
Journal of Cloud Computing:
Advances, Systems and Applications

Ji et al. Journal of Cloud Computing: Advances, Systems
and Applications (2022) 11:7
https://doi.org/10.1186/s13677-022-00279-5

RESEARCH Open Access

Identity-based remote data checking
with a designated verifier
Yanyan Ji1*, Bilin Shao1, Jinyong Chang2,3, Maozhi Xu4 and Rui Xue3

Abstract

Traditional remote data possession auditing mechanisms are usually divided into two types: private auditing and
public auditing. Informally, private auditing only allows the original data owner to check the integrity of its outsourced
data, whereas anyone is allowed to perform the checking task in public auditing. However, in many practical
applications, the data owner expects some designated verifier (instead of others) to audit its data file, which cannot be
covered by the existing private or public auditing protocols. Thus, in a recent work, Yan et al. proposed a new auditing
technique with a designated verifier [IEEE Systems Journal, 12(4): 1788-1797, 2020]. Nevertheless, we note that this
protocol suffers from complicated management of certificates and hence heavily relies on public key infrastructure. To
overcome this shortcoming, in this paper, we propose an identity-based auditing protocol with a designated verifier,
which not only avoids the introduction of certificates, but also has the desired property of only allowing specific verifier
to audit. Its security is based on the classical computational Diffie-Hellman andWeil Diffie-Hellman assumptions. Finally,
performance analysis shows that our proposed protocol is very efficient and suitable for some real-life applications.

Keywords: Cloud storage, Identity-based cryptography, Designated verifier, Integrity auditing

Introduction
In recent years, cloud storage has become an attractive
technique for users or data owners (DOs) to store their
data since it may have much lower prices than the cost
to maintain them on personal devices. When enjoying
the services provided by cloud companies, the DOs can
freely access and conveniently share these outsourced
data on different devices and locations. However, they
also completely lose the control of its data after uploading
them to the cloud service provider (CSP). Meanwhile, for
kinds of internal or external reasons, it is extremely pos-
sible to lose user’s data for the CSP [1]. For example, the
CSP may deliberately delete user’s rarely used data to save
its own space and thus attract more clients to gain more
economic benefits. In addition, the cloud companies may
also be attacked by hackers and hence “passively” lose
user’s data [2].

*Correspondence: yany_ji@163.com
1School of Management, Xi’An University of Architecture and Technology,
Xi’An 710055, Shaanxi, People’s Republic of China
Full list of author information is available at the end of the article

Under this situation, the DOs naturally worry about the
integrity of their outsourced data and urgently hope that
there exists a mechanism to help them to audit or check
data’s integrity. If it is broken, then they should obtain
compensations. As a result, remote data possession check-
ing (RDPC) mechanisms, like provable data possession
(PDP) or proof of retrievability (PoR) were developed and
broadly studied in the last decades [3, 4].
According to the manners of auditing, RDPC mecha-

nisms are divided into two types: private auditing (see [5])
and public auditing (see [6]). In private auditing, the audi-
tor is just the DO itself. But in public auditing, anyone is
allowed to perform the task of auditing. A popular way is
to outsource the auditing task to some third-party audi-
tor (TPA), who may have more professional knowledge
on auditing and more computing power. Therefore, the
public auditing is very popular in practical applications.
However, in some situations, the DO hopes or needs to

limit the verifier’s identity, and just allows a designated
auditor to check its data’s integrity. For example, a finan-
cial staff in a company outsourced some sensitive data,

© The Author(s). 2022Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00279-5&domain=pdf
mailto: yany_ji@163.com
http://creativecommons.org/licenses/by/4.0/

Ji et al. Journal of Cloud Computing (2022) 11:7 Page 2 of 14

such as employees’ salaries, to some CSP. Then the chief
financial officer is just the one that is allowed to check the
integrity of these data. Another example is that some TPA
company gives its clients a lower discount if the DO only
chooses this TPA company (instead of others) as the audi-
tor of its stored data. Therefore, in these practical scenar-
ios, how to design RDPC mechanisms with a designated
verifier is an interesting but challenging problem.
In [7], Yan et al. recently designed an efficient

designated-verifier PDP (DV-PDP, for short) protocol,
where the DO specifies a designated verifier to audit the
integrity of its data. Meanwhile, they also analyzed its
security in the random oracle model.
However, it is well known that most of the existing pub-

lic (DV-)PDP protocols are based on the management of
certificates and heavily relies on public key infrastruc-
ture (PKI) technique [8]. The reason lies in that other
entities in the protocol need to securely obtain and use
the public keys of some participants, but how to fix the
relationship between the received public key and its true
identity is hard to handle. In other words, the genuine-
ness of user’s public key is hard to guarantee. The tra-
ditional method is issuing certificates for these users by
a trusted certificate authority (CA) center. However, the
complex management procedures on certificates, includ-
ing generation, storing, delivery, updating, and revocation
etc., additionally increase communication/computational
costs, which are time-consuming and expensive, and thus
greatly reduce the efficiencies of the designed PDP pro-
tocols. In addition, PKI’s security cannot be completely
guaranteed, especially when CA center is controlled by
some malicious hacker. For instance, after discovering
more than 500 fake certificates, web browser vendors were
forced to blacklist all certificates issued by DigiNotar, a
Dutch CA, in 2011 [9].
Motivation. We note that the identity-based (IB) cryp-

tography does not suffer this problem [10]. More specifi-
cally, in identity-based primitives, user’s public key is set
as its name, email address, or identity-card number and
so on, which does not need the certificates to authen-
ticate its validity. Then a trusted key generation center
(KGC) generates secret keys for different users corre-
sponding to these identities. When all users have their
secret keys issued by the same KGC, individual public
keys become obsolete, which removes the need for explicit
certification and all necessary costs. These features make
the identity-based paradigm particularly appealing for use
in conjunction with PDP protocols. This is also the rea-
son why many proposed PDP protocols were twisted into
IB-PDP ones [11, 12]. Hence, it becomes an interest-
ing problem to introduce the identity-based technique to
IB-PDP protocol.
Our Contributions. In this paper, we consider the new

notion of IB-PDP protocol with a designated verifier (IB-

DV-PDP, for short), which can be seen as an improvement
on DV-PDP proposed by Yan et al. in [8]. The main
contributions of this paper can be summarized as follows.

1) For the first time, we propose the notion of
IB-DV-PDP protocol, which provides the integrity
checking of user’s stored data under the constraint of
a designated verifier. In our proposed protocol,
anyone knows the cloud user’s identity but only the
designated verifier is allowed to perform the auditing
task on behalf of the data owner, which may find
special applications in practical scenarios.

2) Second, we define the security model of IB-DV-PDP
protocol, which not only satisfies the security
definition of previous IB-PDP protocol, but also
describes the security against un-designated verifier.
More precisely, we first consider the security against
malicious CSP, which is the essential security for
PDP protocol. Then in order to guarantee the DV’s
interests, we discuss the security against any
unauthorized verifier.

3) Then, we propose a concrete construction of IB-DV-
PDP protocol and prove its security within our model
based on the computational Diffie-Hellman (CDH)
and Weil Diffie-Hellman (WDH) assumptions.
Meanwhile, we emphasize that this security relies on
the classical random oracle model.

