
Journal of Cloud Computing:
Advances, Systems and Applications

de Moraes et al. Journal of Cloud Computing: Advances, Systems
and Applications (2022) 11:5
https://doi.org/10.1186/s13677-021-00275-1

RESEARCH Open Access

Application of deterministic, stochastic,
and hybrid methods for cloud provider
selection
Lucas Borges de Moraes2,3, Rafael Stubs Parpinelli1,2,3 and Adriano Fiorese1,2,3*

Abstract

Cloud Computing popularization inspired the emergence of many new cloud service providers. The significant
number of cloud providers available drives users to complex or even impractical choice of the most suitable one to
satisfy his needs without automation. The Cloud Provider Selection (CPS) problem addresses that choice. Hence, this
work presents a general approach for solving the CPS problem using as selection criteria performance indicators
compliant with the Cloud Service Measurement Initiative Consortium - Service Measurement Index framework
(CSMIC-SMI). To accomplish that, deterministic (CPS-Matching and CPS-DEA), stochastic (Evolutionary Algorithms:
CPS-GA, CPS-BDE, and CPS-DDE), and hybrid (Matching-GA, Matching-BDE, and Matching-DDE) selection optimization
methods are developed and employed. The evaluation uses a synthetic database created from several real cloud
provider indicator values in experiments comprising scenarios with different user needs and several cloud providers
indicating that the proposed approach is appropriate for solving the cloud provider selection problem, showing
promising results for a large-scale application. Particularly, comparing which approach chooses the most appropriate
cloud provider the better, the hybrid one presents better results, achieving the best average hit percentage, dealing
with simple and multi-cloud user requests.

Keywords: Cloud provider selection problem, Cloud provider ranking, Evolutionary computing, Natural computing,
Performance indicator, Hybrid methods, Stochastic algorithms, Deterministic algorithms

Introduction
Cloud Computing (CC) is a service model that allows
a significant and on-demand hosting and distribution
of optimized computing resources using computer net-
works [1] being a convenient and easily accessible service
via Internet [2]. Popularization of CC usage inspired the
emergence of a large number of new companies provid-
ing CC services [3] known as Cloud Providers (CPs) [1]. In
spite of that, the increasing number of CPs does not guar-
antee service quality. In fact, careful and discerning cloud
users can experience complexity in choosing a cloud com-
puting company among all those available. Thus, selecting

*Correspondence: adriano.fiorese@udesc.br
1Department of Computer Science (DCC), Joinville, SC, Brazil
2Graduate Program in Applied Computing (PPGCA), Joinville, SC, Brazil
Full list of author information is available at the end of the article

which CPs are the most suitable to satisfy each user’s
needs has become a complex issue called Cloud Provider
Selection (CPS) problem.
From the last decade, the CPS became a signifi-

cant research challenge and several works have already
been developed trying to solve it by using deterministic
approaches, for example,Multi-criteria DecisionMethods
(MCDM) [4–12] Other works cope with metaheuristics
to address CPS problem [13, 14]. Deterministic, meta-
heuristic and hybrid methods, which combines deter-
ministic ones, are well-used making them important to
solve CPS problem according to state-of-the-art liter-
ature. Although these approaches deal with CPS, the
complex user requests that require more than a single
provider to be satisfied, is poorly scratched. At the best
of our knowledge, none work used the deterministic and

© The Author(s). 2022Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-021-00275-1&domain=pdf
https://orcid.org/0000-0001-7326-5032
https://orcid.org/0000-0003-1140-0002
mailto: adriano.fiorese@udesc.br
http://creativecommons.org/licenses/by/4.0/

de Moraes et al. Journal of Cloud Computing (2022) 11:5 Page 2 of 23

metaheuristics approach involving different methods in
a pipeline for fulfillment of complex multi-cloud user
requests. Moreover, these works propose disconnected
methods, particular approaches, and different problem
definitions, lacking an integrative problem modelling and
design. We advocate this happens because, beyond stan-
dardization absence, these works do not share a common
ground such as an initial problem scenario composed of
database and user requests format.
This work intends to find answers to the following

research questions: Which can be the definitions (e.g.,
models, process, relationships, formats, etc.) and ele-
ments (e.g., software) that can be seem and used by other
works as providing a common ground to solve the CPS
problem? Which is the best approach/strategy/method to
solve the CPS problem, according to those elements and
definitions?
To address these issues, this work proposes a new and

generic approach for solving the CPS problem1, using
CSMIC-SMI Performance Indicators (PIs) as metric to
quantify CPs quality. In this sense, the proposed approach
provides a pool of selection methods in three categories:
deterministic or exact, stochastic or metaheuritics, and
hybrid. Hence, a comparative study is performed.
This work presents several contributions. The main one

is the CPS problem-solving model as a general software
architecture that uses CP performance indicators as selec-
tion criteria. Also, the unordered subsidiary contributions
cope with: 1) information model representing an individ-
ual, i.e., a CPS possible solution; and the suitable fitness
function used by the developed metaheuristic algorithms;
2) Regarding the deterministic methods: 2.1) Mathemati-
cal model comprising a set of equations coping with trans-
forming the CPS criteria, i.e., CP database’s performance
indicators and user requests, into inputs and outputs
to feed the Data Envelopment Analysis (DEA) method,
which is used in the developed CPS-DEA method; 2.2)
A particular tolerance mechanism supporting small dif-
ferences between user-requested PIs and cloud provider
PIs; 3) A general and agnostic qualitative data2 ontol-
ogy (i.e., HT, LT, HLT PI characteristics), as seen in
“Performance indicators” section, that enables the meth-
ods employed to deal with qualitative beyond quantita-
tive3 data; 4) An architectural design contributing to a
potential standardization of CPS problem-solving.
The remainder of this paper is organized as follows:

“General background” section presents the general
1Unlike our previous works concerning the CPS problem [15–17], this paper
brings up other selection methods, an entirely new set of experiments, new
analysis, and exciting findings. Hence, the proposal of building a CPS approach
offering several other cloud provider selection methods beyond previously
developed ones makes this paper a significant new contribution to the commu-
nity.
2criteria/attributes/performance indicators.
3To the best of our knowledge no CPS framework deals with qualitative data
using similar approach.

background concerning the development of this work;
“Related work” section presents important related work;
“Cloud provider selection approach” section presents
a detailed description of the proposed PI-based cloud
provider selection approach; “Experiments and results”
section presents the experiments performed, obtained
results, and analysis. Finally, “Conclusions and future
work” section elaborates on final considerations and
future work.

General background
This section presents main concepts necessary for devel-
oping and understanding the proposed PI-based approach
and selection methods for solving the CPS problem.

Performance indicators
An indicator is a tool that allows a synthesized collec-
tion (i.e., containing only the essential data) of information
related to a particular aspect of reality [18]. It is possible
to classify indicators into two categories [19]: Quanti-
tative: They are those states, levels, or categories that
can be expressed numerically and can be worked alge-
braically. The numeric values can be discrete or contin-
uous. Qualitative: They are also called categorical. They
can represent distinct states, levels, or categories defined
by an exhaustive and mutually exclusive set of subclasses,
which may or may not be ordered. The ordered sub-
classes have perceptible logical graduation among them,
giving an idea of progression, whereas the unordered ones
do not.
Quantitative indicators can also be classified according

to the behavior of their utility function, that is, how good
(useful, beneficial) the indicator becomes when its numer-
ical value changes (increases or decreases). According to
[19], there are three possible classifications: a) Higher
is Better (HB): Users and/or system managers always
prefer the highest possible values for this indicator. Exam-
ples are system throughput, resources (money, memory,
and materials), and service’s availability. b) Lower is Bet-
ter (LB): Users and/or system managers always prefer
the lowest possible values for this indicator. Examples
are response time (delay) and costs. c) Nominal is Best
(NB): Users and/or system managers prefer specific val-
ues (higher and lower values are undesired). A particular
value is considered the best. The criteria system usage and
security are examples of this utility function class.
The utility function of qualitative indicators is harder

to map using numerical values. A trivial mapping is the
binary one, i.e., the category or subclass “value” of the
qualitative indicator has maximum utility whereas the
others have minimal utility according to users choice.
Quantitative indicators present a similar (but not equal)
behavior with the NB utility function. Binary is a use-
ful mapping process for unordered qualitative indicators.

