-homotopy-continuation method revealed
influence of structures. Therefore, parameters of graph
models solved through fixed points [38].

Literature study reveals BP algorithm is not yet applied
in microservice regression testing selection. Proposed
work acquires to analyze impacts based on service
dependencies from API gateway logs. Additionally, when
service dependencies are transformed to a directed
graph, impact analysis can be translated into impact
propagation from some nodes to others, which can be
addressed by BP-like methods.

Methodology
MRTS-BP resolves issue as given in Definition 2.2 for
microservice systems. This problem is tackled through
three steps: service dependency mining, change impact
analysis and test case selection as displayed in Fig. 1. Fur-
thermore, Inputs primarily comprise API gateway logs
and original test path set. While, the output is selected
test path set to be re-tested.

Service dependency mining
Microservice systems provide user accessible functions
through service cooperating, leading to data exchanges
and service invocations, called service dependencies [4].
API gateway logs record requests among services. One
can see business flow and data flow triggered by users.
Thus, our approach mines service dependencies from
API gateway logs to generates service dependency matrix
(SDM). This step mainly contains two activities: data pre-
processing and service dependency matrix generation.
The former establishes user request chains from logs and
generates a transaction set, while the latter generate a
SDM from the transaction set.

Data preprocessing
To facilitate log mining, raw data should be preproc-
essed to remove irrelevant items and to form into struc-
tured data [39]. API gateway logs may contain requester
address, service name, service address assigned by load
balancer, status code and so on, though its concrete
structure varies from system to system. The first step in
data preprocessing is to remove irrelevant items such
as self-checking records from API gateway logs. Only
required data fields such as requester address, service
name and service address will be retained to form a
structured data set.

Next, with cleaned data, our approach takes user
requests as starting point to search for associated service
invocations and then formulates into service invocation
chains to represent a user session, called as user session
extraction. Extraction process is implemented based on
another key component of microservice systems called

Page 5 of 21Chen et al. Journal of Cloud Computing (2023) 12:20 	

“service chain monitoring”. Service chain monitoring
mainly collects, analyzes and displays service invocations
while microservice systems running, which supports for
fault diagnosis and performance optimization, e.g. Open
Zipkin of Twitter, CAT of Dianping.com, and Naver Pin-
point etc. Service invocations associated with the same
user request share the same tracing ID. Therefore, a list
of service invocations representing a user session can be
formed by determining the consistency of tracing ID.

Then, a transaction set for mining is generated from
service invocation chains. Considering that service invo-
cations can directly represent dependencies between
services, our approach takes an invocation as an item,
and takes a service invocation chain as a transaction.
Formally, let S = {sj|0 < j ≤ n} represent the service set of
a microservice system and n denote the number of ser-
vices, then:

Definition 3.1Global Item Set.
A global item set Ia = {<sj,sk > |sj,sk∈S∧j ≠ k}, where item

ijk = <sj,sk > represents sj invocates sk.
Definition 3.2Transaction Set.
A transaction set D = {T|T ⊆ Ia}, where T represents a

transaction.
According to Definitions 3.1 and 3.2, transaction set

generation can be implemented by traversing the ser-
vice invocation chains once, which is as follows: (1) ini-
tialize a transaction set as an empty set; (2) traverse

each invocation of each service invocation chain, and
denote each invocation as an item. After removing dupli-
cate items, an item set is generated as a transaction and
appended to the transaction set; (3) after traversing all
service invocation chains, output the transaction set.

Service dependency matrix generation
Service dependencies are mainly derived from two type
of sources:

(1)	 Request flows

	 Request flows are represented as invocation chains
of services, which can be decomposed into invo-
cations between services. If an invocation occurs
frequently, it can be inferred that there may be a
dependency between corresponding two services,
which is defined as “request dependency” in our
approach. Since an invocation is defined as an item
in Definition 3.1, request dependencies are repre-
sented as 1-frequent item sets.

(2)	 Data flows
	 On the one hand, data flows may directly occur with

a single invocation between services, which can be
also considered as the category of request depend-
ency. On the other hand, data flows may occur indi-
rectly through multiple invocations, two basic cases

Fig. 1  Flowchart of MRTS-BP

Page 6 of 21Chen et al. Journal of Cloud Computing (2023) 12:20

of which are shown in Fig. 2. In Fig. 2, invocations
between service 1 and service 3 do not exist. In the
left case, service 2 is invocated through Req12 and
Req32 respectively. When Req12 changes some per-
sistent data in service 2 and Req32 needs to query
such data, service 3 indirectly exchanges the data
with service 1. A typical example is data subscrip-
tion with data decoupling patterns proposed in
[4], which includes customer management service
(service 1), subscription management service (ser-
vice 2) and report service (service 3). Customer
management service sends new customer data
incrementally to subscription management ser-
vice, and report service queries subscription data
from subscription management service, including
customer data. In this example, report service does
not directly interacts with customer management

service, but the former relies on the latter indirectly
through the customer data. When customer man-
agement service changes (for example, the struc-
ture of customer table is changed), such changes
may also affect report presentation of report ser-
vice, which is needed to verify in regression test-
ing. Similarly, in the right case of Fig. 2, service 2
invocates service 1 and service 3 through Req21
and request Req23 respectively. When parameters
of Req23 include some data returned by Req21,
service 3 may indirectly rely on service 1 through
such data. Service dependency generated by indi-

rect data exchange is defined as “data dependency”
in our approach. From the perspective of frequent
patterns, data dependencies are expressed as 2-fre-
quent item sets in the transaction set, and request-
ors or responders of two items are the same.

Through the analysis above, it is concluded that the
request flows may lead to request dependencies, while
data flows may lead to both request dependencies and
data dependencies. In order to measure the possibility of
a service dependency quantitatively, confidence value is
defined as follow:

Definition 3.3Confidence of service dependencies.
Given frequent threshold c, let F1, F2 respectively rep-

resent the set of 1-frequent item sets and the set of 2-fre-
quent item sets in transaction set D, count(I) represent
the number of transactions containing item set I in D.
Then the confidence value of service si depending on sj is
given by equations in Formula 1:

Formula 1 divides confidence degree of service depend-
ency into four situations: the first equation computes
the confidence of service dependency between two ser-
vices in the same invocation, corresponding to request
dependency, which is measured by the support of 1-fre-
quent item set; the second and the third equations com-
pute the confidence of service dependency between two
services in different invocations that belong to a same
data flows, corresponding to data dependency, which are
measured by the product of the support of 2-frequent
item sets and the confidence of association rules from
corresponding tuples [33] (the second equation corre-
sponds to data dependency in left case of Fig. 2, while

(1)conf si, sj =

count({<si ,sj>})
|D| , < si, sj > ∈ F1

(count(<si ,sk>,<sj ,sk>))
2

|D|×count(<si ,sk>)
, < si, sj > /∈ F1 ∧ < si, sk >,< sj , sk > ∈ F2

(count(<sk ,si>,<sk ,sj>))
2

|D|×count(<sk ,si>)
, < si, sj > /∈ F1 ∧ < sk , si >,< sk , sj > ∈ F2

0, otherwise

Fig. 2  Two basic cases of indirect data exchange

Page 7 of 21Chen et al. Journal of Cloud Computing (2023) 12:20 	

the third equation corresponds to right one). Except for
above situations, it is considered that there is no depend-
ency between services, and the confidence is defined as 0.