4) Finally, we also analyze the performances of our
proposed protocol, including the communication
overheads, computational/storage costs (theoretical
analysis), and experimental results, which shows that
our protocol is very efficient and suitable for practical
applications.

Related Works. In 2007, Juels et al. first proposed the
notion of PoR to model the security of outsourced data,
where the error-correcting code was combined with the
spot-checking of data to verify the integrity [13]. How-
ever, this scheme does not support public checking and
only allows limited number of checking. At the same time,
Ateniese et al. presented a similar technique named PDP,
which is based on the RSA-homomorphic authenticators
[14]. It allows public auditing and unlimited number of
verifications. Later, Dodis, Vadhan andWichs constructed
PoR schemes via hardness amplification [15]. Note that
the notion PoR is obviously stronger than PDP. Therefore,
constructing a secure PDP protocol is easier than instan-
tiating a PoR scheme. In 2017, Zhang et al. presented a
general framework to design secure PDP protocols using
homomorphic encryption schemes [2].
In 2016, Chen et al. first revealed an intrinsic relation-

ship between network coding (see [16–18]) and secure
cloud storage protocol, although both of them seem to
be very different in their nature and were studied inde-
pendently [19]. But the reverse direction does not hold in

Ji et al. Journal of Cloud Computing (2022) 11:7 Page 3 of 14

general unless imposing additional constraints. In recent
work [20], Chang et al. defined a new notion of admissi-
ble PoR and proved that it is also possible to design secure
network coding from admissible PoR protocols.
Consider that most of the previous PDP or PoR proto-

cols heavily reply on PKI technique and must deal with
complicated management of public key certificates. As a
result, many identity-based PDP or PoR protocols were
also proposed in past years,which borrow the identity-
based idea in public key cryptography [10].More con-
cisely, Wang et al. designed IB-PDP protocol in public
clouds [21], in which they did not consider the prob-
lem of data’s privacy preserving. Then, in 2017, Yu et
al. constructed a secure IB-PDP protocol with perfect
data privacy preserving to improve Wang et al.’s result
[9]. Moreover, Xue et al. designed identity-based public
auditing protocol against malicious auditors via the new
technique of blockchain [12].
In order to decrease the system complexity, later, Li et al.

also proposed a new identity-based data storage protocol,
which uses homomorphic verifiable tag to achieve it [8].
In addition, inmulti-copy-multi-cloud case, they also con-
sidered the efficient construction of IB-PDP protocol [22].
Recently, Chang et al. revisited this protocol and proposed
some improvements on its performances [23].
In addition, Zhang et al. constructed an IB-PDP proto-

col, which is secure against key-exposure attack and based
on Lattices [24]. Later, Mary and Rhymend proposed a
stronger key-exposure model and gave some suggestions
on how to construct this kind of IB-PDP protocol [25].
Note that the previous IB-PDP protocols did not con-

sider the designated-verifier case. Hence, our proposed
IB-DV-PDP protocol is the first one and will find applica-
tions in practical scenarios.
Organizations. The organizations of this paper are as

follows. In “Preliminaries” section, we introduce some
basic notations and notions. In “Our proposed construc-
tion and its security” section, the proposed protocol and
its security analysis are given. In “Performances analysis”
section, we analyze the performances and compare them
with three other related PDP protocols. Finally, conclu-
sions are presented in “Conclusions” section.

Preliminaries
Basic notations
Now, we first present the basic notations used in this
paper. More precisely, we use λ or 1λ to denote the secu-
rity parameter. PPT is the abbreviation of “Probabilistic
Polynomial Time”. For a natural number n, the symbol [n]
means the set of {1, 2, · · · , n}. For an algorithmA, the sym-
bol “y ← A(x1, x2, · · ·)" denotes that it takes x1, x2, · · · as
inputs, and will output y. For a group G, |G| denotes the
bit length of each element in it. A function f (λ) is negligi-
ble if, for any c > 0, there exists a λ0 ∈ Z such that for any

λ > λ0, it always holds that f (λ) < λ−c. Other symbols
and their corresponding definitions are listed in Table 1.

Blinear map
Consider two cyclic groups G1, G2 with the same prime
order q. A map e : G1 × G1 → G2 is called a bilinear map
if the following conditions hold.

• Non-Degeneracy. For any generators g1, g2 of G1, it
holds that e(g1, g2) �= 1G2 , in which 1G2 is the identity
element of G2.

• Computability. It is efficient to compute e(g1, g2) for
any g1, g2 ∈ G1.

• Bilinearity. For any a, b ∈ Zq, g1, g2 ∈ G1, it holds
that

e(ga1 , g
b
2) = e(g1, g2)ab.

CDH assumption
Define G1 as a cyclic group with prime order q and gen-
erator g. Randomly choose a, b from Zq and compute

Table 1 Symbols and their corresponding definitions

Symbols Definitions

DO Data Owner

CSP Cloud Service Provider

RDPC Remote Data Possession Checking

DV Designated Verifier

PDP Provable Data Possession

PoR Proof of Retrievability

PKI Public Key Infrastructure

CA Certificate Authority

CDH Computational Diffie-Hellman

WDH Weil Diffie-Hellman

KGC Key-Generation Center

IBS Identity-Based Signature

G,G1,G2 cyclic groups

q the order ofG1 andG2

Zq {0, 1 · · · , q − 1}
g the generator ofG1

e bilinear map fromG1 × G1 toG2

H,H1,H2 hash functions

params system parameter

msk master secret key

trd trapdoor of DV

F original data file

Fid filename of F

n number of blocks for F

T authenticated data file

TFid generated IBS

chal the challenge message

� the returned proof

Ji et al. Journal of Cloud Computing (2022) 11:7 Page 4 of 14

ga, gb. The CDH assumption means that, given the tuple
(g, ga, gb), any PPT algorithm cannot compute and output
the element gab ∈ G1.

Weil Diffie-Hellman Assumption
Here, we recall the Weil Diffie-Hellman (WDH) assump-
tion in [26]. Let e : G1 ×G1 → G2 be a bilinear map and g
be a generator ofG1. Randomly choose a, b, c from Zq and
compute ga, gb, gc. The WDH assumption refers to that,
given the tuple (g, ga, gb, gc), there is no efficient algorithm
to compute e(g, g)abc ∈ G2.

Systemmodel
In this subsection, we formally introduce the system
model of IB-DV-PDP protocol. A graphical description
can be found in Fig. 1. In particular, the whole system
includes four entities: KGC, DO, DV, and CSP.

• KGC: Given the identity of DO or DV, this entity will
issue secret key for it.

• DO: This entity is just the data owner, who intends to
outsource its original data file to some CSP.

• DV: This is an entity which is designated by DO and
will check the integrity of DO’s stored file.

• CSP: This entity has great storage spaces and
provides storing services for lots of DOs.

Then, an IB-DV-PDP protocol consists of the following
seven PPT algorithms.

• (params,msk) ← Setup(1λ). This algorithm
initializes the system and generates the public system
parameter params as well as the master secret key
msk.