de Moraes et al. Journal of Cloud Computing (2022) 11:5 Page 3 of 23

However, numbers representing levels can be associated
with each different category in ascending order for the
ordered ones. Thus, smaller level numbers are assigned
to categories that express lower values (e.g., “low”, “lit-
tle”, “never”) and larger numbers to categories that express
higher values (e.g., “high”, “many”, “always”). Thus, this
mapping can be useful when a user desires a specific
category (“value”) though higher and/or lower-level cate-
gories than the desired one can also help/satisfy the user.
Therefore, to solve this problem, comprising this work,
an ontology, similar to the one in [19], was created in
order to model when an ordered qualitative indicator has
tolerances for categories below and/or above the desired
category level [15]. They are: Higher is Tolerable (HT):
Categories above the desired one are tolerable; Lower
is Tolerable (LT): Categories below the desired one are
tolerable; Higher and Lower are Tolerable (HLT): Cate-
gories above and below the desired one are both tolerable.
In order to standardize the specification of PIs for the

evaluation of CPs, the Cloud Service Measurement Index
Consortium (CSMIC) was formed. The Service Measure-
ment Index (SMI), proposed by CSMIC, represents a
widely accepted set of PIs that can measure a CP’s service
performance and compare different services, regardless
of whether the service is provided internally or by an
outsider company [20].
SMI is a hierarchical structure whose upper level divides

the measurement space into seven major categories and
each major category is optimized by four or more
attributes (subcategories) [20]. The seven major cate-
gories are: accountability, agility, assurance, financial, per-
formance, security, privacy and usability. Each category
contains a set of attributes, where each attribute has
its own definition and collection form (how to obtain
the value) [7, 21]. Some of the attributes also have sub-
attributes that specializes them [22]. The major cate-
gories, also called Key Performance Indicators (KPI) [22],
can be defined as follows:

• Accountability: This category measures if the CP is
responsible and complies with good practices regard-
ing actions and business practices. Functions criti-
cal to accountability include auditability, compliance,
data ownership, provider ethicality, sustainability, etc.

• Agility: Agility depicts a change metric comprising
how quickly new capabilities are integrated into IT
as needed. When regarding a Cloud service’s agility,
attributes like service elasticity, portability, adaptabil-
ity, and flexibility should be provided.

• Financial: Involves the cloud provider and client
expenditure relationship aspects where cost is the
most important attribute/indicator representing how
much client pays to have the cloud service, for
instance. It is a quantitative metric.

• Performance: This category covers the features and
functions of the provided services. It can be assessed
with respect to suitability, interoperability, accuracy
and so forth. It has sub-attributes that are quantitative
and qualitative.

• Assurance: This category includes key attributes that
indicate how likely it is that the service will be avail-
able as specified. For selecting cloud providers some
of these attributes are reliability, resiliency and service
stability.

• Security and Privacy: This category includes attributes
that indicate the effectiveness of a cloud service
provider’s controls on access to services, service data,
and the physical facilities from which services are pro-
vided. It includes many qualitative attributes such as
protecting confidentiality and privacy, data integrity
and availability.

• Usability: It asses the ease with which a service can
be used. Multiple factors are involved with usability
such as Accessibility, Installability, Learnability, and
Operatibility.

These KPI/categories, attributes and sub-attributes can
be quantitative or qualitative and provide a wide range
of cloud service providers’ evaluation and comparison
criteria. Moreover, they can be used according their
utility function ontology. Therefore, they represent suit-
able performance indicators to be used per se or on
decision-making support methods to rank and select
cloud providers.

Data envelopment analysis
According to [23],

Data Envelopment Analysis is a linear programming
method for assessing the efficiency and productivity of
units called Decision-Making Units (DMUs). Over the
last two decades, DEA has gained considerable atten-
tion as a managerial tool for measuring organizations’
performance. [23]

Data Envelopment Analysis is a well-known method for
decision-making support introduced by Charnes, Cooper,
and Rhodes in 1978 [24]. DEA can measure a set of simi-
lar DMUs [25] which are entities (e.g., manufacturing unit,
bank, hospital, and cloud provider) that consumes a vari-
ety of identical inputs and produces a variety of identical
outputs.
The performance of each DMU is assessed by DEA

using the concept of efficiency or productivity, which is
the ratio of total output regarding total input [25]. Note-
worthy, outputs are criteria to be maximized, and inputs
minimized for better efficiency. Thus, DEA aims to mea-
sure how efficiently a DMU uses the available resources to
generate a set of outputs. Efficiency is a relative concept

de Moraes et al. Journal of Cloud Computing (2022) 11:5 Page 4 of 23

that compares what has been produced with what could
have been produced. Ultimately, it can be understood as a
comparison between observed productivity among com-
peting DMUs [4]. Thus, estimated efficiencies using DEA
are relative to or compared to the best performing DMU,
i.e., with the highest calculated efficiency value among the
assessedDMUs [25]. Efficiency varies between 0 and 100%
(or from 0 to 1).
Equation 1 shows DEA’s optimization problem depict-

ing the DMU’s efficiency maximization as the sum of all
its s weighted outputs, where uk represents the weight k
and Oki, the output k of the DMU i. This is subject to the
sum of all r weighted inputs equals 1, where vl represents
the weight l and Ili the input l of the DMU i. Moreover,
the difference between weighted outputs and weighted
inputs is another constraint andmust be less than or equal
to 0. It is important to note that the decision variables
are the input and output weights v = (v1, v2, ...vr) and
u = (u1,u2, ...,us), respectively, and their values must be
greater than or equal to 0 (non negative weights).

max Eff i =
s∑

k=1
uk × Oki (1)

subject to:
r∑

l=1
vl × Ili = 1

s∑

k=1
uk × Okj −

r∑

l=1
vl × Ilj ≤ 0; ∀j

uk , vl ≥ 0; k = 1, 2, ..., s; l = 1, 2, ..., r

It is noteworthy that the DMU that produces more out-
puts with fewer inputs than the others will present better
efficiency values. The weights (uk) and (vl), assigned to
outputs and inputs, respectively, are not allocated by users
but automatically calculated by the method in a linear
optimization procedure in order to allow the most bene-
ficial results possible for each DMU [25], respecting the
restrictions depicted in Eq. 1. The set of DMUs with an
efficiency of 100% forms DEA’s efficiency frontier. Thus,
it is essential to note that the number of DMUs must be
reasonable to use DEA. Otherwise, maybe the method
cannot satisfactorily calculate the efficiency, and thus all
DMUs fall in the efficiency frontier. To avoid that, one
expects that the number of DMUs is greater than the
product between the amount of input and output [25]. It
is worth noting that the sample size should be at least two
times larger than the sum of the inputs and outputs for an
appropriate efficiency calculation [25].

Genetic algorithms
John Holland introduced Genetic Algorithms (GA) in the
70s [26] and popularized by David Goldberg in the 1980s

[27]. They are based on the natural selection process pro-
posed by Charles Darwin, where adaptability (fitness),
heredity, and genetic mutation can influence the changes
and selection of best-fit individuals. GA is probabilistic
where several internal routines demand random number
generation with threshold verification (e.g. crossover and
mutation routines). Also, GA is population-based since it
works on a set of candidate solutions, named individuals,
of a population in each generation (iteration algorithm).
Each individual represents a point in the search space,
and it is composed of a genetic coding (genotype) imple-
mented as a vector with different genes. Each gene is
responsible for encoding one of the optimization problem
variables. The GA looks for the best solution to a problem
based on the fitness of its individuals. The higher the fit-
ness, the greater the chances of that individual passing on
its genetic load (portions of its chromosomes/solutions).
The selection routine (e.g., roulette wheel and stochas-
tic tournament) is responsible for guiding the evolution
process over the generations, allowing the algorithm to
converge to the best possible solutions. GA generally
uses two genetic operators: crossover (for binary cod-
ing, e.g., one-point-crossover) and bit-flip mutation. One-
cut-point crossover creates two new coding vectors (off-
springs) by copying and exchanging two portions of the
two individuals’ coding vectors (parents) based on a single
cut-off point. Bit flip is a mutation technique that changes
one bit (an encoded problem variable, for instance, from
0 to 1) with a specified ratio in the individual encoding
vector. An elitism routine can also help algorithm conver-
gence to the optimal solution point and make an always
upward fitness curve (best individual fitness in the current
population). The elitism copies the best individual of the
current population to the next algorithm generation [28].

Binary differential evolution
Binary Differential Evolution (BDE) is a probabilistic and
population-based metaheuristic inspired by the canon-
ical Differential Evolution (DE) algorithm [29]. BDE is
adapted to handle binary search space problems using
a simple modification of the DE/rand/1/bin variant for
binary coding, which combines each individual of the cur-
rent population with another randomly chosen one using
the crossover operator [28]. Besides the binary represen-
tation, the main modification is the insertion of a bit-
flip mutation operator inspired by the GA that improves
its global search ability, which enables diversity [28].
Thus, the BDE consists of applying these simple opera-
tors (crossover and bit-flip mutation) in candidate solu-
tions represented as binary strings. The adaptation starts
with the population initialization. In this case, instead of
continuous random values, the individuals are initiated
with random binary ones. A random bit inversion replaces
the original mutation, and the perturbation rate is a new

de Moraes et al. Journal of Cloud Computing (2022) 11:5 Page 5 of 23

parameter added to establish how many individuals of the
population will pass on to the next generation using the
mutation and crossover processes. At least one individ-
ual will be mutated and the DE crossover is kept as the
original but with binary values. This process is activated
during the perturbation procedure and after mutation. In
this case, the used selection routine is a greedy selection.