For example, in Fig. 2, supposing that Req12 appears
500 times in logs and the log size is 2000, given c = 0.2,
then <s1,s2 > ∈F1 and conf(s1,s2) is 0.25 according to
the first equation of Formula 1. Supposing that Req13
does not appear anywhere and Req12, Req32 appear
together in the same transaction 400 times in logs,
them {<s1,s2>, <s3,s2>}∈F2 and service 1 may depend
on service 3 via data flow with global probability
conf(s1,s3) = 0.25 × 0.8 = 0.2 according to the second
equation of Formula 1. Meanwhile, service 3 may also
depend on service 1 via data flow based on the confi-
dence of Req32.

It is noted that the support of 2-frequent item sets
is less than or equal to the support of 1-frequent
item sets, and this method does not consider service
dependencies whose confidence is less than c. Then, the
definition of service dependency matrix is as follows:

Definition 3.4Service Dependency Matrix, SDM
Given a service set S = {si|0 < i ≤ n}, SDM is a n-order

square matrix, and its element aij in row i and column j
is defined as follows:

Based on Definition 3.3 and Definition 3.4, an algo-
rithm for generating SDM from D can be proposed as
Algorithm 1. Firstly, the algorithm constructs 1-fre-
quent item sets, and generates candidate sets by Carte-
sian product, and then removes infrequent item sets by
c to obtain 2-frequent item sets (line 1 to 4). Secondly,
SDM is initialized as an n-order zero square matrix
(line 5). Based on the first equation of Formulas 1 and
2, the element of SDM corresponding to 1-frequent
item is set as the support value (line 6 to 8). Thirdly, by
traversing 2-frequent item sets, when tails of two invo-
cations are the same, corresponding element of SDM

(2)aij =

{

conf
(

si, sj
)

, i �= j ∧ conf
(

si, sj
)

≥ c
0, otherwise

is updated as the maximal value of its current value
and the result computed with the second equation of
Formula 1 (line 10 to 18); when heads of two invoca-
tions are the same, the third equation of Formula 1 is
adopted (line 19 to 28).

Algorithm 1 Service dependence matrix generation algorithm

For example, a SDM of 9 services generated from
logs is shown in Table 1. As Table 1 shows, elements on
the diagonal of the SDM are all 0, and elements above
0 indicate dependencies where the confidence level
exceeds given threshold. According to Algorithm 1,
non-zero elements of SDM are related to F1, F2 and c,

Table 1  An example of SDM

Service s1 s2 s3 s4 s5 s6 s7 s8 s9

s1 0 0 0 0 0.25 0 0 0.20 0

s2 0.50 0 0 0 0 0 0 0 0

s3 0 0.22 0 0 0 0 0 0 0

s4 0 0 0.29 0 0 0 0.45 0 0

s5 0 0 0 0.30 0 0.32 0 0 0

s6 0 0 0 0 0 0 0 0 0

s7 0 0 0 0 0 0 0 0 0

s8 0 0 0 0 0 0 0 0 0

s9 0 0 0.26 0 0 0 0 0 0

Page 8 of 21Chen et al. Journal of Cloud Computing (2023) 12:20

and therefore to the scale of logs and frequency thresh-
old. Theoretically, the scale of logs is larger, more
dependencies among services are covered, and there
will be more SDM non-zero elements. Given logs, fre-
quency threshold is smaller, more SDM non-zero ele-
ments will be generated. More non-zero elements
indicate that SDM is more complete, which can affect
the safety of test case selection, and it will be discussed
in Empirical study section further.

Change impact analysis
Change impact analysis also including two activities:
directed graph generation and impact propagation com-
puting. The former builds a directed graph model from
SDM, while the latter measures impacts by an impact
propagation algorithm.

Directed graph generation
Directed graph is used to represent impact propagation
network of services. Nodes of the graph represent ser-
vices and directed edges represent propagation paths
among services. Since each element of SDM represents
the confidence of corresponding service dependency, the
weight of each directed edge can be initialized. Therefore,
based on Definition 3.4, a directed graph can be defined
as follows:

Definition 3.5Directed Graph, DG
A directed graph for impact propagation is a tuple

DG = (N,E), where node set N=S, edge set E = {eij|

aji∈SDM∧aji>0}, eij represents a directed edge from si to
sj, and w(eij) = aji represents the weight of eij.

Based on this definition, an algorithm of directed
graphs generation from SDM is shown in Algorithm 2.
Node set of DG (line 1) is established based on service
set. And then, all elements of SDM are traversed (line
2 to 12) while directed edges are established between
nodes with confidences greater than 0. The direction of a
directed edge is opposite to the direction of correspond-
ing service dependency (lines 5 to 8). For example, a DG
corresponding to Table 1 is shown in Fig. 3. It can be seen
that directed edges on DG are inverted with respect to
non-zero elements in SDM.

Algorithm 2 Directed graph generation algorithm

Fig. 3  An example of DG

Page 9 of 21Chen et al. Journal of Cloud Computing (2023) 12:20 	

Impact propagation calculation
Given a service set S and its modified version S′, it is
easy to obtain a list of changed services with service
registries [4], which is denoted as ∆S. Since services
affect each other through service dependencies during
changing, based on DG, change impact analysis can
be translated into a quantitative assessment of impact
propagation from some nodes in ∆S to others, which
can be addressed by BP-like methods. The difference is
that messages in belief propagation are used to calcu-
late the probability of edge distribution of nodes, while
messages in impact propagation are used to calculate
the probability of nodes being affected by changes.
Referring to the framework of BP algorithm, an algo-
rithm of node updating and message propagation is
proposed, and its convergence of iterative calculation
process is also analyzed.

Node updating  Since there is no limit to the sum of
change impacts on all service nodes, standard BP algo-
rithm can not be applied. Our approach defines “impact
degree” to measure change impacts of service nodes.
Impact degree of nodes in ∆S is defined as 1, as the upper
limit value, and impact degree of nodes not affected by
changes is defined as 0, as the lower limit value. When a
node acts as the end node of a directed edge, its impact
degree may be updated with the message passing from
the directed edge. The updated value of this node should
be the maximum value of all messages sent to it and its
current impact degree. The formal definition is as follows:

Definition 3.6Impact Degree

Given a directed graph DG of Definition 3.5, let Ni rep-
resent the neighborhood of si, mji represent the message
from sj to si, t represent iteration rounds of message prop-
agation, then impact degree pt(si)∈[0,1] of si is recursively
calculated as follows:

Apparently, impact degree of a node after message propa-
gation is not less than that before message propagation,
that is, pt + 1(si) ≥ pt(si).