• skID ← Extract(msk, ID). This algorithm
generates secret keys for users (including the DV)
with different identities ID. Now, the DO (resp. DV)
can obtain its secret key skO (resp. skV) by inputting
its identity IDO (resp. IDV) into this algorithm.

• trd ← TrapdoorGen((skO, IDV) or (skV , IDO)).
This is a trapdoor-generation algorithm, which takes
the pair (skO, IDV) or (skV , IDO) as input, and
computes a common private trapdoor trd between
the DO and DV.

• T ← TagGen(skO, F). This algorithm is run by DO
to generate an authenticated file T for the original
data file F. Then T is transmitted to a CSP for storing.

• chal ← Challenge. This is an algorithm run by the
DV (in the auditing phase) to generate a challenge
message chal, which will be sent to the CSP.

• � ← ProofGen(chal,T). When receiving the
challenge message chal from the DV, the CSP
computes a proof � based on the stored T .

Fig. 1 System Model of IB-PDP Scheme with a Designated Verifier

Ji et al. Journal of Cloud Computing (2022) 11:7 Page 5 of 14

• b ← Verify(trd, chal,�). This is the final checking
algorithm of the DV, which will output a bit b based
on the challenge message chal and the returned proof
�. If b = 1, then the DO’s stored data file is intact.
Otherwise, its integrity is broken.

When combining the entities with the above algo-
rithms, the system will work as follows. The KGC first
runs Setup to obtain params and msk, and broadcasts
params to other entities. Given the identity ID, the KGC
runs skID ← Extract(msk, ID) and returns skID to
the entity with ID. After receiving the secret key skO
and DV’s identity IDV , the DO computes the trapdoor
trd, which can also be computed by the DV, by running
TrapdoorGen. Then the DO continues to generate the
authenticated file T for the original data file F by perform-
ing TagGen(skO, F), and transmits T to CSP for storing.
In the auditing phase, the DV runs Challenge to get
chal and sends it to CSP, who will compute � based on
chal and the stored T, and then returns it to the DV.
Finally, the DV checks the validity of the returned � by
running Verify.

Security model
In this subsection, we define the security model of an IB-
DV-PDP protocol. Before describing its definition, we
would like to give some underlying intuition. Concretely,
here, we need to consider two kinds of attacks. One is to
model the misbehavior of malicious CSP. That is, if some
stored data blocks are lost by CSP, then the designated ver-
ifier can detect it with extremely high probability. Another
one is to model the security of DV, which also means that
checking whether an un-designated verifier is able to per-
form the task of auditing or not. For a secure IB-DV-PDP
protocol, it should satisfy that any un-designated veri-
fier cannot obtain the corresponding trapdoor and thus
cannot perform the task of auditing.
Now, we formally give the definition of the former one,

which is modeled by the following security game played
between a challenger CHI and an adversary CSP .

• Initialization. The challenger first runs Setup(1λ)

to get the public system parameter params and the
master secret key msk. Give params to CSP .

• Queries. The adversary is allowed to adaptively make
the following queries.

– Secret-Key-Extract. CSP submits an
identity ID to CHI , who will run
skID ← Extract(msk, ID) and return skID to
it.

– Authenticated-File-Query. The
adversary CSP submits an identity ID and a
data file F to CHI , who runs

T ← TagGen(skID, F)

and returns it to CSP .
– Auditing-Query. This kind of query is

based on the queried T in the previous step.
More precisely, the challenger first runs
chal ← Challenge and gives chal to CSP ,
who computes and returns a proof � by
running ProofGen(chal,T). When receiving
�, CHI obtains the trapdoor trd by running
the algorithm TrapdoorGen(skO, IDV), and
continues to run

b ← Verify(trd, chal,�).

Finally, the bit b is transmitted to CSP .

• Final Phase. In this phase, the challenger CHI

submits a challenge message chal∗ to CSP in order
to check the integrity of some data file F queried in
Authenticated-File-Query, who finally
returns a proof �∗.

If

1 ← Verify(trd, chal∗,�∗),

and the following conditions hold,

1) The identities IDO and IDV are not queried to the
oracle Secret-Key-Extract, and

2) The returned proof �∗ does not equal to the correct
one �, which would be honestly computed in
ProofGen(chal∗,T),

then we call the IB-DV-PDP protocol is secure against any
PPT malicious CSP.
Next, we consider the security on the trapdoor of the

DV. In order to clearly introduce the security model on
trapdoor, we would like to give some underlying intuition.
More concretely, for an adversary, it wants to find the
correct trapdoor after seeing the transmissions between
the entities, including the initialization, queries and so on.
Here, we still introduce the following security game played
by a challenger CHII and an adversaryA.

• These phases “Initialization” and “Queries” are the
same as the ones appeared in the above game except
that CHI and CSP are replaced by CHII andA,
respectively.

• Final Phase. In final, the adversary outputs a
trapdoor trd∗. Naturally, the restriction is thatA is
not allowed to query IDO and IDV to
Secret-Key-Extract oracle.

If for any PPT adversary A, the probability that its out-
put trd∗ equals to the trapdoor trd of the DV is negligible,
then we call the IB-DV-PDP protocol is secure for the

Ji et al. Journal of Cloud Computing (2022) 11:7 Page 6 of 14

DV. In other words, this security describes that any un-
designated entity is “hard” to obtain the trapdoor and
hence is not able to perform the task of auditing.

Our proposed construction and its security
Now, we formally introduce the construction of our pro-
posed IB-DV-PDP protocol as follows.

• (params,msk) ← Setup(1λ): This is an algorithm
that generates the system parameters params and
KGC’s master secret key msk when given the security
parameter 1λ. Concretely, it chooses two cyclic
groups G1, G2 with the same prime order q (|q| ≥ λ),
and e a bilinear map from G1 × G1 to G2. Assume
that g is a generator of G1, and H1,H2 are two hash
functions from {0, 1}∗ to G1. Moreover, define
φ : Z∗

q × {1, 2, · · · , n} → Z
∗
q,

π : Z∗
q × {1, 2, · · · , n} → {1, 2, · · · , n} as

pseudorandom function and pseudorandom
permutation, respectively. Then randomly choose x
from Z

∗
q and compute P0 = gx. Finally, set

params = (G1,G2, e, q, g,H1,H2,P0,φ,π)

andmsk = x.
• skID ← Extract(msk, ID) : This is a

secret-key-generation algorithm for a user with
identity ID. In particular, for the inputs of KGC’s
master secret key msk and user’s identity ID, it
computes skID = H1(ID)x and outputs it as the
generated secret key (for ID).
In fact, by running this algorithm, the DO with
identity IDO and the DV with IDV can obtain their
secret keys skO and skV , respectively.

• trd ← Trapdoor((skO, IDV) or (skV , IDO)): If the
input is (skO, IDV), then this algorithm computes the
trapdoor trd as follows.

trd := e (skO,H1(IDV)) = e (H1(IDO),H1(IDV))x .

Similarly, if the input is (skV , IDO), then this
algorithm computes the trapdoor trd as follows.

trd = e (skV ,H1(IDO)) = e (H1(IDO),H1(IDV))x .