Discrete differential evolution
Discrete Differential Evolution (DDE) is another version
of DE adapted to handle binary search space problems
[30]. DDE encodes continuous variables, i.e., floating
point numbers converted to binary before the fitness eval-
uation, while BDE encodes binary-only variables (0,1). In
other words, DDE uses the genetic operators on floating-
point (real) values codification. Thus, the ith individual
of the candidate solutions population is an n-dimensional
vector, and each dimension j is composed of a random
floating-point number between -1 and 1 [30]. The n
parameter is equivalent to the number of DMUs in DEA
modeling. The basic DE operator is the DE/rand/1/bin
mutation strategy over the generations. The selection rou-
tine used is the greedy selection [30]. Equation 2 presents
this strategy,

xij = xaj + F × (xbj − xcj). (2)

The DDE mutation operation creates a new individual x
using three different random individuals (a, b, and c) and a
scale parameter F that ranges from 0 to 1 [30]. To accom-
plish that, this new individual x is perturbed in every
position j by receiving the random floating-point value of
a, plus the weighted difference variation between b and
c, at that same position j. Parameter F is the weighting
factor used to control the amplification of the differential
variation.
When DDE evaluates the fitness of an individual, it

must to discretize the individual’s genotype vector. That
is, DDE transforms floating-point codification xj to binary
codification yj. Equation 3 performs this discretization:

yj = f (xj) =
{

1 if xj > 0
0 otherwise.

(3)

Related work
This section presents various research works carried
out by academicians and researchers using determinis-
tic, stochastic (metaheuristic) and hybrid approaches for
ranking and selection of CPs.

Deterministics
This subsection presents works addressing CPS prob-
lem with deterministic methods, involving multi-criteria
decision methods, fuzzy logic and others.

Sundareswaran et al. [31] proposed an indexing tech-
nique to assist CP selection using CPs properties and users
requirements. Service providers are analysed and indexed
by an index key generated by concatenation of the encod-
ing type of service and all the other encoded properties
offered by the CP, using a “xor” operator. Each property
(except service type) has a unique encoding. A “B+-tree”
keeps CPs indexed. Thus, at receiving a cloud provider
selection request, it is started a search in the index to
identify an orderly list of candidate CPs according to how
well their properties fit the users’ needs. The technique
is tested with six real CPs (Google Clouds, Joynet, Sales-
force, Windows Azure, Amazon EC2, Rackspace) and
nine properties (service type, operating system, Quality
of Service (QoS) level, security level, measurement unit,
instance sizes, pricing, and location-based prices, pricing
unit).
Garg et al. [7, 32] proposed a framework called SMI-

Cloud for ranking CC services using SMI indicators.
SMICloud performs CPs’ QoS assessments to rank them
using the Analytic Hierarchy Process (AHP) method [33].
The SMI indicators used can be of two types (essen-
tial, not essential) whose values can be boolean, numeric,
unordered set, or range type. A small ranking study case
evaluating SMICloud has been performed using a set of
three real Infrastructure as a Service (IaaS) CP (Win-
dows Azure, Rackspace and Amazon EC2) and six SMI
PIs (agility, cost, assurance, security level - randomly gen-
erated, accountability level and performance). Although
SMICloud seems appropriate, the assembly of many CPs
and PIs hierarchy is tiresome and complicated.
Sun et al. [34] presented a cloud services selection

framework called Cloud Service Selection with Criteria
Interactions (CSSCI). The framework performs selection
relying on criteria interactions modelled as user oriented
priority orders and types of interaction among users.
CSSCI applies fuzzy measures and the Choquet integral
to assess the selection criteria interrelationship. Regard-
less of being an exciting work, SMI criteria are not used
at the assessment of the selection criteria interrelation-
ship. This makes it difficult to compare results with other
works, including ours.
Chen et al. [35] presented another example of selec-

tion mechanism where the Logistic Selection Partner
(LSP) problem faced by the omnichannel e-commerce
marketplace realm is addressed. Notably, a solution for
selecting the most suitable logistic partner for delivering
goods is proposed. To accomplish that, fuzzy axiomatic
design and extended regret theory are used to pro-
cess functional requirements similar to human beings
psychological behavior. The fuzzy axiomatic design com-
putes the probability of success for each LSP to fulfill each
criterion. The extended regret theory determines the cri-
teria weights analysing the decision maker behavior. A

de Moraes et al. Journal of Cloud Computing (2022) 11:5 Page 6 of 23

final phase computes the LSP final score combining previ-
ous results. Experiments with six LSP are conducted and
results are compared with Technique for Order Preference
by Similarity to Ideal Solution (TOPSIS) method.
Somu et al. [22] presented a Hypergraph based Com-

putational Model (HGCM) for ranking Cloud Service
Providers (CSPs). This model core uses the Helly’s hyper-
graphs property to evaluate CSPs by means of the Min-
imum Distance-Helly Property (MDHP) technique. The
MDHP takes into account the relationship between some
SMI atributes, sub-atributes and KPIs and the cloud user
requirements to select the most suitable CSP. Although
the remarkable work done creating hyperedges and the
recursive use of Helly property, this work does not com-
plies with an attributes ontology that considers the more
resources a cloud provider has the better is to fulfill the
user requirement, which is taken into account in the
proposed work.
Baranwal and Vidyarthi [8] proposed a CP ranking vot-

ing model that uses DEA to analyse user QoS expectation
metrics as input data. Also, SMI metrics are used. Two
kinds of metrics are used: application dependent and user-
dependent. The metric values can be of different types
such as range type, numeric unordered set, boolean, and
data center value. In this voting system, each metric acts
as a voter, and CPs are candidates. [36] presents a CPmea-
sure index framework that is a similar proposal to [8]’s
voting model. In this case, the resulting cloud providers
index provides the information about CPs that can be used
to select the best one.
Abdel-Basset et al. [12] proposed the use of neutro-

sophic set, triangular neutrosophic numbers and their
operations to deal with uncertainties, such as indeter-
minacy and falsity when performing selection criteria
pairwise comparisons, which are not handled by fuzzy
set theory and traditional MCDM. Thus, authors present
the Neutrosophic Analytic Hierarchy Process (NAHP)
method that uses a neutrosophic triangular scale instead
of Saaty’s scale in the AHP method to rank cloud
providers using accessibility and usability, performance,
security and, scalability as selection metrics. The pro-
posed work deals with uncertainties at the criteria value
collection level dismissing the need to pairwise criteria
assessment.
Meesariganda and Ishizak [11] proposed the use of AHP

with particular scale to rank cloud providers. In this case,
a scale is chosen among nine different ones (e.g., Linear,
Power, Geometric, Logarithmic, Root square, Asymptot-
ical, Balanced, Inverse linear and Balanced power). The
shortest euclidian distance between scales’ values and the
decision maker value defines the choice. Paper presents
an experiment using sixmetrics (core competency, market
opportunity, customer satisfaction, time to market, risk
and financial benefits).

Hogben and Pannetrat [37] presented the challenges of
defining and measuring the metrics availability for sup-
porting real-world services. Their analysis is based on
Service Level Agreements (SLA) that are not standardized
generating ambiguity on the definition of availability as
measured by service providers. This work highlights the
importance of standardization to support comparisons
among services.
Wagle et al. [38] proposed a services evaluation model

coping with the commit of SLAs between CPs and users.
The execution of this model arranges CPs in a heat map
according to their performances comprising QoS. There-
fore, this map portrays a reference and guide system for
cloud computing users and brokers. This work uses as
metrics, ones based on SMI: performance (throughput,
response time, and latency), cost (storage and snap-
shot cost), reliability (load balancing, recoverability and
mean time between failures - MTBF), security (authen-
tication, encryption, and auditing) and availability (con-
sidering interruption frequency, downtime, and up-time).
This selection approach does not rely on an automated
method to decide which provider should be selected since
it is visual. Although it is an excellent way to show data,
it becomes complex to use if the number of CPs and QoS
metrics scale.