Message propagation  In a directed graph, through
directed edge eij, impact degree of si can be propagated
to sj based on weight w(eij), so the message is defined as
follows:

(3)p0(si) =

{

1, si ∈ �S
0, si /∈ �S

(4)pt+1(si) = max

(

pt(si), max
j∈Ni

(

mji

)

)

Definition 3.7Message

Given a directed graph DG of Definition 3.5, when
eij∈DG.E, message mij propagated from si to sj is:

Apparently, since w(eij)<1, message value is always less
than current impact degree of the sender node, that is, m
ij<pt(si).

Convergence analysis  Definitions 3.6 and 3.7 show iter-
ative computing process of change impact propagation.
When there are no loops in DG, that is, a directed acyclic
graph, propagation rounds of each node do not exceed
the number of edges contained in the longest path of DG,
so calculation process must be convergent. When there
are some loops in DG, updating rounds are uncertain.
In this case, it can be divided into two situations to ana-
lyze, changed services in the loops and not in the loops,
respectively discussed as follows:

(i)	When there is a node s∈∆S in a loop, then
p0(s) = 1. Because pt + 1(s) ≥ pt(s), and pt(s) ≤ 1, so
pt(s) = p0(s) = 1, that is, impact degree of s will not
be updated by message propagation. The directed
edge with s as the end node does not work in com-
puting process and can be considered as inter-
rupted. At this time, the loop can be directly dis-
connected and transformed into a directed acyclic
graph, so computing process converges, which can
be shown schematically in Fig. 4.

	(ii)	 For any node s of the loop, s∉ ∆S, then p0(s) = 0.
According to Definition 3.7, messages propagated
on the loop is always 0 until the loop receives exter-
nal input messages. When there are multiple exter-
nal input messages, because the output of function
Max only depends on values of parameters, but has
nothing to do with the number of parameters, so
we can suppose multiple external input messages
reach the loop at the same time by aligning itera-
tion rounds. Then computing process of the loop
can be divided into three phases:

➀ Computing all input messages. At this phase,
because message propagations in the loop are not
considered, it is transformed into a directed acy-
clic graph, and computing process converges in this
phase;
➁ Computing message propagations in the loop.
After external input messages enter the loop at the

(5)mij = pt(si)× w
(

eij
)

Page 10 of 21Chen et al. Journal of Cloud Computing (2023) 12:20

same time, impact degrees of nodes are assigned
with Formula 4. Through numerical compari-
son, node sm with maximal impact degree can be
obtained, which is denoted as pt(sm). Since mes-
sages propagated in the loop satisfy mij<pt(si),
maximal value of messages in the loop is less than
pt(sm). Therefore, no matter how many rounds
messages propagates in the loop, pt(sm) does not
changes. That is, the loop can be disconnected
from the directed edge with sm as the end node,
and the loop can be removed, which means calcu-
lation process converges.

➂ Computing all output messages. According to
the calculation results of phase 2, output message
of each node in the loop is calculated directly with
Formula 5.

The schematic diagram of calculation process in case (ii)
is shown in the Fig. 5.

To summarize, computing process of impact degrees
determined by Definition 3.6 and Definition 3.7 is con-
vergent, that is, impact degree of each node can converge
to a stable value in finite iteration rounds. The results of
impact propagation computing can be put in a diction-
ary structure called change impact table (CIT) to access
conveniently in our approach. The pseudo codes for
generating a CIT from a DG is shown in Algorithm 3.
Firstly, impact degrees of all nodes in the DG (line 1
to 3) are initialized according to changed service list,
and the CIT (line 4) is also initialized correspondingly.
Secondly, iterative computing process (line 5 to 14) is
started. Message values (line 6 to 8) are computed with
current impact degrees of nodes in each iteration, while

impact degrees (line 9 to 13) are updated with the mes-
sage values. The exit condition of iteration process is that
impact degrees of all nodes in the CIT no longer change
(line 14). For the DG in Fig. 3, supposing that p0(s6) = 1,
p0(s7) = 1 and p0(s8) = 1, 4 iterations of impact propaga-
tion will be performed based on Algorithm 3. And the
output CIT = {s1:0.2, s2:0.1, s3:0.022, s4:0.45, s5:0.32, s6:1,
s7:1, s8:1, s9:0.0057}.

Algorithm 3 Impact propagation algorithm

Test case selection
This step selects a subset Ts from test path set T based
on a CIT. For any test path tp∈T, a service set Stp can
be derived from the invocations which make up tp with
service registries. By querying a CIT, we can obtain
impact degree of any service s∈Stp, denoted as CIT(s).

Fig. 4  A node of a loop is changed services

Page 11 of 21Chen et al. Journal of Cloud Computing (2023) 12:20 	

Then, to select test paths which are affected by changes,
a threshold p can be set to determine whether CIT(s)
of service s contained in the test path exceeds p. To
avoid ignoring test paths affected by changes, p is set
the minimum non-zero value of elements in a CIT. To
adapt to different cases such as high safety, tight sched-
ule etc., three selection strategies are proposed as fol-
lows according to the number of services that meet the
conditions:

(1)	Existent satisfaction strategy. Given a filtering
threshold p, if a test path tp∈T contains services sat-
isfies CIT(s) ≥ p, then the test path is appended to
Ts. That is,

(2)	Complete satisfaction strategy. Given a filtering
threshold p, for a test path tp∈T, if every service in
Stp satisfies CIT(s) ≥ p, then the test path is appended
to Ts. That is,

(3)	The k-existent satisfaction strategy. Given a filtering
threshold p, for a test path tp∈T, if the number of
services in Stp, which satisfies CIT(s) ≥ p, exceeds k,
then the test path is appended to Ts. That is,

(6)Ts =
{

tp|∃s ∈ Stp,CIT (s) ≥ p
}

(7)Ts =
{

tp|∀s ∈ Stp,CIT (s) ≥ p
}

Fig. 5  No nodes of the loop are changed services

Page 12 of 21Chen et al. Journal of Cloud Computing (2023) 12:20

From above strategies, existent satisfaction strategy
is the most relaxed strategy, and the scale of selected
test path set is largest. Especially when p is the mini-
mum non-zero value in CIT(s), it means that as long as
a test path contains services affected by changes, such
test path is selected. The complete satisfaction strategy
is the most strict strategy, and the scale of selected test
path set is smallest. The k-existent satisfaction strategy
is between the two, which can be used to adjust the
scale of selected test path set as needed.

Corresponding test case selection algorithms can be
proposed. The pseudo codes of existent satisfaction
strategy are shown in Algorithm 4, in which original
test path set is traversed once (line 2 to 9). By querying
a CIT, whether the current test path is selected into the
TS (lines 3 to 8) can be determined. The pseudo codes
of the other two strategies are similar and will not be
described further.

Algorithm 4 Test case selection algorithm based on the existent
satisfaction strategy

Empirical study
In order to evaluate MRTS-BP and analyze the influ-
ence of process parameters on testing selection, we
implemented whole process based on Python 3.5, and
collected testing data of four microservice systems for
experimental analysis. Our empirical study investigates
four research questions as follow:

RQ1 Whether MRTS-BP is safe or not, and how the
value of the frequent threshold c affects its safety.