• T ← TagGen(skO, F) : This is the tag-generation
algorithm for the original data file F and run by DO,
who has the secret key skO. Specifically, first
randomly choose a filename Fid from {0, 1}λ (for F).
Parse F into n blocks {m1,m2, · · · ,mn}, and each
blockmi has s same-length segments
(mi,1,mi,2, · · · ,mi,s) ∈ (

Zq
)s. That is,

F = {m1, · · · ,mn}
= {(m1,1,m1,2, · · · ,m1,s), · · · , (mn,1,mn,2, · · · ,mn,s)}.

Then randomly choose u1,u2, · · · ,us from G1, t
from Z

∗
q, and compute

Ti = skO ·
⎛

⎝H2 (trd||Fid||i) ·
s∏

j=1
umi,j
j

⎞

⎠

t

, (1)

for each i ∈[n]. Define R = gt and select an
identity-based signature (IBS) algorithm IBS.Sig to
compute

TFid = IBS.Sig(u1||u2|| · · · ||us||R||Fid).

Now, define

T = (F ,u1,u2, · · · ,us,R, Fid,TFid,T1,T2, · · · ,Tn)

and output it, which will be transmitted to CSP for
storing.

• chal ← Challenge: This is the challenge-message-
generation algorithm and run by the DV. In
particular, in order to check the integrity of user’s
data, the designated verifier randomly chooses � from
[n], which denotes the number of challenged blocks,
and k1, k2 from Z

∗
q. Output the challenge message

chal = (�, k1, k2), which will be sent to CSP.
• � ← ProofGen(chal,T) : This algorithm will

generate the returned proof � and hence run by the
CSP. Specifically, when receiving the challenge
message chal from the verifier, it first computes

ai = φ(k1, i) ∈ Z
∗
q, ci = π(k2, i) ∈[n] (2)

for 1 ≤ i ≤ �. Then calculate

σ =
�∏

i=1
Tai
ci , andM =

�∑

i=1
ai · mci ∈ (

Zq
)s .

Finally, return

� = (u1,u2, · · · ,us,R, Fid,TFid, σ ,M)

to the DV.
• 1/0 ← Verify(trd, chal,�) : After receiving the

returned proof � from CSP, the DV first checks if
TFid is a valid signature on the message
(u1||u2|| · · · ||us||R||Fid). If it isn’t, refuse this proof
and output 0. Otherwise, compute ai, ci from k1, k2 as
in (2). Then check if

e
(
σ , g

) = e (H1(IDO),P0)
∑�

i=1 ai ·

e
(

�∏

i=1

(
H2 (trd||Fid||ci)ai ,R

)
)

· e
⎛

⎝
s∏

j=1
uMj
j ,R

⎞

⎠ ,

(3)

in whichMj is the j th component of M. If it is, output
1. Otherwise, output 0.

Ji et al. Journal of Cloud Computing (2022) 11:7 Page 7 of 14

The correctness of (3) can be verified as follows.

e
(
σ , g

) = e
(

�∏

i=1
Tai
ci , g

)

= e

⎛

⎝
�∏

i=1

⎛

⎝skO ·
⎛

⎝H2 (trd||Fid||ci) ·
s∏

j=1
umci ,j
j

⎞

⎠

t⎞

⎠

ai

, g

⎞

⎠

= e

⎛

⎝
�∏

i=1

⎛

⎝skaiO ·
⎛

⎝H2 (trd||Fid||ci) ·
s∏

j=1
umci ,j
j

⎞

⎠

tai⎞

⎠ , g

⎞

⎠

= e
(

�∏

i=1
skaiO , g

)

· e
⎛

⎝
�∏

i=1

⎛

⎝H2 (trd||Fid||ci) ·
s∏

j=1
umci ,j
j

⎞

⎠

ai

,R

⎞

⎠

= e
(

�∏

i=1
H1(IDO)xai , g

)

·

e

⎛

⎝
�∏

i=1

⎛

⎝H2 (trd||Fid||ci)ai ·
s∏

j=1
uaimci ,j
j

⎞

⎠ ,R

⎞

⎠

= e
(
H1(IDO)

∑�
i=1 ai ,P0

)
· e

(
�∏

i=1

(
H2 (trd||Fid||ci)ai ,R

)
)

·

e

⎛

⎝
s∏

j=1

(
u

∑�
i=1 aimci ,j

j

)
,R

⎞

⎠

= e (H1(IDO),P0)
∑�

i=1 ai · e
(

�∏

i=1

(
H2 (trd||Fid||ci)ai ,R

)
)

·

e

⎛

⎝
s∏

j=1
uMj
j ,R

⎞

⎠ .

Brief review of yan et al.’s dV-PDP protocol
In order to clearly express our improvement on Yan et al.’s
DV-PDP protocol, here, we briefly review their protocol.
More precisely, the public-private key pairs of DO and DV
are (x,X = gx) ∈ Z

∗
q × G1 and (y,Y = gy) ∈ Z

∗
q × G1,

respectively. Then the DO (resp. DV) can calculate the
trapdoor α = H1(Yx) ∈ {0, 1}k (resp. α = H1(Xy)). For
each data blockmi ∈ Z

∗
q, compute its tag

Ti = (
H2(α||Fid||i) · umi

)x ∈ G1,

where Fid is the unique identification of the file, and u ∈
G1 is public. The computations of challenge message chal
and returned proof � are the same as the ones in our
construction. In the final verification algorithm, the DV
computes and checks if

e(σ , g) = e
(

�∏

i=1
H2(α||Fid||ci)ai · uM,X

)

.

If it is, then output 1. Otherwise, output 0.

Security analysis
In this subsection, we analyze the security of the IB-DV-
PDP protocol presented in the above section.

Theorem 1 If the CDH assumption holds inG1, and H1,
H2 are seen as random oracles, then the above IB-DV-PDP
protocol is secure against anymalicious CSP in the random
oracle.

Before presenting the detailed proof, we would like to
introduce the underlying reasons why the security of IB-
DV-PDP can be reduced to the CDH assumption. In
particular, given the tuple (g, ga, gb) ∈ G

3
1, the algorithm

B, who tries to solve the CDH problem, can set P0 = ga
as the master public key since the malicious CSP is not
allowed to query the master secret key in the whole query
process. The extracted secret key for each user can also
be simulated by randomly masking the group element P0.
The trickiest step is the simulation of tag-generation for
each data block, which can be handled by embedding
B’s another group element gb. Then the auditing query is
natural and easy to deal with.
Proof. Let CSP be a PPT CSP, who attacks on the pro-

posed IB-DV-PDP protocol. Consider B as an attacker on
the CDH assumption. That is, given the tuple (g, ga, gb) ∈
G

3
1, its target is to output the element gab for the unknown

a, b ∈ Zq. Now, B simulates the environment for CSP and
wants to obtain its answer by using CSP as a subroutine.

• Initialization. B first generates params as in Setup
except for the item P0. More precisely, it sets P0 = ga
and implicitly defines the master secret key x as the
unknown a. Give params to CSP . In addition, B also
initializes an empty list L used to store the
query-answer pairs.