Metaheuristics
This subsection presents works whose main approach
uses metaheuristic methods, even though deterministic
methods can be used to compare results.
Patra et al. [39] proposed a constrained multi-criteria

federated cloud provider selection mathematical model.
Authors present three metaheuristic algorithms, namely:
1) Bird Swarm Algorithm (BSA); 2) Teaching-Learning
Based Optimization (TLBO), and 3) Jaya, a population-
based gradient-free optimizationmethod. The selection of
the best Internet of Things (IoT) Cloud Software Platform
is the application scenario for the algorithms. The algo-
rithms use some optimized (maximized and minimized)
criteria such as cost, suitability, assurance, reliability,
availability, and usability. The paper presents algorithms
flowchart. Algorithms evaluation results are similar but
with BSA prevalence.
Mukherjee et al. [13] proposed a mathematical model

for constrained multi-criteria federated cloud provider
selection. That mathematical model is implemented as
the Harris Hawks Optimizer (HHO) metaheuristic algo-
rithm. Authors model several criteria, such as cost, per-
formance, assurance, usability and accountability that are
used as input for the HHO. A solution based on the
AHP multi-criteria method is used to present feasible
solutions that can be compared with the results offered
by the HHO, TLBO and Jaya. A performance evalua-
tion has been performed showing the HHO, TLBO and

de Moraes et al. Journal of Cloud Computing (2022) 11:5 Page 7 of 23

Jaya results, respectively, are better than the AHP ones.
Although the proposal presents a detailed modelling of
the used criteria, particular features that represents user’s
needs to choose a cloud provider are not specified nei-
ther taken into account on those criteria. Our approach,
beyond specifying the features (PIs), copes with ones that
are in the SMI.
M. [14] proposed a trust estimation framework for

infrastructure-based cloud service selection using the
Non-dominated Sorting Genetic Algorithm (NSGA) II.
NSGA-II provides a set of Pareto-optimal solutions
assessing agility, finance, performance, security, and
usability criteria. A proposal evaluation has been per-
formed on generated service plans for 14 CP considering
three models where one of the criteria is more important
than the others (Performance-based, Finance-based and
Security-based).
Mohamed and Abdelsalam [40] proposed a CPS solu-

tion where more than one single cloud provider can host
the user services. In order to select multi CP, authors
use Simulated Annealing (SA), Genetic Algorithms (GA)
and Particle Swarm Optimization (PSO) metaheuristic
methods. Experiments are performed with a hypothetical
dataset and they compare methods’ performance against
the best solution given by the AHP method. It is impor-
tant to note that our proposed work goes further since
it provides, all integrated, selecting single or multi CPs
depending on the complexity of user needs. Moreover,
it presents a broader set of deterministic (that they do
not propose) and metaheuristic methods combining them
into hybrid methods.

Hybrids
This subsection shows works whose main approach
involves a combination of two or more methods regard-
less of deterministic or metaheuristic ones. As aforemen-
tioned, to the best of our knowledge, beyond ours none
work has proposed a hybrid approach combining first a
deterministic and then a metaheuristic methods.
Achar and Thilagam [9] presented a hybrid approach

for ranking IaaS CPs using QoS measurements as selec-
tion criteria and using AHP and TOPSIS methods. The
IaaS service selection comprises three steps, namely, 1)
Identifying which criteria are appropriate to the request,
i.e., identifying the essential PIs belonging to the SMI; 2)
Assessing these criteria weights using the AHP method,
and 3) Ranking each CP using TOPSIS [41]. The work
evaluation is performed with six hypothetical providers
and four PIs (security, availability, cost, and account-
ability). Although ranking using TOPSIS appears to be
promising, more examples and analysis can lead to more
reliable conclusions, especially with real data and user
requests. Moreover, the approach lacks the use of qualita-
tive PIs.

Jatoth et al. [42] proposed a SELCLOUD framework-
hybrid multi-criteria decision-making approach i.e., a
novel extended Grey TOPSIS using AHP method for
cloud service selection. The Grey theory cope with the
uncertainty issues; AHP to determine the weights of
the criteria; and TOPSIS to obtain the CPs ranking and
address the rank reversal problem. The performance of
SELCLOUD has been validated using a set of seven IaaS
CSPs (Amazon, Azure, CenturyLink, City Cloud, Google,
HP, and Rackspace) on three categories i.e., large (two
virtual cores), Extra-large (four virtual cores) & 2x-extra-
large (eight virtual cores) and five PIs (price, processing
performance, I/O operational consistency, disc storage
performance, and memory performance) in terms of sen-
sitivity analysis, adequacy under a change in alternatives,
adequacy to support group decision-making, and han-
dling uncertainty.
(Jaiswal and Mishra, [10]) proposed an approach that

uses TOPSIS and Fuzzy TOPSIS [43] alongside AHP and
Analytic Network Process (ANP) [44] to handle the CPS
problem, based on quantified QoS attributes. AHP and
ANP evaluates criteria weights and TOPSIS and Fuzzy
TOPSIS rank CPs. The performance of the approach
has been evaluated using four hypothetical CPs with
data gathered from cloudharmony.com and eight arbitrary
quantitative criteria (virtual core, memory, price/hour,
CPU performance, disk input/output operations per sec-
ond, disk consistency, disk performance, memory per-
formance). Albeit a well-crafted approach, the showed
instance evaluation results are subjective, and weights
assigned by users make all the difference, making the
proposed method’s efficiency questionable for large quan-
tities of CPs. Moreover, the proposed approach also does
not seem to be able to handle subjective criteria.
Al-Faifi et al. [45] proposed a hybrid approach for

selecting CPs in the context of smart data environ-
ments. To evaluate and rank cloud providers, authors
consider the interdependencies and relationships between
the performance measurements used as selection met-
rics. The approache’s first step is to form groups of
CPs with similar features using the k-means algorithm.
After that, in order to provide a representative CP, each
cluster applies the DEcision-MAking Trial and Evalua-
tion Laboratory (DEMATEL) altogether with the ANP
multi-criteria decision-making method. Further, the ANP
method is applied to the result representatives set to rank
and make a final decision. Although well designed, a user
request is not considered in this work. On the other
hand, our proposed approach, beyond considering user
will, deterministic andmetaheuristic approaches and their
hybrid combinations, covers more CPS problem facets.
Table 1 presents a summarized overview of the

main characteristics identified for comparison purposes
between the related works discussed and also with the

de Moraes et al. Journal of Cloud Computing (2022) 11:5 Page 8 of 23

Table 1 Overview and comparison between cloud providers rank and selection proposals

Work Class Method Criteria Filter Ql Multi-Cloud

[7, 32] D AHP SMI No Yes No

[31] D Own indexing method ⊆ SMI Yes Yes No

[8] D Voting method using DEA SMI No Yes No

[38] D Own method ⊆ SMI No Yes No

[36] D Voting method SMI No Yes No

[34] D Own Method Open No Yes No

[35] D Own Method Open No Yes No

[22] D Own Method SMI No No No

[37] D Own Method SLA No No No

[12] D AHP with particular scale ⊆ SMI No Yes No

[11] D AHP with particular scale Open No Yes No

[39] M BSA, TLBO, Jaya SMI No Yes No

[13] M HHO SMI No Yes No

[40] M SA, GA, PSO ⊆ SMI No Yes Yes

[14] M NSGA II ⊂ SMI No No Yes

[42] H AHP + TOPSIS ⊆ SMI No No No

[45] H Clustering + DEMATEL + ANP ⊆ SMI No Yes No

[9] H AHP + TOPSIS SMI No No No

[10] H TOPSIS, Fuzzy TOPSIS, AHP,
ANP

⊆ SMI No No No

Proposed Architecture C Own method, Adapted DEA,
Adapted metaheuristics (GA,
DDE, BDE)

SMI Yes Yes Yes

proposed approach. The identified characteristics are as
follows:

• Method: The main math method/methodology/pro-
cedures used to select/rank CPs/services. In case of
hybridism methods appear sumed. When more than
one method is used a comma separates them.

• Class: Identifies work as deterministic (D), stochas-
tic/metaheuristic (M), hybrid (H), and combination
(C) representing works that combine at least two of
these classes. The hybrid class represents a combina-
tion of methods of the same class.

• Criteria: The main CPs data used by the approa-
ches/models/frameworks/methods to select/rank
providers/services. When work does not mention
SMI and criteria are generally provided by the user
then result is “Open”. The result “Open” means SMI
is not mentioned and criteria are provided by the
decision maker (user). “⊆ SMI” means that though
work does not mention SMI some criteria are from
SMI and some can alternatively be different. On the
other hand, “SMI” depicts works that mention SMI
and use only SMI criteria though not necessarily all
of them.

• Filter: Reports if the work, as its first setp, discards CPs
that does not minimally satisfies the user requirement.
It will be “Yes” in affirmative case and “No”, otherwise.

• Ql: Indicates if the work uses qualitative criteria for
ranking CPs. It will be “Yes” in affirmative case and
“No”, otherwise.

• Multi-Cloud: Indicates if the work considers more
than one single cloud provider as the CPS solution
when only one does not fulfill all the criteria (the full
service) at the same time and, different criteria (part of
the service) can be satisfied separately from the others.
It will be “Yes” in affirmative case and “No”, otherwise.