	 An RTS technique is safe if it will contain all test
cases revealing faults in regression testing [5]. Safety
determines the availability of RTS techniques. In
MRTS-BP, the frequent threshold c is directly related
to the number of mined frequent patterns, and then

(8)Ts =

{

tp|∃
k
s ∈ Stp,CIT (s) ≥ p

} affects network structure of directed graph, which
has a great influence on the results of change impact
propagation. Therefore, the number of test cases
selected by MRTS-BP is related to the value of c. It is
necessary to analyze the relationship between c and
the safety of MRTS-BP, and find out the range of c
that can ensure the safety.
RQ2 On the premise of guaranteeing safety, whether
MRTS-BP can save testing cost of microservice
regression testing.
	 Compared with retest-all strategy, RTS tech-
niques save testing cost by reducing the number of
test cases, but extra time consumption is caused for
selecting. When time cost saved are greater than
extra time consumption, RTS techniques can save
time cost of regression testing overall. Through the
experiments, the reduction of the number of test
cases and testing time cost are both counted to
determine whether MRTS-BP can save testing cost
of microservice regression testing.
RQ3 Compare MRTS-BP with a typical artifacts
based RTS approach.
	 Theoretically, MRTS-BP does not rely on arti-
facts such as specifications, design models and code
files. It is completely decoupled from techniques for
constructing of the systems under testing, that is,
the scalability of MRTS-BP is obviously better than
artifacts based RTS approaches. In order to make a
more comprehensive comparison, an RTS approach
based on control flow analysis (RTS-CFG) [16] is
chosen to compare with MRTS-BP to reveal the
practicability of the two in microservice regression
testing.
RQ4 How to choose selection strategies of MRTS-
BP to optimize time cost.
	 Existent satisfaction strategy, complete satisfac-
tion strategy and k-existent satisfaction strategy are
proposed in our approach to meet different testing
requirements. To analyze the influence of selection
strategies on the efficiency of MRTS-BP, experi-
ments are needed to clarify how the selection strat-
egies affect the number of test cases selected, the
safety and the precision of MRTS-BP, which will be
helpful to select appropriate strategies in practice.

Case introduction
The following four microservice systems are adopted in
our empirical study:

(1)	 m-Ticket: a multi-end ticket system based on
SpringBlade (an open source microservice frame-
work available at https://​github.​com/​chill​zhuang/​

https://github.com/chillzhuang/SpringBlade

Page 13 of 21Chen et al. Journal of Cloud Computing (2023) 12:20 	

Sprin​gBlade), provides ticket services in various
fields such as transportation, accommodation, tour-
ist attractions and movies, supporting service man-
agement, monitoring and tracing.

(2)	 z-Shop: a mobile oriented mall system based on
Zheng (an open source microservice framework
available at https://​github.​com/​shuzh​eng/​zheng),
provides one-stop management services for goods,
stores, content promotion, orders, logistics, etc.

(3)	 Need: a knowledge system based on Spring Cloud,
provides data collection, auxiliary analysis, infor-
mation extraction, knowledge graph construction,
intelligent query and other knowledge graph man-
agement services.

(4)	 JOA: an office automation system based on
Spring Cloud, provides comprehensive infor-
mation display, document circulation, process
approval, plan management, organization per-
sonnel management, contract management, fund
management and material management services
for the organization with multiple departments
and secret levels.

Table 2 shows the numbers of logs, services, versions,
test cases and faults of all cases above. The number of
faults is collected from corresponding testing reports
where all faults found in testing are reported. Based
on these data, a posteriori method is adopted to setup
experiments, that is, execution results of test suite are
known before, and main activities are to select test cases
and to perform statistical analysis. As shown in Table 2,
m-Ticket, z-Shop and Need are relatively small systems,
but JOA have much more services respectively. To com-
pare with artifacts based approaches, we also collect
design documents, logs and testing data. Since multiple
teams developed JOA and they did not agree to grant
the access permission, we failed to collect correspond-
ing artifacts for JOA. Artifacts based RTS approaches can
not be applied in JOA.

Evaluation metrics
According to common RTS evaluation metrics [11–14],
considering problems in experiments, 3 metrics are pro-
posed as follows:

(1)	Testing time cost saving rate (ET) is used to measure
the extent to which RTS approaches reduce regres-
sion testing time cost. Let TO represent total execu-
tion time cost of original test suite, TR represent exe-
cution time cost of selected test suite based on RTS
approaches, and TS represent the time cost of selec-
tion process, then ET is given by equation in (9):

(2) Percentage reduction of the number of test cases
(EN) is used to measure the ability of RTS techniques
save testing cost only in terms of reducing the num-
ber of test cases [12, 13]. Let NO represent the num-
ber of original test cases, NR represent the number of
selected test suite, then ET is given by equation in (10):

(3)	Recall (R) indicates the percentage of selected test
cases relative to all failed test cases [11–14], which
is used to measure the safety of RTS techniques. Let
NOF represent the number of test cases revealing
faults in original test suite, NSF represent the number
of test cases revealing faults in selected test suite based
on RTS techniques, then R is given by equation in (11):

(4)	Precision (P) indicates the accuracy with which test
cases were selected to be rerun [11–14]. Since NR
represents the number of selected test suite, then P is
given by equation in (12):

(5)	F-measure (F) is a combination of both P and R
[11–14], which indicates the combination of safety and
accuracy of RTS approaches, and F is given by equation

(9)ET =
TO − TR− TS

TO
× 100%

(10)EN =
NO − NR

NO
× 100%

(11)R =
NSF

NOF
× 100%

(12)P =
NSF

NR
× 100%

Table 2  Properties of each case

Subject No. of services No. of logs No. of versions No. of test cases No. of faults

m-Ticket 61 40,000 5 1182 539

z-Shop 43 20,000 4 913 427

Need 169 2,000,000 4 847 781

JOA 605 50,000,000 9 13,356 4783

https://github.com/chillzhuang/SpringBlade
https://github.com/shuzheng/zheng

Page 14 of 21Chen et al. Journal of Cloud Computing (2023) 12:20

in Formula 13. It can be seen that the lager F is, the bet-
ter the combination of safety and accuracy is.

Experiments setup
According to research problems above, four experiments
are setup as follows:

•	 Experiment 1: determine the safety of MRTS-BP and
its relationship with frequent threshold c

	 For each case, from version v (v ≥ 2), following steps
are carried out.

(1)	 Taking logs of version v-1 as input, global item
set and transaction set are generated respec-
tively. After frequencies of all items obtained,
the minimum value and maximum value are
taken as the lower bound and upper bound of
frequent threshold c respectively. Then divide
the range of c into ten equal parts, and take
the lower bound of each equal part as a value
of c, which are denoted as ci (i = 1,2…10). The
ten values of c are used respectively to generate
SDMs through transaction set mining.

(2)	 Based on the ten SDMs generated in step 1, ten
CITs are generated respectively. For each CIT,
the minimum non-zero element in CIT is taken
as selection threshold p, and test cases are
selected with existent satisfaction strategy.

(3)	 NOF is counted from testing report of corre-
sponding version. For each test suite selected,
NSF and recall R are also counted.