• Queries. The adversary CSP is allowed to adaptively
make the following queries.

– Hash-Queries. For the query ID to the
H1-oracle, B checks if (ID,H1(ID)) is in the
list L. If it is, return H1(ID) to CSP . Otherwise
randomly choose τ ∈ Zq and compute
H1(ID) = gτ . Return H1(ID) to CSP and
store (ID,H1(ID)) into L. In addition, B also
defines H1(IDO) as gb.

– Secret-Key-Extract. CSP submits an
identity ID to B, who computes

skID = (ga)τ = gaτ = (H1(ID))a.

Here, τ is the random chosen element when
answering the query to H1-oracle on ID. Since
CSP is not allowed to query the secret key of
IDO, B implicitly sets skO = (gb)a = gab.

– Authenticated-File-Query. The
adversary CSP submits an identity ID and a
data file F to B. If ID �= IDO, then B normally
answers this query because it has the true
secret key skID. Else if ID = IDO, then B will

Ji et al. Journal of Cloud Computing (2022) 11:7 Page 8 of 14

simulate as follows. First, compute the
trapdoor trd by running
Trapdoor(skV , IDO). Then randomly choose
Fid as the filename of F and parse F into n
blocks
F = {m1, · · · ,mn}

= {(m1,1, · · · ,m1,s), · · · , (mn,1, · · · ,mn,s)}.
Randomly choose x1, · · · , xs, r from Zq and
compute

u1 = (gb)x1 , · · · ,us = (gb)xs ,R = (ga)r .

That is,
s∏

j=1
umi,j
j =

s∏

j=1

(
gb

)xjmi,j =
(
gb

)∑s
j=1 xjmi,j

,

and implicitly set t = ar.Moreover, define

H2(trd||Fid||i) =
(
gb

)αi · gβi ,

where αi satisfies

1 + rαi + r
s∑

j=1
xjmi,j = 0.

Here, we know that, for 1 ≤ i ≤ n, it holds that

Ti = skO ·
⎛

⎝H2 (trd||Fid||i) ·
s∏

j=1
umi,j
j

⎞

⎠

t

= gab ·
((

gb
)αi

gβi ·
(
gb

)∑s
j=1 xjmi,j

)ar

= gab
(
g(ab)(rαi+r

∑
xjmi,j) · (

ga
)rβi

)

=
(
gab

)1+rαi+r
∑

xjmi,j · (
ga

)rβi

= (
ga

)rβi .

Finally, generate TFid by signing the item

u1||u2|| · · · ||us||R||Fid,
and return

T = (F ,u1,u2, · · · ,us,R, Fid,TFid ,T1,T2, · · · ,Tn)

to CSP .
– Auditing-Query. In this step, B simulates

the DV and sends a challenge message chal to
CSP , who computes and returns a proof �.
Then B checks the validity of � by running

b ← Verify(trd, chal,�),

and gives the bit b to CSP .

• Final Phase. In this phase, the algorithm B submits a
challenge message chal∗ = (�, k1, k2) to CSP , who
returns a forged proof

�∗ = (
u1,u2, · · · ,us,R, Fid,TFid, σ ∗,M∗) .

Let

� = (u1,u2, · · · ,us,R, Fid,TFid, σ ,M)

be the correct proof, which would be honestly computed
in ProofGen(chal∗,T). Hence, (σ ∗,M∗) �= (σ ,M).
Since both of the proofs � and �∗ can pass the verifica-

tion of (3), it holds that

e
(
σ , g

) = e (H1(IDO),P0)
∑�

i=1 ai ·

e
(

�∏

i=1

(
H2 (trd||Fid||ci)ai ,R

)
)

· e
⎛

⎝
s∏

j=1
uMj
j ,R

⎞

⎠ ,

(4)

and

e
(
σ ∗, g

) = e (H1(IDO),P0)
∑�

i=1 ai ·

e
(

�∏

i=1

(
H2 (trd||Fid||ci)ai ,R

)
)

· e
⎛

⎝
s∏

j=1
u
M∗

j
j ,R

⎞

⎠ .

(5)

Divide (4) by (5) and we can get

e(σ/σ ∗, g) = e

⎛

⎝
s∏

j=1
u
Mj−M∗

j
j ,R

⎞

⎠

= e

⎛

⎝
s∏

j=1

(
gb

)xj(Mj−M∗
j) , gar

⎞

⎠

= e
((

gb
)∑

xj(Mj−M∗
j) , gar

)

= e
((

gab
)∑

rxj(Mj−M∗
j) , g

)
.

Because r, x1, x2, · · · , xs are random and at least one
(Mj−M∗

j) does not equal to 0, we know that
∑s

j=1 rxj(Mj−
M∗

j) = 0 occurs with probability 1/q, which is negligible.
Therefore, B can obtain the answer gab by computing

gab = (
σ/σ ∗)

1∑
rxj(Mj−M∗

j) .

This ends the proof of Theorem 1.
As for the security of the DV, we have the following:

Theorem 2 If the WDH assumption holds for the bilin-
ear map e : G1×G1 → G2, then our proposed IB-DV-PDP
protocol is secure for the designated verifier.

Now, we first explain the underlying intuition of this
theorem’s proof. Given the tuple (g, ga, gb, gc) ∈ G

4
1, the

algorithm B′ attacking on the WDH assumption can nat-
urally set ga as the master public key P0, and gb, gc
as the random-oracle queries to H1 for the identities

Ji et al. Journal of Cloud Computing (2022) 11:7 Page 9 of 14

IDO and IDV , respectively. Then the finding of trapdoor
trd = e(g, g)abc for un-designated verifier is just the
WDH-solution of B′. This is also the reason why WDH
assumption is used in this paper.
Proof. Assume that A is an adversary who wants to

find out the trapdoor of the DV. Then we will construct
another algorithm B′ attacking on the WDH assump-
tion. In particular, given the tuple (g, ga, gb, gc) ∈ G

4
1, B′

intends to compute and output the element e(g, g)abc ∈
G2. Hence, it simulates the environment forA and invokes
A as a subroutine.
The simulation of B′ is similar to that of the algorithm

B constructed in Theorem 1. That is, B′ also sets P0 =
ga, H1(IDO) = gb. Moreover, it defines H1(IDV) = gc. In
this way, B′ can simulate all the queries from A as in the
above theorem. Finally, whenA outputting trd∗ as a guess
of the trapdoor of DV, B′ also outputs it as its answer to
the WDH assumption.
From the simulation of B′, we know that

trd = e(skO,H1(IDV)) = e(gab, gc) = e(g, g)abc.

Therefore, ifA can correctly find the trapdoor trd, then
B′ is also able to solve the WDH assumption. From the
hardness of WDH assumption, we know that our pro-
posed IB-DV-PDP protocol is secure for the DV. This also
ends the proof of Theorem 2.

Further improvement
Note that, in our proposed protocol, the authenticated file
T has the form of

T = (F ,u1,u2, · · · ,us,R, Fid,TFid,T1,T2, · · · ,Tn) .