As it is possible to note, several CPS solution propos-
als have already been developed. A shared characteristic
among them is the use of different sets of information
to perform their evaluations. This is a remarkable issue.
Among the surveyed works, it is possible to find ones that
use QoS metrics and information values found in SLAs.
Therefore, although several works, including ours, do use
indicators based on the SMI standard, there is still a lack
of standardization regarding what should be the necessary
information to use to evaluate cloud providers, including
how to measure them.

de Moraes et al. Journal of Cloud Computing (2022) 11:5 Page 9 of 23

Beyond thosemethods that involve a kind of direct com-
parison between metrics/indicators/measurements from
different cloud providers, particular ones (some own
methods) involve the use of fuzzy logic. However, most
of them consider the use of MCDM per se or a combina-
tion of them. Few works propose the use of metaheuristic
methods to solve the CPS even though they compare
results with an initial solution given by a deterministic
one.
The few hybrid methods found perform distinct steps

using each one particular deterministic methods. Some of
them use a step to calculate weights for the criteria using a
deterministic method while the ranking step is performed
by others.
Only one surveyed method, beyond this proposal, per-

forms a filtering step, which discards CPs when they do
not satisfy any of the user required criteria. Moreover,
it seems that CPS solutions considering the possibility
of user services or part of them running in more than
one cloud provider are still in its infancy since beyond
the proposed work only two other works deal with the
multi-cloud environment.
All considered, none of the surveyed works are handling

the CPS problem approaching deterministic, stochastic

(metaheuristic) and their combination (i.e., hybrid deter-
ministic and metaheuristic or vice-versa solutions, either
exploring a modular architectural construction and using
a well-established set of SMI key performance indicators
as criteria, altogether. This work proposes to cover this
lack, not only to present the mentioned approaches but
also to demonstrate their behavior in comparison.

Cloud provider selection approach
This section presents the proposed Cloud Provider Selec-
tion PI-based approach to solve the CPS problem. The
approach is composed of three indispensable compo-
nents: 1) CP database; 2) user request and 3) selection
methods, and an auxiliary one: user interface.
Figure 1 presents a general overview of the proposed

CPS approach. This modelling aims to define a more
generic and general scenario (database plus request) for
any CP selection approaches using PIs, which provides
a basic common ground where the proposed selection
methods (“Selection methods modelling” section) are
applied.
The CP database component stores CP PIs. In order to

select the most suitable CP, user should choose a total of
m PIs of interest according to its goals. The user interface

Fig. 1 Pictorial view of the components to approach the CPS problem using PIs

de Moraes et al. Journal of Cloud Computing (2022) 11:5 Page 10 of 23

makes available this choice allowing communication with
the database to retrieve the available PIs and collecting the
selected one’s desired value, importance weight, and other
arguments.
In addition, CP selection methods are required in order

to select appropriate CPs. The selection methods compo-
nent provides a pool of them. A method execution can
produce two kinds of responses: a CP ranking list, if it is
a deterministic method; or a CP set (CPs with the high-
est fitness found in all method executions), in case it is a
metaheuristic or hybrid method. Both kind of responses
can be appropriate and returned to the user as a final solu-
tion for his request. In any case, the response with a CP
set is expected when a multi-cloud solution is required to
fulfill all the user PIs of interest.
Figure 2 presents the proposed approach flowchart from

a user utilization point of view. This point of view assumes
the CP database is already consolidated and accessible,
and the user interface and selection methods are available.

Cloud provider database
The CP database stores all available candidate CPs with
the name of allM registered PIs (plus price) with their own
utility function type and values. Table 2 presents an exam-

Fig. 2 System utilization flowchart from a cloud user point of view

Table 2 Generic CP database example

Name Type Group P1 P2 ... Pn

PI1 HB/LB/... 0/1,2,... x11 x12 ... x1n

PI2 HB/LB/... 0/1,2,... x21 x22 ... x2n

PI3 HB/LB/... 0/1,2,... x31 x32 ... x3n

...

PIM HB/LB/... 0/1,2,... xM1 xM2 ... xMn

Price LB 0 y1 y2 ... yn

ple of a possible CP database. This database is agnostic
and generic for all kind of PIs and CPs business models.
PIs can also be identified by a group id (a positive inte-

ger), where zero means that the PI is independent and not
involved with any group. PIs on the same group, i.e., equal
group id, are inseparable from each other. This means that
a single CP must fulfill all PIs in the group.
If some values of Table 2 are not informed, default values

are used. The default type for a PI is always NB (whether
quantitative or qualitative), and the default group id is
0, meaning it is independent/separable from the other
PIs. Default PI values for CPs vary according to each PIs
meaning and type (quantitative or qualitative).
It is expected that the database feeding process is

dynamic allowing the updating of PI values along the
time. However, it is essential to note that all the database
management process is out of scope of this work.

User request
The user request must inform all them user’s PIs of inter-
est, whichmust be a subset of the database registered ones
(i.e., m ≤ M) with the respective desired value (Xj). User
request can carry other features, such as the importance
weight of each PI of interest (wj), the tolerance value of
the desired one (tj), eventually the PI utility function type
and whether this PI is essential to the user or not. In case
PI utility type is informed, it will be used instead of the
PI default utility type present in the CP database. Price
is always LB and cannot be forced to another type. An
essential PI indicates that it must be satisfied.
Table 3 shows a generic user request, with all fields that a

selection method is able to process. Important to mention
that the PI’s name and desired value (integer or floating-
point number) are mandatory whereas the other ones are
optional.

Table 3 Generic user request

Name Type Value Tol. Weight Essential

PI1 . X1 t1 w1 true

PI2 NB X2 t2 w2 false

PI3 . X3 t3 w3 false

...

PIm . Xm tm wm false

de Moraes et al. Journal of Cloud Computing (2022) 11:5 Page 11 of 23

Default PI tolerance value (“Tol.”) is zero. If the PI is
qualitative, the tolerance is implicit (HT, LT, and HLT –
for ordered ones – or NB, otherwise). The default impor-
tance weight of each PI is 1. A PI is non-essential (“false”)
by default.

The pI attendance condition concept
The concept of PI attendance condition is central to this
work, and the addressed selection methods use it several
times. A PI value from a particular CP attend or satisfy a
specific user desired value if this value is the desired one
or it is better than the desired one or; at least, it is in the
tolerance range from the desired one. To make such an
evaluation, the utility type of each PI should be consid-
ered. The first step is to identify if the PI is quantitative or
qualitative.
Thus, mathematically, a CPi “Attend” certain quanti-

tative PIj, if its value (xij, numeric and present in the
database), attends the user desired one (Xj, present in
the request), with tolerance tj (specified in the request,
otherwise, tolerance is zero). Equation 4 presents this
quantitative PI attendance condition function. Note that
Eq. 4 takes into account the utility type of each PI and
i = 1, 2, ..., n, where n is the amount of CPs in CP database,
and j = 1, 2, ...,m, wherem is the amount of PIs in the user
request.

AttendQT(PIj, xij,Xj, tj)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

true if xij ≥ (Xj − tj) and PIj ∈ HB
true if xij ≤ (Xj + tj) and PIj ∈ LB
true if (xij ≥ (Xj − tj) and xij ≤ (Xj+ tj))
and PIj ∈ NB
false otherwise.

(4)

Meanwhile, if PIj is qualitative, it can be ordered or
unordered [19]. If it is unordered, the attendance rule
is simple: if xij (category, present in the CP database)
is the value that the user desires (equals Xj, category
present in the request), then PIj is attended. Otherwise,
it is not. However, if PIj is ordered, then the attendance
condition depends on its utility function is HT, LT, or
HLT. Equation 5 presents the qualitative PI attendance
condition function, with i = 1, 2, ..., n and j = 1, 2, ...,m.

AttendQL(PIj, xij,Xj)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

true if xij = Xj and (PIj is unordered or
PIj ∈ NB)

true if xij ≥ Xj and (PIj is ordered and
PIj ∈ HT)

true if xij ≤ Xj and (PIj is ordered and
PIj ∈ LT)

true if PIj is ordered and PIj ∈ HLT
false otherwise.