•	 Experiment 2: compare the ability to save testing cost
of MRTS-BP and RTS-CFG

	 For each case, from version v (v ≥ 2), following steps
are carried out.

(1)	 Find out selected test suite in Experiment
1 with smallest number of test cases and
R = 100% (set NA when there is no R = 100%).
Collect time cost to select such test suite,
including the whole process of MRTS-BP,
which is TS of MRTS-BP. Then, TO and TS are
computed from testing report of corresponding
version, and then ET is computed.

(2)	 Apply RTS-CFG on each version with available
artifacts and tools [16] to select a test suite with
R = 100% (set NA when there is no available

(13)F =
2× P × R

P + R

artifacts or no R = 100%). Collect time cost to
select such test suite, including the whole pro-
cess of RTS-CFG, which is TS of RTS-CFG.
Similarly, count TO, TS and compute ET.

(3)	 For MRTS-BP and RTS-CFG, count the num-
ber of test cases selected and compute EN
respectively.

(4)	 Compare ET, EN of MRTS-BP and RTS-CFG.

•	 Experiment 3: compare the effectiveness of MRTS-
BP and RTS-CFG

	 For each case, from version v (v ≥ 2), following
experimental steps are carried out.

(1)	 With the results of step 1 in Experiment 2,
compute recall R, precision P and F-measure F
of MRTS-BP.

(2)	 With the results of step 2 in Experiment 2,
compute recall R, precision P and F-measure F
of RTS-CFG (set NA when there is no available
artifacts).

(3)	 Compare R, P, F of MRTS-BP and RTS-CFG.

•	 Experiment 4: analyze changing trends of EN, R, P
and F with different selection strategies of MRTS-BP.

	 For the last version of each case, following steps are
carried out.

(1)	 Find out the CIT of step 2 in Experiment 1 with
smallest number of test cases and R = 100% (set
NA when there is no R = 100%). Test cases are
selected respectively with complete satisfac-
tion strategy and k-existent satisfaction strat-
egy (k = 2,3,4), if the maximal number of ser-
vices contained in test paths is smaller than
four, then the upper of k is set as such maximal
number.

(2)	 For each test case selected, compute EN, R, P
and F.

(3)	 Compare values of EN, R, P and F of different
strategies by bar charts.

Results and discussion
Data and analysis
Data of Experiment 1 are shown in Table 3. Let Ri
(i = 1,2…10) represent the value of R corresponding to
ci of step 1, it can be seen that R can reach 100% with
frequent threshold c assigned an appropriate value
in each version of each case. That is because exist-
ent satisfaction strategy means that test cases includ-
ing any services affected by changes will be selected.
So it indicates that MRTS-BP can ensure safety when

Page 15 of 21Chen et al. Journal of Cloud Computing (2023) 12:20 	

c is set appropriate with existent satisfaction strategy.
To show change trend of R with c intuitively, the line
chart Fig. 6 is drawn from the last version of each case.
From Fig. 6, when c changes from minimum value to
maximum value, R will gradually decrease. This is
because when c becomes larger, less frequent patterns

are mined, that is, less possible service dependen-
cies are obtained, which leads to more zero elements
in SDM, and further leads to less directed edges of
directed graph. Since less edges of directed graph has,
less nodes will be considered in change propagation
computing, which may lead to that less services are