In order to further reduce the communication cost, we
suggest the following improvements. Define a new hash
function H : {0, 1}∗ → G1. Then generate

u1 = H(Fid||1),u2 = H(Fid||2), · · · ,us = H(Fid||s),
and define TFid as the IBS of (R||Fid). In the security
proof, the hash function H is still viewed as a random
oracle, which provides randomness for u1,u2, · · · ,us. In
this case, the communications of u1,u2, · · · ,us can be
reduced from T. Similarly, they can also be reduced from
the returned proof � because the DV can compute them
on-line from Fid.

Error detection probability
Since our proposed IB-DV-PDP protocol adopts the ran-
dom sampling method to detect the corruption of user’s
data, we now discuss its error detection probability for
the DV. Specifically, in our protocol, the DV chooses �

blocks in each challenge. Assume that d blocks are cor-
rupted by CSP and define X as a random variable, which
describes the number of challenged blocks matching the

corrupted ones. Moreover, PX denotes the probability that
CSP’s misbehavior is detected. Hence, we have

PX = Pr{X ≥ 1} = 1 − Pr{X = 0}
= 1 − n − d

n
· n − d − 1

n − 1
· · · n − d − (� − 1)

n − � + 1

≥ 1 −
(
n − d
n

)�

.

Obviously, the more challenged blocks, the higher error
detection probability. If 5,000 blocks out of 1,000,000 ones
are tampered, then the error detection probability PX is
greater than 80% when challenging 321 blocks (for the
DV). Similarly, if 10,000 blocks are corrupted, then ran-
domly choosing only 300 blocks will realize that the error
detection probability PX is at least 95%.

Performances analysis
In this section, we evaluate the performances of our pro-
posed IB-DV-PDP protocol from communication over-
head, storage and computational costs as well as the
experimental result. In order to present the practicality
of our protocol, we compare it with two other IB-PDP
protocols and a certificateless PDP protocol with privacy-
preserving property, which were designed in [8] [9], and
[4], respectively.

Communication overhead
The communication contents for an IB-PDP protocol
include the parts of transmitting the authenticated file T
from data owner to CSP, a challenge message chal from
the DV to CSP, and the returned proof � from CSP to the
DV. Now, we respectively denoted byDOtoCSP,DVtoCSP,
and CSPtoDV the corresponding communication over-
heads.
Recall that, in our protocol, the DO will send the

authenticated file

T = (F ,R, Fid,TFid ,T1,T2, · · · ,Tn)

to CSP. Thus, the communication overhead (i.e.
DOtoCSP) for our protocol equals to

|G1|+|Fid|+|TFid|+n·|G1| = (n+1)·|G1|+λ+|TFid|.
Similarly, we can evaluate the communication over-

heads from DO to CSP for the three protocols in [8], [9]
and [4] as

(n + 2) · |G1| + λ + |TFid|,
(n + 1) · |G1| + λ + |TFid|,

and

n · (λ + |n| + |G1|),
respectively.

Ji et al. Journal of Cloud Computing (2022) 11:7 Page 10 of 14

The challenge message chal in our protocol is

chal = (�, k1, k2) ∈[n]×Z
∗
q×[n] ,

which has the length of 2 · |n| + |Z∗
q|. The challenge-

message-generation algorithm in [8] is the same as that of
our protocol and thus DVtoCSP for this protocol is also
2 · |n| + |Z∗

q|. In addition, in [9], the challenge message is

chal = (c1, c2, {(i, vi)}�i=1, pf),

in which, c1, c2 are in G1 and G2, respectively, i ∈[n],
vi ∈ Z

∗
q, and pf is a proof of knowledge. Therefore,

the communication overhead DVtoCSP for this protocol
equals to

|G1| + |G2| + � · (|n| + |Z∗
q|) + |pf |.

We also know that the challenge message of Ji et al.’s
protocol has length of

� · (|n| + |Zq|).
Finally, in our protocol, the returned proof � has the

form of

� = (R, Fid,TFid, σ ,M) ,

which has the length of

|G1| + |TFid| + |G1| + |Zq| = 2 · |G1| + |TFid| + |Zq|.
Similarly, we are able to compute the communication

overheads from CSP to DV for [8], [9], and [4] as

4 · |G1| + |TFid| + |Zq|,
|G1| + |TFid| + |G2|,

and

3|G1| + |TFid|,
respectively.
The total comparisons on the communication over-

heads are listed in Table 2.

Storage cost
Now, we analyze the storage costs of the chosen proto-
cols. First, in our protocol, there are four entities: KGC,
DO, DV, and CSP. In the running of this protocol, the KGC
will store its own master secret key msk = x ∈ Zq, which
has length of |Zq|. For DO, after outsourcing its original

Table 2 The comparisons on the communication overheads

Protocol DOtoCSP DVtoCSP CSPtoDV

Our Protocol (n + 1) · |G1| +
λ + |TFid|

2 · |n| + |Z∗
q| 2 · |G1| + |TFid| +

|Zq|
Li et al. [8] (n + 2) · |G1| +

λ + |TFid|
2 · |n| + |Z∗

q| 4 · |G1| + |TFid| +
|Zq|

Yu et al. [9] (n + 1) · |G1| +
λ + |TFid|

|G1| + |G2| + � ·
(|n|+ |Z∗

q|)+|pf |
|G1|+|TFid|+|G2|

Ji et al. [4] n ·(λ+|n|+|G1|) � · (|n| + |Z∗
q|) 3|G1| + |TFid|

authenticated data file to CSP, it only needs to store its pri-
vate key skID = H1(ID)x ∈ G1, which has length of |G1|.
For CSP, it will store the transmitted data fileT (fromDO),
which has length of

(n + 1) · |G1| + λ + |TFid|.
Finally, the DV needs to store its own private key skV ∈

G1 and the challenged message chal = (�, k1, k2) ∈
[n]×Z

∗
q × Z

∗
q, which have lengths of |G1| and |n| + 2|Z∗

q|,
respectively. Note that the storage cost of CSP just equals
to the communication cost from DO to CSP, which has
be discussed in the previous subsection. Hence, we do not
consider it in the following parts.
Similarly, we can evaluate the storage costs of the

involved entities for other protocols, and present the com-
parisons in Table 3.

Computational cost (Theoretical analysis)
Now, we analyze the computational cost of our protocol,
which mainly consists of the computations of authenti-
cated data file T (for DO), returned proof � (for the CSP),
and the verification of �. The computational cost mainly
relies on the expensive operations like pairing, multipli-
cation, and exponentiation, since other operations such
as the hash function or addition on group only have neg-
ligible costs. For clarity of the theoretical analysis, we
denote by Tp,Tmul, and Texp the computational costs for
pairing, multiplication and exponentiation (on groupG1),
respectively.
First, in our protocol, the generation of the authenti-

cated data file T will need to compute n tags

Ti = skO ·
⎛

⎝H2 (trd||Fid||i) ·
s∏

j=1
umi,j
j

⎞

⎠

t

,

u1,u2, · · · ,us,R, and TFid = IBS.Sig(R||Fid). Hence,
the computation cost is

n·((s + 1) · Texp + (s + 2) · Tmul) + (s + 1) · Texp + TIBS

= (ns + n + s + 1) · Texp + n(s + 2) · Tmul + TIBS,

where TIBS denotes the time-consumption of generating a
signature in an IBS scheme. If we set s = 1 as in [8], then
the cost is

(2n + 2) · Texp + (3n) · Tmul + TIBS.