(5)

Selection methods modelling
This section specifies the developed selection methods.
Deterministic methods calculate a score value for each

CP that is used to rank and select the top-ranking one.
The deterministic algorithms developed are the CPS-
Matching and the CPS-DEA.
Metaheuristic methods provide the smallest non-empty

set of CPs with the lowest price in order to maximize
the request fulfillment. This work uses Evolutionary Algo-
rithms (EAs), which are inspired on natural selection
and survival of the fittest to accomplish that since they
are one of the most used metaheuristic approaches to
solve complex problems. Finding the smallest non-empty
set of CPs coping with that restrictions makes the CPS
problem much more complex because it creates a com-
bination of possible different solution sets. Therefore, the
computational complexity for n CPs is 2n (search space
grows exponentially), characterizing a complex optimiza-
tion problem, justifying the use of EAs. In this work, the
GA was chosen because of its ability to handle prob-
lems in binary representations, which suits the proposed
CPS approach. The two DE variations are contributions
of this work, where the versatility of the DE algorithm
is employed to handle the CPS problem with discretiza-
tion approaches. Thus, the EA-based methods developed
are the CPS-GA, the CPS-BDE, and the CPS-DDE, which
use a novel and PI-based particular fitness function also
developed in this work and explained at “Metaheuristic
methods: individual and fitness modelling” subsection.
The modelled hybrid methods are a merging of the pre-

vious ones and offer an answer according to the complex-
ity of the user request. Thus, if PIs can be satisfied by a sin-
gle CP, only the deterministic approach is executed. Oth-
erwise, the metaheuristic one offers a solution. This work
develops three hybrid methods: Matching-GA, which is
the pair CPS-Matching and CPS-GA; Matching-BDE, the
pair CPS-Matching and CPS-BDE; and Matching-DDE,
resulting from the pair CPS-Matching and CPS-DDE.
It is essential to note that the proposed architecture

somehow deals with the cloud elasticity concept. The
architecture accomplishes that using a combination of
indicator’s classification ontology (HB, LB, NB, HT, LT,
HLT) and the user providing tolerance values for the indi-
cators requested. Thus, depending on indicators’ nature
(utility function - HB, LB, for example) and the tolerances
set, the CP score is adjusted. This means that if a user
chooses a CP and contracts those requested resources, it is
probable that the CP can elastically provide more of those
resources if he needs.

CPS-Matching
The CPS-Matching is a deterministic mathematical PI-
matching algorithm that can score and rank an extensive
list of CPs based on value, type (quantitative or qualita-

de Moraes et al. Journal of Cloud Computing (2022) 11:5 Page 12 of 23

tive), nature or utility function (HB, LB, NB, HT, LT, HLT)
and importance of each PI (essential or non-essential)
requested by the user [15]. A PI classified by user as
essential must be attended, otherwise CPS-Matching does
not process the CP candidate associated. Non-essential
PIs have different importance levels to the user ranging
from “High” and “Low” and once attended are scored
accordingly. The method’s input corresponds to a list
P of all n CPs from the CP database, and the user
request.
CPS-Matching is divided into threemain stages: 1) elim-

ination of user’s request incompatible CPs; 2) scoring
quantitative and/or qualitative PIs by importance level;
and 3) calculating CPs final score and fulfillment indica-
tor, ranking them, and returning results to the user. At the
first stage, the initial CPs list P is filtered, removing all CPs
that do not satisfy all the users’ essential PIs, generating a
new list of P′ with n′ (n ≥ n′) different CPs.
The second stage receives P′ and scores each CP’s PI

importance level individually, according to the utility (real
benefit) of each of its PIs, where the higher the utility, the
higher the score. PIs with the same weight (user request
provided) are at the same importance level and each level’s
score is the arithmetic average of the scores of each PI
(quantitative or qualitative) in that level [15]. A PIj scores
0 if its value does not attend the user desired one, oth-
erwise it will be scored proportionally to how useful this
value is, compared with the same PIj value in all other CPs
available, multiplied by a constant.
Equation 6 shows the evaluation function of a quanti-

tative PIj of a CPi. There, xij is the PI value (numeric)
in CP database, Xj is the desired value requested by
the user, with a maximum tolerance tj. It always returns
a normalized floating-point number between 0 and 1
(∀ xij,Xj,Xmax,Xmin ≥ 0 and C1,C2, tj > 0). Function
“AttendQT” is depicted in Eq. 4. The numerical constants
(empirical parameters) C1 and C2 belong to the normal-
ized open interval between] 0, 1[, and C1 + C2 = 1,
mandatory. The number Xmax is the highest value among
all other n′ CPs in the list P′ for that PIj ; as well as
Xmin is the lowest value and tj is the maximum toler-
ated distance from the optimum point (Xj) for an NB PI
(since that PI attends Xj, i.e., it belongs to the interval
[Xj − tj;Xj + tj]).

PtQT(PIj, xij,Xj, tj) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if AttendQT(PIj, xij,Xj, tj) = false,
C1 + C2 × xij−Xj

Max(x1j ,...,xnj)−Xj
if PIj ∈ HB

C1 + C2 × Xj−xij
Xj−Min(x1j ,...,xnj) if PIj ∈ LB

C1 + C2 × tj−|Xj−xij |
tj if PIj ∈ NB.

(6)

Equation 7 shows the evaluation function of a quali-
tative PIj of a CPi. There, xij is the PI value (category

or subclass) in CP database, Xj is the desired PIj value
requested by the user and K1, K2 are the total number
of tolerable categories higher and lower, respectively, to
Xj, and K3 = K1 + K2. This function always returns a
normalized floating-point number between 0.0 and 1.0
(∀K1,K2,K3 ≥ 0 and 0 < C3 < 1). Equation 5 depicts
function “AttendQL”. Note that the score of tolerable cate-
gories (only for ordered PIs with tolerances, i.e., HT, LT, or
HLT) will be directly influenced by the distance between
the category Xj specified by the user, and xij, which is
offered by the CPi. It means the greater the distance, the
lower the score for that PI. The distance between the cat-
egories xij and Xj is the difference between their levels,
given by function level(x) that returns a positive inte-
ger, from 1 to the total number of categories available in
increasing order of graduation corresponding to the level
of category x. Therefore, in case of perfectmatch (xij = Xj)
the score is maximum, that is 1. In this case, the desired
neighboring categories (above and below) will score C3.

PtQL(PIj, xij,Xj) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if AttendQL(PIj, xij,Xj) = false
1 if xij = Xj

C3 × K1−|level(xij)−level(Xj)|+1
K1

if PIj ∈ HT
C3 × K2−|level(xij)−level(Xj)|+1

K2
if PIj ∈ LT

C3 × K3−|level(xij)−level(Xj)|+1
K3

if PIj ∈ HLT .

(7)

The third stage calculates the final score for each CP
in the list P′. The CP’s final score is the weighted average
of the importance levels score. The weights of each level
can be calculated analysing the relationship of importance
between the level’s PIs’ weight values, using the AHP’s
JudgmentMatrix [15], or just be specified by the user with
floating-point numbers ranging from 0 to 1. When not
specified, level’s weights are equal to 1. Final score is cal-
culated individually for each CP and varies in the range
from 0 to 1, where the closer to 1, the more adequate
the CP is to satisfy the user request. Finally, the CPS-
Matching method returns a list of the highest-ranked CPs,
containing their names and the PIs fulfillment indicator,
regardless of PIs importance levels. The fulfillment indi-
cator is the weighted average of all requested PIs attended
by that CP. Likewise CP score, Eqs. 6 and 7 calculates the
fulfillment indicator. Thus, in the absence of different PIs
importance levels, fulfillment indicator equals final score.
As a CPS-Matching execution example, consider calcu-

lation performed for CP1 and CP2 ∈ P′ containing four
PIs: RAM,HD, Availability and Price. Table 4 presents CPs
PIs, and user request values. In this case, all PIs are quan-
titative. Tolerances are not informed neither if there are
essential PIs. Moreover, as the user does not inform differ-
ent PI weights, there is only one, whose weight is equal to
1. Therefore, considering C1 and C2 are both equal to 0.5,
we have:

de Moraes et al. Journal of Cloud Computing (2022) 11:5 Page 13 of 23

Table 4 CP PI database and user request example

PIs Type GID CP1 CP2 Request

RAM HB 0 2 8 4

HD HB 0 20 25 20

Availability HB 0 99.99 96.8 98

Price LB 0 7 8.5 8

RAMCP1 = 0

HDCP1 = 0.5 + 0.5 × 20 − 20
Max(20, 25) − 20

= 0.5

ACP1 = 0.5 + 0.5 × 99.9 − 98
Max(99.9, 96.8) − 98

= 1

PriceCP1 = 0.5 + 0.5 × 8 − 7
8 − Min(7, 8.5)

= 1

RAMCP2 = 0.5 + 0.5 × 8 − 4
Max(8, 4) − 4

= 1

HDCP2 = 0.5 + 0.5 × 25 − 20
Max(20, 25) − 20

= 1

ACP2 = 0
PriceCP2 = 0

LevelsCP1 = 0 + 0.5 + 1 + 1
4

≈ 0.63

LevelsCP2 = 1 + 1 + 0 + 0
4

= 0.5

ScoreCP1 = FulfillmentCP1 = 0.63
ScoreCP2 = FulfillmentCP2 = 0.50

CPS-DEA
CPS-DEA is a PI-based modelling of the classical DEA
method (“Data envelopment analysis” subsection) applied
to the CPS problem [16]. This work uses DEA instead
of other multicriteria methods since DEA fundamentally
asses efficiency that is considered a well-tailored metric
do solve the CPS problem. For the CPS problem, each
CP can be understood as a DMU, and each DEA input
and output variables are related to the user requested PI
values (user request) and CPs PI values (CP database).
This method is divided into three main stages: 1) DEA
input converter, 2) DEA method application and, 3) Final
ranking routine.
DEA input and output values for each CP are generated

by PIs aggregation functions. Thus, the CP database and
requested PI values are converted to a format that DEA
can use to calculate each CP’s relative efficiency accurately
[16]. Each CP has a predefined constant number of inputs
and outputs regardless database and request sizes. There-
fore, regarding the CPS problem as addressed in this work,
each CP has two variables of input and two variables of
output identified:

• Inputs (criteria to be minimized):

1. Resources (“Res.”): It is the weighted average
of the normalized PI values present in the CP
database. The used weights are the PI’s weight
present in the user request.