Table 3  Data of Experiment 1

Subject &
versions

ci/ Ri

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10

m-Ticket

  v2 0.005 0.026 0.048 0.069 0.091 0.113 0.134 0.156 0.177 0.199

100% 100% 100% 92.3% 91.2% 75.6% 61.3% 50.6% 32.4% 9.35%

  v3 0.008 0.030 0.053 0.076 0.099 0.122 0.145 0.168 0.191 0.214

100% 100% 100% 100% 100% 78.2% 74.6% 49.1% 27.2% 5.62%

  v4 0.003 0.040 0.077 0.114 0.151 0.189 0.226 0.263 0.300 0.337

100% 100% 100% 100% 93.6% 75.2% 69.3% 55.1% 38.7% 7.20%

  v5 0.003 0.038 0.074 0.110 0.145 0.181 0.217 0.252 0.288 0.324

100% 100% 100% 100% 95.5% 73.2% 71.6% 43.3% 29.6% 8.13%

z-Shop

  v2 0.019 0.051 0.084 0.117 0.150 0.183 0.216 0.249 0.283 0.315

100% 100% 100% 100% 97.2% 84.2% 55.9% 52.1% 31.6% 14.5%

  v3 0.014 0.057 0.101 0.145 0.189 0.233 0.277 0.321 0.365 0.409

100% 100% 100% 100% 100% 92.1% 65.3% 57.9% 33.6% 11.2%

  v4 0.017 0.060 0.103 0.146 0.189 0.232 0.275 0.318 0.361 0.404

100% 100% 100% 100% 93.2% 86.7% 59.2% 49.2% 28.7% 7.52%

Need

  v2 0.001 0.020 0.039 0.059 0.078 0.098 0.117 0.136 0.156 0.175

100% 100% 100% 100% 95.6% 91.5% 67.4% 59.2% 29.4% 4.30%

  v3 0.001 0.021 0.042 0.062 0.083 0.104 0.124 0.145 0.165 0.186

100% 100% 100% 100% 89.2% 85.6% 59.7% 55.3% 26.7% 3.55%

  v4 0.002 0.023 0.044 0.065 0.086 0.108 0.129 0.150 0.171 0.192

100% 100% 100% 100% 100% 100% 71.3% 64.8% 21.5% 11.7%

JOA

  v2 0.001 0.028 0.056 0.083 0.111 0.139 0.166 0.194 0.221 0.249

100% 100% 100% 100% 100% 85.3% 80.6% 56.2% 53.4% 21.4%

  v3 0.001 0.030 0.059 0.088 0.117 0.147 0.176 0.205 0.234 0.263

100% 100% 100% 97.2% 92.5% 86.2% 79.4% 63.1% 57.1% 19.2%

  v4 0.002 0.037 0.072 0.107 0.142 0.177 0.212 0.247 0.282 0.317

100% 100% 100% 100% 90.8% 83.6% 77.5% 58.2% 50.6% 24.7%

  v5 0.003 0.038 0.074 0.109 0.145 0.181 0.216 0.252 0.287 0.323

100% 100% 100% 100% 100% 86.2% 81.5% 49.6% 43.2% 19.8%

  v6 0.003 0.042 0.081 0.120 0.159 0.198 0.237 0.276 0.315 0.354

100% 100% 100% 100% 93.7% 87.9% 79.6% 53.7% 47.7% 18.9%

  v7 0.003 0.040 0.078 0.116 0.154 0.192 0.229 0.267 0.305 0.343

100% 100% 100% 100% 100% 95.1% 83.5% 69.2% 46.6% 22.5%

  v8 0.019 0.059 0.100 0.141 0.182 0.222 0.263 0.304 0.345 0.386

100% 100% 100% 100% 100% 95.6% 89.7% 70.4% 47.5% 20.6%

  v9 0.008 0.044 0.081 0.118 0.155 0.192 0.229 0.266 0.303 0.340

100% 100% 100% 100% 100% 100% 91.6% 68.3% 56.6% 14.1%

Page 16 of 21Chen et al. Journal of Cloud Computing (2023) 12:20

Fig. 6  The change trends of R with c in Experiment 1

Table 4  Data of Experiment 2

Subject & versions Original MRTS-BP RTS-CFG

NO TO NR EN TR TS ET NR EN TR TS ET

m-Ticket

  v2 932 521.24 410 56% 223.55 0.13 57% 437 53% 240.12 190.94 17%

  v3 1057 654.43 507 52% 295.59 0.17 55% 540 49% 337.31 82.83 36%

  v4 1094 725.98 612 44% 366.99 0.19 49% 625 43% 409.50 34.07 39%

  v5 1182 743.11 591 50% 334.72 0.21 55% 631 47% 401.72 13.40 44%

z-Shop

  v2 772 388.40 355 54% 204.37 0.09 47% 370 52% 223.13 124.48 11%

  v3 869 533.93 521 40% 258.63 0.10 52% 568 34% 338.81 68.02 24%

  v4 913 598.42 456 50% 221.50 0.12 63% 483 47% 320.35 15.71 44%

Need

  v2 737 534.66 316 57% 241.40 4.41 54% 322 56% 243.65 273.64 3%

  v3 805 685.31 362 55% 367.82 5.12 46% 394 51% 395.14 102.18 27%

  v4 847 734.50 406 52% 389.96 5.53 46% 421 50% 395.08 59.34 38%

JOA

  v2 10,742 7305.56 4726 56% 2996.86 42.34 58% NA NA NA NA NA

  v3 11,593 7752.70 6608 43% 3791.62 57.15 50% NA NA NA NA NA

  v4 11,989 7917.07 6833 43% 3935.13 63.33 49% NA NA NA NA NA

  v5 12,374 8253.80 6434 48% 3494.98 75.22 57% NA NA NA NA NA

  v6 12,507 8327.07 7003 44% 4109.38 90.32 49% NA NA NA NA NA

  v7 12,887 8569.12 5928 54% 3185.81 99.54 62% NA NA NA NA NA

  v8 13,252 9112.34 5963 55% 3204.49 118.21 64% NA NA NA NA NA

  v9 13,356 9257.31 6678 50% 3886.37 137.36 57% NA NA NA NA NA

Page 17 of 21Chen et al. Journal of Cloud Computing (2023) 12:20 	

appended to CIT. Then, less test paths will be selected
with existent satisfaction strategy, which leads to the
smaller value of R. Therefore, in order to ensure the
safety of MRTS-BP, the value of c should be close to its
lower bound value.

Data of Experiment 2 are shown in Table 4. From EN
of MRTS-BP, value ranges from 40% to 57%, and mean
value is 50%, that is, the number of test cases is appar-
ently reduced by applying MRTS-BP. Similarly, EN of
RTS-CFG ranges from 34% to 56% with mean value 48%.

Fig. 7  The boxplot of EN and ET in Experiment 2

Table 5  Data of Experiment 3

Subject & versions MRTS-BP RTS-CFG

R P F R P F

m-Ticket

  v2 100% 38.2% 0.55 100% 35.8% 0.53

  v3 100% 13.8% 0.24 100% 12.9% 0.23

  v4 100% 11.9% 0.21 100% 11.6% 0.21

  v5 100% 6.59% 0.12 100% 6.20% 0.12

z-Shop

  v2 100% 37.4% 0.54 100% 35.9% 0.53

  v3 100% 12.2% 0.21 100% 11.2% 0.20

  v4 100% 6.57% 0.12 100% 6.20% 0.12

Need

  v2 100% 86.7% 0.93 100% 85.1% 0.92

  v3 100% 42.2% 0.59 100% 38.8% 0.56

  v4 100% 37.9% 0.55 100% 36.5% 0.53

JOA

  v2 100% 40.1% 0.57 NA NA NA

  v3 100% 5.00% 0.09 NA NA NA

  v4 100% 1.30% 0.03 NA NA NA

  v5 100% 0.90% 0.02 NA NA NA

  v6 100% 3.50% 0.07 NA NA NA

  v7 100% 1.00% 0.02 NA NA NA

  v8 100% 0.60% 0.01 NA NA NA

  v9 100% 0.90% 0.02 NA NA NA

Page 18 of 21Chen et al. Journal of Cloud Computing (2023) 12:20

It can be seen that, in terms of percentage reduction of
test suite scale, MRTS-BP can save testing cost like the
typical RTS technique. However, from values of ET, test-
ing time cost saving rates of the two approaches are dif-
ferent. Since MRTS-BP has more data than RTS-CFG,
boxplots in Fig. 7 are drawn to show the comparison of
the two. From Fig. 7, MRTS-BP and RTS-CFG have simi-
lar mean values, standard deviation values and extreme
values for EN. But for ET, mean value and extreme val-
ues of the former are apparently larger than those of the
latter (the difference is at least 20%), that is, MRTS-BP
can save more testing time cost than RTS-CFG. This is
because RTS-CFG spends large amounts of time on arti-
facts processing, while MRTS-BP spends much less time
on process log mining and compute change propagation.
Consistency, comprehensibility, integrity, granularity
other characteristics of artifacts seriously affect process-
ing performance of RTS-CFG, while logs are structural
and the process of MRTS-BP can be easy to automate.
Therefore, MRTS-BP spends much less time than RTS-
CFG during the selection phase. To RQ2, on the premise
of guaranteeing safety, MRTS-BP can reduce testing cost

of regression testing not only in the number reduction of
test cases but also in time cost saving.

The Data of Experiment 3 are shown in Table 5. From val-
ues of R, MRTS-BP and RTS-CFG can ensure all test cases
revealing faults are selected for each version of each case,
that is, MRTS-BP and RTS-CFG are both safe. To intui-
tively compare P and F of the two techniques, line charts are
drawn for each case in Fig. 8. From the line charts of case
m-Ticket, z-Shop and Need, for P and F, it is can be seen
that values and their change trends of MRTS-BP and RTS-
CFG are almost the same. This is due to similar abilities of
the two approaches to reduce the number of test cases and
cover impact scopes of changes. Essentially, MRTS-BP and
RTS-CFG both identify change impact scopes based on
service dependencies. The difference lies in that, the for-
mer adopts impact propagation calculation while the latter
adopts edge analysis based on control flow models. And it
also indicates that BP-like algorithm worked in regression
testing selection. On the other hand, since artifacts based
RTS approaches are not adapted to the case which artifacts
are difficult to obtain, such as JOA, the scalability of MRTS-
BP is obviously better than that of RTS-CFG in practice.