Table 3 The comparisons on the storage costs

Protocol KGC DO DV or TPA

Our Protocol |Zq| |G1| |n| + 2|Zq| + |G1|
Li et al. [8] |Zq| |G1| |n| + 2|Zq| + |Fid|
Yu et al. [9] |Zq| |G1| |n| + |Zq| + |G1| + |G2| + |pf |
Ji et al. [4] |Zq| 2|Zq| |n| + |Zq|

Ji et al. Journal of Cloud Computing (2022) 11:7 Page 11 of 14

Similarly, we can evaluate the computational costs for
the authenticated data file T in [8], [9], and [4] as

(2n + 1) · Texp + (2n) · Tmul + TS,

where TS is the time-consumption for a signature algo-
rithm (like BLS-signature),

(2n + 1) · Texp + n · Tmul + TIBS,

and

3n · Texp + 3n · Tmul,

respectively.
Next, we consider the computational cost of generating

the proof �. In our protocol, � is generated by computing

σ =
�∏

i=1
Tai
ci , andM =

�∑

i=1
ai · mci ,

which costs

� · Texp + (� − 1) · Tmul.

However, the time-consumptions of � in [8], [9], and
[4] are

(� + 1) · Texp + (� − 1) · Tmul,

(� + 1) · Texp + � · Tmul + Tp,
and

(� + 3) · Texp + � · Tmul

respectively.
Finally, the computational costs of verifying � for the

three protocols are analyzed as follows. In our proto-
col, the DV will first verify the validity of TFid, whose
time-consumption is denoted by TVer , and then check the
equality (3). The total computational cost is

TVer + 3 · Tp + (2� + s) · Texp + (2� + s − 2) · Tmul.

If s = 1, then it is

TVer + 3 · Tp + (2� + 1) · Texp + (2� − 2) · Tmul.

Similarly, we can evaluate the verifications of other
protocols and calculate their computational costs as

T ′
Ver + 3 · Tp + (2� + 2) · Texp + (2� + 1) · Tmul,

where T ′
Ver denotes the time-consumption for the verifi-

cation of a signature scheme,

TVer + Tp + (� + 1) · Texp + (� − 1) · Tmul,

and

2 · Tp + (� + 1) · Texp + (� + 2) · Tmul,

respectively.
In addition, we remark that our protocol is the first one

for a designated verifier but the other two protocols are
not. The total comparisons on the computational costs are
listed in Table 4.

Table 4 The comparisons on the computational costs

Protocol T � Verify DV

Our Protocol (2n + 2) ·
Texp + (3n) ·
Tmul + TIBS

� · Texp +
(� − 1) · Tmul

TVer + 3 · Tp +
(2� + 1) · Texp +
(2� − 1) · Tmul

Yes

Li et al. [8] (2n + 1) ·
Texp + (2n) ·
Tmul + TS

(�+1)·Texp+
(� − 1) · Tmul

T ′
Ver + 3 · Tp +

(2� + 2) · Texp +
(2� + 1) · Tmul

No

Yu et al. [9] (2n + 1) ·
Texp + n ·
Tmul + TIBS

(�+1)·Texp+
� · Tmul + Tp

TVer+Tp+(�+1)·
Texp+(�−1)·Tmul

No

Ji et al. [4] 3n · Texp +
3n · Tmul

(� + 3) ·
Texp + � · Tmul

2 · Tp + (� + 1) ·
Texp+(�+2)·Tmul

No

Experimental results
In order to further evaluate the performance of our pro-
posed protocol, we implement it within the framework of
“Charm” [27]. In particular, the 512-bit SS elliptic curve
from pairing-based cryptography (PBC) library is set as
the basis of our experiments [28]. The DO and DV are
simulated by a Huawei MateBook with the configura-
tion of Intel Core i5-6200U CPU @2.3GHz and 16GB
RAM. Then the CSP is simulated by a Huawei Fusion-
Server 2288H V5 with the configuration of Xeor Bronze
3106@1.7GHz, 16GB RAM.
Since, in the three protocols, standard signature or IBS

scheme is needed, we choose the BLS-signature [29] and
the IBS scheme in [30] or [4] as building blocks to imple-
ment them. Now, we choose a data file with size of
500 MB, which is parsed as 100, 200, 300, 400, and 500
blocks. Then the time-consumptions for the generations
of authenticated files in the three protocols are listed in
Fig. 2. For each authenticated file, we set the numbers of
challenged blocks as 30, 60, 90, 120, and 150. Then the
time-consumptions for the generation of returned proof
and the verification for DV are presented in Fig 3 and 4,
respectively.
From the comparisons of experimental results, we can

see that our proposed protocol is competitive especially
for the generation of the returned proof. However, we still
explain that our protocol is the first one for the DV but the
other ones are not. Hence, our protocol does not obviously
reduce IB-PDP’s efficiency, and can be naturally used in
future real-life applications.

Conclusions
In many practical scenarios, the data owner only hopes
some designated verifier to perform the auditing task,
which is not covered by private or public auditing model.
Yan et al. recently designed an auditing protocol with a
designated verifier to resolve this problem. But their pro-
tocol naturally suffers from complicated management of
certificates and heavy dependence on PKI. In this paper,
for the first time, we introduce the identity-based remote
data checking with a designated verifier. Compared with

Ji et al. Journal of Cloud Computing (2022) 11:7 Page 12 of 14

Fig. 2 Time-Consumptions for the Generations of Authentication Files

the existing PDP protocol with a designated verifier, our
protocol avoids the introduction of PKI and management
of public key certificates. Moreover, we also give the secu-
rity model and prove that our protocol is provable secure
based on the CDH and WDH assumptions in the random

oracle model. The final analysis on performance shows
that this protocol is also efficient and can be used in future
real-life applications.
Future works. The first interesting problem is how to

design more efficient IB-DV-PDP protocol so that it can

Fig. 3 Time-Consumption for the Generation of Returned Proof

Ji et al. Journal of Cloud Computing (2022) 11:7 Page 13 of 14

Fig. 4 Time-Consumption for the DV’s Verification

find applications in practical scenarios. In addition, note
that the security of our proposed IB-DV-PDP protocol
relies on the ideal random oracle, and thus the second
future work is finding and designing an efficient IB-DV-
PDP protocol, which is provable secure in the standard
model.

Acknowledgments
The authors would like to thank anonymous referees for their valuable
suggestions and comments.

Authors’ contributions
Yanyan Ji and Bilin Shao gave the main idea of this paper. The other three
authors had worked equally during all this paper’s stages. The authors read
and approved the final manuscript.

Authors’ information
Not applicable.

Funding
This work is supported in part by National Natural Science Foundation of
China (No. 61872284), and in part by Foundation of SKLOIS (No. 2021-MS-04).