2. Costs (“Cost.”): It is the normalized CP’s price
regarding the most expensive price in the CP
database.

• Outputs (criteria to be maximized):

1. Suitability (“Suit.”): It is the weighted average of
the attending condition of each CP’s PI, accord-
ing to the user request (except price). It indicates
how appropriate the CP is to the request.

2. Leftovers (“Left.”): It is the weighted average
of all the resources that had left in the CP after
attending the request (for quantitative PI HB and
LB, only).

Equations 10 and 11 show how the inputs “Resources”
(Res(Pi)) and “Costs” (Cost(Pi)) are converted for the
provider Pi, respectively, and Eqs. 14 and 16 calculate the
outputs “Suitability” (Suit(Pi)) and “Leftovers” (Letf (Pi)),
respectively. Maximum and minimum functions are con-
sidered to normalization aspects when converting PI val-
ues to suitable input and output DEA values. All inputs
and outputs are normalized between 0 and 1.

Dif = Max(x1j, ..., xnj,Xj) − Min(x1j, ..., xnj,Xj) (8)

Ri =
m∑

j=1
wj ×

⎧
⎪⎪⎨

⎪⎪⎩

1 − xij
Max(x1j ,...,xnj ,Xj)

if PIj ∈ HB
xij

Max(x1j ,...,xnj ,Xj)
if PIj ∈ LB

|xij−Xj|
Dif if PIj ∈ NB

(9)

Res(Pi) =
(

Ri∑m
j=1 wj

)α

. (10)

Cost(Pi) =
(

yi
Max(y1, y2, ..., yn)

)β

. (11)

Attend(PIj, xij,Xj, tj)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

true if (PIj ∈ HB or PIj ∈ LB or PIj ∈ NB)

and AttendQT(PIj, xij,Xj, tj) = true
true if (PIj ∈ HT or PIj ∈ LT or PIj ∈ HLT)

and AttendQL(PIj, xij,Xj) = true
false otherwise.

(12)

de Moraes et al. Journal of Cloud Computing (2022) 11:5 Page 14 of 23

Vi =
{
1 if Attend(PIj, xij,Xj, tj) = true
0 otherwise (13)

Suit(Pi) =
(∑m

j=1 wjVi∑m
j=1 wj

)γ

. (14)

Li =
a∑

j=1
wj×

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

xij−Xj
Max(x1j ,...,xnj ,Xj)−Xj

if PIj ∈ HB
and Attend(PIj, xij,Xj, 0)= true

1 − xij−Xj
Max(x1j ,...,xnj ,Xj)−Xj

if PIj ∈ LB
and Attend(PIj, xij,Xj, 0)= true

0 otherwise

(15)

Left(Pi) =
(

Li∑a
j=1 wj

)δ

. (16)

Where i = 1, 2, ..., n; j = 1, 2, ...,m; α,β , γ , δ = 1, 2, 3, ...;
mHB,mLB,mNB = 0, 1, 2, ..., subject tom = mHB + mLB +
mNB, where mHB, mLB and mNB represent the number of
PIs whose utility function is HB, LB and NB, respectively.
Also, it is informed that a = mHB + mLB.
It is important to note that n is the total number of

CP in database and m is the total number of PIs in the
user request. Also, yi is the service price of CP i. Dif is
the difference between the maximum value of a partic-
ular NB PIj value and the user requested PIj value (Xj),
and the minimum value of that PI. In addition, in case
Xj ≥ Max(x1j, ..., xnj) then the “Leftovers” value for that
PIj is always zero ∀Pi, xij.
The adjustable factors α,β , γ , δ are responsible for

transforming all the inputs/outputs “Resources”, “Costs”,
“Suitability” and “Leftovers”, respectively, into functions
with a variation (increase/decrease), e.g., linear (1) is
default, quadratic (2), cubic (3), etc. That is, the higher
the value of such factors, the more significantly, numeric
speaking, these inputs/outputs will be affected for each
change made. The higher the factor, the greater the punc-
tuation loss for every CP that does not reach 1 (efficient).
The farther from 1 and closer to 0, the more score CPs
will lose. For more critical input/output, it is appropriate
to increase its associated factor. Bearing this in mind, the
considered most critical variable is “Suitability”. There-
fore, its factor will be 2 (γ = 2), and for the others, it will
be 1 (linear variation).
The second stage starts after these inputs and outputs

calculation for each candidate CP feeding software that
executes the DEA method, generating an efficiency fron-
tier among CPs. Particularly to the CPS problem, the DEA
input orientation (the one that tries to maximize outputs)
was used since maximization of “Suitability” as output is
an essential characteristic to be observed to select CPs.
Comprising the DEAmodel, the Variable Returns to Scale
(VRS) is used since it is more realistic for the problem’s

scope considering that the variations of input and output
are not proportional, especially taking into account that
“Suitability” and “Leftovers” (outputs) mostly are database
and user request dependent. In contrast, “Resources”
and “Costs” (input) are only dependent on the CP
database.
The third stage uses each CP’s input and output values

for ranking all CPs when there is more than one in the
DEA efficiency frontier. To accomplish that, CPs belong-
ing to the efficiency frontier will be ranked first by their
“Suitability” value, followed by the value of “Costs”, then
“Leftovers” and finally by “Resources” value in a non-
compensatory way (Suitability > Costs > Leftovers >

Resources, always). The CP with the highest value of “Suit-
ability” will be at the top of the ranking. In the case of
a tie, the CP with the lowest “Costs” will be the first in
the ranking. If two or more CPs have the same “Suit-
ability” and “Costs”, then the highest value of “Leftovers”
will be considered a tiebreaker, and, for the last case,
the lowest value of “Resources” will be used. If one or
more CPs tie in the four features, they will be sorted
alphabetically.
Let us consider the CPs, PIs and user request in Table 4,

to a CPS-DEA example. The first step is to convert
PIs and request into input an output variables. Thus,
we have:

DEA inputs calculation example:

RAMCP1 = 1 − 2
Max(2, 8, 4)

= 0.75

HDCP1 = 1 − 20
Max(20, 25, 20)

= 0.2

ACP1 = 1 − 99.9
Max(99.9, 96.8, 98)

= 0

PriceCP1 = 7
Max(7, 8.5, 8)

≈ 0.83

ResourcesCP1 =
(
0.75 + 0.2 + 0 + 0.83

4

)1
= 0.4

CostsCP1 =
(

7
Max(7, 8.5, 8)

)1
≈ 0.83

RAMCP2 = 1 − 8
Max(2, 8, 4)

= 0

HDCP2 = 1 − 25
Max(20, 25, 20)

= 0

ACP2 = 1 − 96.8
Max(99.9, 96.8, 98)

= 0.031

PriceCP2 = 8.5
Max(7, 8.5, 8)

= 1

ResourcesCP2 =
(
0 + 0 + 0.031 + 1

4

)1
≈ 0.26

CostsCP2 =
(

8
Max(7, 8.5, 8)

)1
≈ 0.94

de Moraes et al. Journal of Cloud Computing (2022) 11:5 Page 15 of 23

DEA outputs calculation example:

RAMCP1 = 0
HDCP1 = 1
ACP1 = 1

SuitabilityCP1 =
(
0 + 1 + 1

3

)2
≈ 0.45

RAMCP1 = 0

HDCP1 = 20 − 20
Max(20, 25, 20) − 20

= 0

ACP1 = 99.9 − 98
Max(99.9, 96.8, 98) − 98

= 1

LeftoversCP1 =
(
0 + 0 + 1

3

)1
≈ 0.34

RAMCP2 = 1
HDCP2 = 1
ACP2 = 0

SuitabilityCP2 =
(
1 + 1 + 0

3

)2
≈ 0.45

RAMCP2 = 8 − 4
Max(2, 8, 4) − 4

= 1

HDCP2 = 25 − 20
Max(20, 25, 20) − 20

= 1

ACP2 = 0

LeftoversCP2 =
(
1 + 1 + 0

3

)1
≈ 0.67

Next steps comprise to execute DEA with that inputs
and outputs for each CP, and finally to rank CPs using
the efficiency frontier or the tiebreaks. Thus, the result-
ing ranking order is CP1 and CP2 since both are in the
efficiency frontier, have the same Suitability but CP1 costs
less than CP2.