Fig. 8  The line charts of each case in Experiment 3

Page 19 of 21Chen et al. Journal of Cloud Computing (2023) 12:20 	

The Data of Experiment 4 are shown in Table 6, and
corresponding bar charts are shown in Fig. 9. From val-
ues of EN with different selection strategies in each case,
it can be seen that more strict selection strategy is, less
test cases are selected, and more testing cost are saved.
However, that less test cases are selected means more
test cases affected by changes are ignored, which can
make MRTS-BP be not safe, as shown by the values of
R in each cases. That is, EN and R are a pair of trade-off
with different selection strategies, and one should choose
strategies according to the actual case. From Fig. 9, exist-
ent satisfaction strategy can always ensure the safety of
MRTS-BP, but EN and F with such strategy are not the
best, which means MRTS-BP can be applied in the case
of high safety. Complete satisfaction strategy save more
testing cost than others, but it is far less safe than oth-
ers, which means such strategy can be applied in the case
of tight schedule. The efficiency of k-existent satisfaction
strategy is determined by the value of k. When k is larger,
the number of selected test cases will be significantly
reduced, but the safety will also be worse, or even una-
vailable. When k is smaller, MRTS-BP has better safety,
but testing cost reduction rate becomes lower. It is worth
noting that when k is 2, R reaches 100% in three cases,
and EN and F are better compared with those of com-
plete satisfaction strategy. This indicates that 2-existent

satisfaction strategy can be applied and may bring more
efficiency.

Threats to validity
As with most empirical studies, there are some risks to
apply the conclusions directly of experiments above, and
threats to validity mainly are manifested in two aspects:

(1)	 Cases selection. Although our experiments consider
factors such as size, complexity, and domain when
selecting cases, there may be some limitations that
do not cover all types of microservice systems. At
the same time, methods of test cases generation, and
whether faults records are comprehensive or not
may also affect experimental results. It needs to be
validated by more cases in different areas, different
scales and different data distribution characteristics.

(2)	 Comparison RTS techniques selection. The method
for comparison, RTS-CFG, comes from related
work, which also has validity risks that will be intro-
duced into our experiments. At the same time,
though RTS-CFG is a typical RTS technique rely-
ing on artifacts, it does not represent all artifacts
based RTS techniques and our approach need to be
validated against with more different artifacts based
RTS techniques.

Table 6  Data of Experiment 4

Subject & metrics Selection strategy

Existent satisfaction Complete satisfaction 2-existent satisfaction 3-existent satisfaction 4-existent
satisfaction

m-Ticket

  EN 50% 82% 63% 95% NA

  R 100% 52.9% 87.2% 37.5% NA

  P 6.59% 9.91% 7.78% 24.7% NA

  F 0.12 0.16 0.14 0.30 NA

z-Shop

  EN 50% 89% 68% 94% NA

  R 100% 66.7% 100% 43.6% NA

  P 6.57% 20% 10.3% 23.9% NA

  F 0.12 0.31 0.19 0.31 NA

Need

  EN 52% 92% 67% 89% 96%

  R 100% 43.5% 100% 55.4% 17.3%

  P 37.9% 98.1% 55.1% 91.6% 78.6%

  F 0.55 0.60 0.71 0.69 0.28

JOA

  EN 50% 96% 58% 66% 98%

  R 100% 40.0% 100% 82.3% 36.0%

  P 0.9% 4.50% 1.07% 1.09% 8.09%

  F 0.02 0.08 0.02 0.02 0.13

Page 20 of 21Chen et al. Journal of Cloud Computing (2023) 12:20

Conclusions and future work
This paper proposes a microservice regression test-
ing selection approach MRTS-BP, describes the whole
process in detail, and verifies its effectiveness through
experiments. MRTS-BP conquer the challenges of arti-
facts based RTS approaches by processing API gate-
way logs instead of artifacts. For acquisition issue, API
gateway logs are automatically and centrally recorded
without business-specific data, which avoids additional
communication costs and security risks. For processing
issue, API gateway logs are structural and consistent,
which leads to processing automatically with MRTS-
BP. For maintaining issue, API gateway logs are identi-
fied clearly and accurately correspond to each version of
services. Thus, MRTS-BP can be fully automated and is
applicable to microservice systems regression testing in
practice.

In future, two aspects which include granularity of
MRTS-BP and service dependencies from API gateway
logs must give insight overview to improve accord-
ingly. Also, MRTS-BP in different fields and patterns
like mesh service to collect more cases for empirical
study.

Acknowledgements
All those who have contributed to this paper have been included in the list of
authors.

Authors’ contributions
LIZHE CHEN contributed to the conception of the study. JI WU contributed
significantly to analysis and manuscript preparation. HAIYAN YANG performed
the experiments. KUI ZHANG performed the data analyses and wrote the
manuscript. The author(s) read and approved the final manuscript.

Authors’ information
LIZHE CHEN received his master degree in computer application technology
from National Defense University of Science and Technology, Hefei, China, in
2010. He is currently a Ph.D candidate in the oftware Engineering Institute
(SEI) at Beihang University. His research interests include model driven
engineering, data mining, machine learning, model base safety analysis, and
software testing.
JI WU is associate professor of software engineering at Beihang Univer‑
sity. He received his PhD degree from Beihang University in 2003 and MS
degree from the Second Research Institute of the China Aerospace Science
and Industry Group in 1999. His research interests include embedded
system and software modeling and verification, software requirement and
architecture modeling and verification, safety and reliability assessment, and
software testing.
HAIYAN YANG is lecture of software engineering at Beihang University. She
received her master degree in Computer Software and Theory at Beihang
University in 2000. Her research interests include software modeling and
verification，software testing, software measurement.
KUI ZHANG received his master degree in information management and infor‑
mation system from Beijing Institute of Technology, Beijing, China, in 2010.

Fig. 9  The bar charts of each case in Experiment 4

Page 21 of 21Chen et al. Journal of Cloud Computing (2023) 12:20 	

He is currently a Ph.D candidate in the oftware Engineering Institute (SEI) at
Beihang University. His research interests include model driven engineering,
model based real time analysis, airworthiness certification, model base safety
analysis, and general model based software engineering.

Funding
This paper is supported by the scholarship project set up in Beihang
University.

Availability of data and materials
The data used to support the findings of this study are included within the
article.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
All authors approved the final manuscript and the submission to this journal.

Competing interests
We declare that we have no financial and personal relationships with other
people or organizations that can inappropriately influence our work, there is
no professional or other personal interest of any nature or kind in any product,
service and/or company that could be construed as influencing the position
presented in, or the review of.