Availability of data andmaterials
The data and materials are available from the corresponding author on
reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
All authors read and approve the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Author details
1School of Management, Xi’An University of Architecture and Technology,
Xi’An 710055, Shaanxi, People’s Republic of China. 2School of Information and
Control Engineering, Xi’An University of Architecture and Technology, Xi’An
710055, Shaanxi, People’s Republic of China. 3State key laboratory of
information security (SKLOIS), Institute of Information Engineering, Chinese
Academy of Sciences, Beijing 100093, People’s Republic of China. 4School of
mathematics, Peking University, Beijing 100871, People’s Republic of China.

Received: 1 December 2021 Accepted: 31 January 2022

References
1. Tian H, Nan F, Chang C, et al. (2019) Privacy-preserving public auditing for

secure data storage in fog-to-cloud computing. J Netw Comput Appl
127:59–69

2. Zhang J, Yang Y, Chen Y, et al. (2017) A general framework to design
secure cloud storage protocol using homomorphic encryption scheme.
Comput Netw 129:37–50

3. Gan Q, Wang X, Fang X (2018) Efficient and secure auditing scheme for
outsourced big data with dynamicity in cloud. Sci China Inf Sci
61(12):122104

4. Ji Y, Shao B, Chang J, et al. (2020) Privacy-preserving certificateless
provable data possession scheme for big data storage on cloud, revisited.
Appl Math Comput 386:125478

5. Zhang R, Ma H, Lu Y (2017) Provably secure cloud storage for mobile
networks with less computation and smaller overhead. Sci China Inf Sci
60(12):122104

6. Shacham H, Waters B (2013) Compact proofs of retrievability. J Cryptol
26:442–483

7. Yan H, Li J, Zhang Y (2020) Remote data checking with a designated
verifier in cloud storage. IEEE Syst J 14(2):1788–1797

Ji et al. Journal of Cloud Computing (2022) 11:7 Page 14 of 14

8. Li J, Yan H, Zhang Y (2020) Identity-based privacy preserving remote data
integrity checking for cloud storage. IEEE Syst J. https://doi.org/10.1109/
JSYST.2020.2978146

9. Yu Y, Au MH, Ateniese G (2017) Identity-based remote data integrity
checking with perfect data privacy preserving for cloud storage. IEEE
Trans Inf Forensics Secur 12(4):767–778

10. Shamir A (1985) Identity-based cryptosystems and signature schemes.
In: CTYPTO’84. IACR, Santa Barbara. pp 47–53

11. Wang H, He D, Yu J, et al. (2019) Incentive and unconditionally
anonymous identity-based public provable data possession. IEEE Trans
Serv Comput 12(5):824–835

12. Xue J, Xu C, Zhao J, et al. (2019) Identity-based public auditing for cloud
storage systems against malicious auditors via blockchain. Sci China Inf
Sci 62:32104

13. Juels A, Kaliski BS (2007) Proofs of retrievability for large files. In: CCS’07.
ACM, Los Angeles. pp 584–597

14. Ateniese G, Burns R, Curtmola R (2007) Provable data possession at
untrusted stores. In: CCS’07. ACM, Los Angeles. pp 598–609

15. Dodis Y, Vadhan S, Wichs D (2009) Proofs of retrievability via hardness
amplification. In: TCC’ 2009. Springer, Berlin. pp 109–127

16. Chang J, Shao B, Ji Y, et al. (2020) Comment on a tag encoding scheme
against pollution attack to linear network coding. IEEE Trans Parallel
Distrib Syst 31(11):2618–2619

17. Wu Y, Chang J, Xue R, et al. (2017) Homomorphic MAC from algebraic
one-way functions for network coding with small key size. Comput J
60:1785–1800

18. Chang J, Ji Y, Shao B, et al. Certificateless homomorphic signature scheme
for network coding. IEEE/ACM Trans Netw. https://doi.org/10.1109/TNET.
2020.3013902

19. Chen F, Xiang T, Yang Y, et al. (2016) Secure cloud storage meets with
secure network coding. IEEE Trans Comput 65:1936–1948

20. Chang J, Shao B, Ji Y, et al. (2021) Secure network coding from secure PoR.
Sci China Inf Sci 64(12):229301

21. Wang H, Wu Q, Qin B (2014) Identity-based remote data possession
checking in public clouds. IET Inf Secur 8(2):114–121

22. Li J, Yan H, Zhang Y (2020) Efficient identity-based provable multi-copy
data possession in multi-cloud storage. IEEE Trans Cloud Comput. https://
doi.org/10.1109/TCC.2019.2929045

23. Chang J, Shao B, Ji Y, et al. Efficient identity-based provable multi-copy
data possession in multi-cloud storage, revisited. IEEE Commun Lett.
https://doi.org/10.1109/LCOMM.2020.3013280

24. Zhang X, Wang H, Xu C (2019) Identity-based key-exposure resilient cloud
storage pubic auditing scheme from lattices. Inf Sci 472:223–234

25. Mary Virgil Nithya S, Rhymend Uthariaraj V (2020) Identity-based public
auditing scheme for cloud storage with strong key-exposure resilience.
Security and Communication Networks, article ID: 4838497, https://doi.
org/10.1155/2020/4838497

26. Boneh D, Franklin M (2003) Identity-based encryption from the weil
pairing. SIAM J Comput 32(3):586–615

27. Akinyele J, et al. (2013) Charm: a framework for rapidly prototyping
cryptosystems. J Cryptography Eng 3(2):111–128

28. Lynn B The standard pairing based crypto library. http://crypto.standford.
edu/pbc. Accessed Oct 2021

29. Boneh D, Lynn B, Shacham H (2004) Short signatures from the pairing. J
Cryptol 17(4):297–319

30. Chang J, Wang H, Wang F, et al. (2020) RKA security for identity-based
signature scheme. In: IEEE Access, vol. 8. IEEE, USA. pp 17833–17841

31. Ji Y, Shao B, Chang J, et al. (2021) Flexible identity-based remote data
integrity checking for cloud storage with privacy preserving property.
Clust Comput. https://doi.org/10.1007/s10585-021-03408-y

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1109/JSYST.2020.2978146
https://doi.org/10.1109/JSYST.2020.2978146
https://doi.org/10.1109/TNET.2020.3013902
https://doi.org/10.1109/TNET.2020.3013902
https://doi.org/10.1109/TCC.2019.2929045
https://doi.org/10.1109/TCC.2019.2929045
https://doi.org/10.1109/LCOMM.2020.3013280
https://doi.org/10.1155/2020/4838497
https://doi.org/10.1155/2020/4838497
http://crypto.standford.edu/pbc
http://crypto.standford.edu/pbc
https://doi.org/10.1007/s10585-021-03408-y

	Abstract
	Keywords

	Introduction
	Preliminaries
	Basic notations
	Blinear map
	CDH assumption
	Weil Diffie-Hellman Assumption
	System model
	Security model

	Our proposed construction and its security
	Brief review of yan et al.'s dV-PDP protocol
	Security analysis
	Further improvement
	Error detection probability

	Performances analysis
	Communication overhead
	Storage cost
	Computational cost (Theoretical analysis)
	Experimental results

	Conclusions
	Acknowledgments
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