Received: 17 May 2021 Accepted: 27 January 2023

References
	1.	 Fan CY, Ma SP (2017) Migrating monolithic mobile application to micros‑

ervice architecture: an experiment report. In: Proceedings of 2017 IEEE
International Conference on AI & Mobile Services (AIMS), pp 109–112

	2.	 Lewis J, Fowler M (2014) Microservices: a definition of this new architec‑
tural term. http://​marti​nfowl​er.​com/​artic​les/​micro​servi​ces.​html

	3.	 Larrucea X, Santamaria I, Colomo-Palacios R, Ebert C (2018) Microservices.
IEEE Softw 35(3):96–100

	4.	 Newman S (2015) Building microservices: designing fine-grained sys‑
tems. O’Reilly Media, Sevastopol

	5.	 Yoo S, Harman M (2012) Regression testing minimization, selection and
prioritization: a survey. Softw Test Verif Reliab 22(2):67–120

	6.	 Gao C, Zheng W, Deng Y, Lo D (2019) Emerging app issue identification
from user feedback: experience on WeChat. In: Proceedings of the 41st
International Conference on Software Engineering: Software Engineering
in Practice, ICSE (SEIP) 2019, Montreal, QC, Canada, May 25-31

	7.	 Roberto P (2020) On the testing resource allocation problem: research
trends and perspectives. J Syst Softw 161:110462

	8.	 Qiu D, Li B, Ji S, Leung H (2014) Regression testing of web service: a
systematic mapping study. ACM Comput Surv 47(2):1–46

	9.	 Kazmi R, Jawawi DNA, Mohamad R, Ghani I (2017) Effective regression
test case selection: a systematic literature review. ACM Comput Surv
50(2):29

	10.	 Gligoric M, Eloussi L, Marinov D (2015) Practical regression test selection
with dynamic file dependencies, ISSTA. ACM, New York, pp 211–222

	11.	 Ali S, Hafeez Y, Hussain S, Yang S (2019) Enhanced regression testing tech‑
nique for agile software development and continuous integration strate‑
gies. Softw Qual Control. https://​doi.​org/​10.​1007/​s11219-​019-​09463-4

	12.	 Rothermel G, Harrold MJ, Dedhia J (2015) Regression test selection for
C++ software. Softw Test Verif Reliab 10(2):77–109

	13.	 Spoon SA, Jones JA, Li T (2001) Regression test selection for Java software.
ACM Sigplan Not 36(11):312–326

	14.	 Zhong H, Zhang L, Khurshid S (2019) TestSage: regression test selection
for large-scale web service testing. In: 12th IEEE Conference on Software
Testing, Validation and Verification (ICST), pp 430–441. https://​doi.​org/​10.​
1109/​ICST.​2019.​00052

	15.	 Yedidia JS, Freeman WT, Weiss Y (2002) Understanding belief propagation
and its generalizations. Morgan Kaufmann, San Mateo

	16.	 Ruth M, Oh S, Loup A (2007) Towards automatic regression test selection
for web services. In: Computer software and applications conference.
COMPSAC, New York

	17.	 Meszaros G (2007) xUnit: test patterns refactoring test code. Addison-
Wesley, Boston

	18.	 Kaczanowski T. Practical unit testing with JUnit and Mockito. https://​site.​
mocki​to.​org/, 2013

	19.	 Li ZJ, Tan HF, Liu HH, Zhu J, Mitsumori NM (2008) Business-process-driven
gray-box SOA testing. IBM Syst 47(3):457–472

	20.	 Khan TA, Heckel R (2011) On model-based regression testing of web-
services using dependency analysis of visual contracts. In: Proceedings
of the 14th International Conference on Fundamental Approaches to
Software Engineering: Part of the Joint European Conferences on Theory
and Practice of Software (FASE’11/ETAPS’11), pp 341–355

	21.	 Li B, Qiu D, Leung H, Wang D (2012) Automatic test case selection for
regression testing of composite service based on extensible BPEL flow
graph. Syst Softw 85(6):1300–1324

	22.	 Liu H, Li Z, Zhu J, Tan H (2007) Business process regression testing. In:
Proceedings of the 5th International Conference on Service-Oriented
Computing (ICSOC’07), pp 157–168

	23.	 Harrold MJ, Soffa ML (1989) Interprocedual data flow testing. In: Proceed‑
ings of the Symposium on Software Testing, Analysis, and Verification, pp
158–167

	24.	 Fisher M, Jin D, Rothermel G (2002) Test reuse in the spreadsheet
paradigm. In: Proceedings of the International Symposium on Software
Reliability Engineering, pp 257–268

	25.	 Rothermel G, Harrold MJ (1993) A safe, efficient algorithm for regression
test selection. In: Proceedings of International Conference on Software
Maintenance, pp 358–367

	26.	 Rothermel G, Harrold MJ (1994) Selecting tests and identifying test cover‑
age requirements for modified software. In: Proceedings of International
Symposium on Software Testing and Analysis, pp 169–184

	27.	 Rothermel G, Harrold MJ (1997) A safe, efficient regression test selection
technique. ACM Trans Softw Eng Methodol 6(2):173–210

	28.	 Beydeda S, Gruhn V (2001) Integrating white-and black-box techniques
for class-level regression testing. In: Proceedings of the International
Computer Software and Applications Conference, pp 357–362

	29.	 White L, Robinson B (2004) Industrial real-time regression testing and
analysis using firewalls. In: Proceedings of the International Conference
on Software Maintenance, pp 18–27

	30.	 White L, Jaber K, Robinson B (2008) Extended firewall for regression test‑
ing: an experience report. J Softw Maint Evol 20(6):419–433

	31.	 Paul R, Yu L, Tsai WT, Bai X (2001) Scenario-based functional regression
testing. In: Proceedings of the International Computer Software and
Applications Conference, (COMPSAC 2001), pp 496–501

	32.	 Tarhini A, Fouchal H, Mansour N (2006) Regression testing web services-
based applications. In: Proceedings of the IEEE International Conference
on Computer Systems and Applications, (COMPSAC 2006), pp 163–170

	33.	 Aggarwal CC, Han J (2014) Frequent pattern mining. Springer Interna‑
tional Publishing, Switzerland, pp 19–36

	34.	 Mao LI, Zhi-Gang Z, Tao W (2019) Multiuser detection scheme for
SCMA systems based on stability of belief propagation. Computer
Science, Beijing

	35.	 Yamazaki E, Farsad N, Goldsmith A (2019) Low noise non-linear equaliza‑
tion using neural networks and belief propagation

	36.	 Tan X, Xu W, Be’Ery Y (2018) Improving massive MIMO belief propagation
detector with deep neural network

	37.	 Shan B, Fang Y (2020) GPU accelerated parallel algorithm of sliding-win‑
dow belief propagation for LDPC codes. Int J Parallel Prog 48(3):566–579

	38.	 Knoll C, Mehta D, Chen T (2018) Fixed points of belief propagation -- an
analysis via polynomial homotopy continuation. IEEE Trans Pattern Anal
Mach Intell 9:2124–2136

	39.	 Lu Z et al (2003) Web Log Mining. Web Intelligence. Springer Berlin,
Heidelberg, pp 173–194

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

http://martinfowler.com/articles/microservices.html
https://doi.org/10.1007/s11219-019-09463-4
https://doi.org/10.1109/ICST.2019.00052
https://doi.org/10.1109/ICST.2019.00052
https://site.mockito.org/
https://site.mockito.org/

	A microservice regression testing selection approach based on belief propagation
	Abstract
	Introduction
	Related work
	Microservice testing
	Regression testing selection
	Frequent pattern mining
	Belief propagation

	Methodology
	Service dependency mining
	Data preprocessing
	Service dependency matrix generation

	Change impact analysis
	Directed graph generation
	Impact propagation calculation

	Test case selection

	Empirical study
	Case introduction
	Evaluation metrics
	Experiments setup

	Results and discussion
	Data and analysis
	Threats to validity

	Conclusions and future work
	Acknowledgements
	References