Metaheuristic methods: individual and fitnessmodelling
This subsection elaborates on the proposed individual and
the fitness function developed for the CPS-GA, CPS-BDE,
and CPS-DDE metaheuristic methods. As already stated,
the individual represents a candidate solution to the prob-
lem. The individual is coded as a vector using a binary
encoding, where the number of coded variables is equal
to the amount of CPs registered in the CP database. Each
variable uses a position in the binary vector, and it is repre-
sented by a single bit, indicating whether that CP belongs
to the solution set (bit 1) or not (bit 0) [17]. All CPs with
bit 1 will be called “employed CPs” for that individual, i.e.,
CPs that will be effectively used in the solution set. This
information is used in the fitness function to generate a
fitness value for each individual.

Figure 3 illustrates this modelling with an example com-
prising ten hypothetical CPs and the resulting solution
set that this individual encodes. Thus, in this case, the
employed CPs are P1, P3, P4, and P8.
The individual’s fitness is proportionally linked to the

minimization of three factors: i) the total amount of
employed CPs; ii) the total price of the individual; iii) the
difference between the requested PI values and the ones
from the individual’s employed CPs. Thus, if this prob-
lem’s objective function is to combine these factors for an
individual, the fitness function comprises the minimiza-
tion of that function altogether with the application of
penalty when the individual is not a satisfactory answer.
Equation 17 presents the fitness function (Fit) of the ith
individual of the population (Ind), wherewpen is a constant
value for the penalty weight applied to individuals, whose
default value is 1.

Fit(Ind) = 1 − Obj(Ind) − wpen × penalty(Ind). (17)

Equation 18 presents the objective function (Obj), which
is the weighted average of the employed CPs score (ecp)
and the individual Ind total price (price), both normalized
between 0 and 1. The weight values for the number of
employed CPs (wn) and price (wp) ponder the importance
of the least amount of CPs, and the lowest price desired
for the final solution, respectively.

Obj(Ind) = wn × ecp(Ind) + wp × price(Ind)

wn + wp
. (18)

Since Ind is an encoding vector of size n, it is possible to
that n0 represents the number of bits 0 in Ind and, n1 the
number of bits 1. Equation 19 presents the ecp score given
to Ind comprising its number of employed CPs.

ecp(Ind) =
{
1 if n1 = 0
|n1−minCP|
n−minCP otherwise,

(19)

where minCP is a constant integer representing the min-
imal possible number of CPs estimated to maximize the
attendance of the current request. Note that the extreme
cases (encoding filled with all bits 0, or all bits 1) are penal-
ized to themaximum (1) because they are undesired to the
CPS problem solution.
So, let P = {P1,P2, ...,Pn} be the set containing the n dif-

ferent candidate CPs available in the CP database. Now,

Fig. 3 Example of a possible solution encoded in a binary vector
individual [17]

de Moraes et al. Journal of Cloud Computing (2022) 11:5 Page 16 of 23

let Y = {y1, y2, y3, ..., yn} be the respective prices associ-
ated with each of the n different CPs of P. The total price
(tprice) of Ind is the sum of the prices of all employed CPs
encoded by Ind, i.e., the sum of yi ∈ Y whose position
i at the encoding vector Ind is bit 1. Thus, if a CP does
not belong (bit 0, i.e., non-employed CP) to the encoded
solution, its price will be zero. In order to be usable to the
fitness function (Eq. 17), the Ind total price must be nor-
malized according Eq. 20, wheremaxPrice is the sum of all
prices of Y, i.e.,maxPrice = ∑n

j=1 yj, where j = 1, 2, ..., n.

price(Ind) = |tprice(Ind) − minPrice|
maxPrice − minPrice

. (20)

The floating-point number minPrice represents the
minimal possible price value estimated to maximize the
current request’s attendance. It is the total sum of the
minCP lowest prices in the database.
Penalties are applied to fitness computation according

to Eq. 17. These penalties are a way to handle constrained
optimization problems by significantly decreasing the
individual’s fitness value if it presents an inadequate solu-
tion to the problem [46]. The penalty is calculated pro-
portionally as a function of how much the solution Ind
infringes on the problem constraint. For the CPS prob-
lem, there are two constraints [17]: the individual must
not be all encoded with bit 0, and the employed CPs must
maximize attendance of all user requested PIs. The first
constraint prevents functions that generate the initial ran-
dom population and the genetic operators (modify indi-
vidual’s codification vector) from generating an encoding
vector filled with bit 0 for any individual. The second con-
straint will proportionally penalize every individual that
does not attend all PIs of the user request. So, Eq. 23
shows the penalty calculation, where the ordered list w
contains the weights of each PIj, function pen(PIj) returns
a value between 0 and 1, representing the penalty value
comprising the attendance or not of the PIj or the PIs
that belong to the PIj group; m is the number of PIs from
the user request, Xj is the PIj user-requested value, xij is
the PIj value for the CP that best attends it, and tj is the
PIj tolerance value provided by user. The function named
grouID returns the group id number of a particular PI;
s represents the number of PIs that belong to a particu-
lar PIj group, according to a group id. A PI that does not
belong to a group is group id 0. A user requested PI is
fully attended if at least one CP encoded in Ind matches
it. Another point to be emphasized is that if those PIs are
arranged into groups which sizes are greater than 1, then
that PI group is fully attended if at least one CP encoded
in Ind attends all the PIs in that group. Otherwise, this
individual will be proportionally penalized to how many
PIs on that group are not attended by the encoded CP that
better attend that group.

Att(PIj, xij,Xj, tj) =
{
0 if Attend(PIj, xij,Xj, tj) = true
1 otherwise

(21)

pen(PIj) =
{
Att(PIj, xij,Xj, tj) if groupID(PIj) = 0∑s

j=1 Att(PIj ,xij ,Xj ,tj)
s otherwise

(22)

penalty(Ind) =
∑m

j=1 wj × pen(PIj)∑m
j=1 wj

. (23)

The fitness calculation is applied to every individual
in the population for each algorithm generation, up to
a predefined number of generations. At the end of the
generations, the best fitness individual is sought and its
encoded CPs are returned as the response.

Hybridmethods
The modelled hybrid methods combine the CPS-
Matching deterministic method and one metaheuristic
method (e.g., CPS-GA), in a pipeline. For the hybridmeth-
ods, the user must choose the minimum desired percent-
age of fulfillment for his request (until 100%) regarding
the CPS-Matching method. The CPS-Matching is first
applied on the initial CP list resulting in a CPs best-rated
list with their fulfillment indicator values. If the best CP
fulfillment indicator value is equal or greater than the
desired fulfillment value, the method returns that single
CP to the user. However, if there is more than one best-
rated CP with the same fulfillment value, the one with
lowest price is returned. If the fulfillment value of the best-
rated CPs is lesser than the desired, then themetaheuristic
algorithm is executed providing as result the employed
CPs in the highest fitness individual found at the end of all
iterations.

Experiments and results
This section describes the experimentation protocol and
algorithms’ configuration, problem instances, and results,
followed by their analysis. The algorithms were imple-
mented in Java (JDK version 1.8) to the 64 bits Windows
10 operating system and are executed in a host with 8
gigabytes of RAM and an Intel Core i5, 3.0 GHz CPU.

Experimental setup
The minimal suitability value used for the hybrid meth-
odsMtc-GA,Mtc-BDE andMtc-DDE is 100%. Parameters
used to CPS-Matching method (hybrid counterparts too)
are: C1 = 0.9 and C2 = 0.1. Regarding CPS-DEA method,
factors used are: α,β , δ = 1 and γ = 2, as well as DEA
variable VRS model with output orientation.
Table 5 presents the main parameters and their values,

which are defined empirically, applied to the EAsmethods
and their hybrid counterparts. The stop condition of these

de Moraes et al. Journal of Cloud Computing (2022) 11:5 Page 17 of 23

Table 5 Parameters used by the EA methods

Parameter GA BDE DDE

Population size 50 50 50

Number of generations 2000 2000 2000

Crossover Rate 95% – –

Mutation Rate 1% 5% –

Probability of perturbation – 50% 50%

Stochastic tournament size 5 – –

Mutation weighting factor – – 0.5

EAs is 2000 generations (IT). As the size of the population
(POP) is 50 individuals and the number of iterations (IT)
is 2000, a total of 100000 fitness evaluations (POP × IT)
are performed for each EA to reach stop condition. The
number of dimensions/variables (DIM) is always equal to
the number of CPs (n) registered in the CP database for all
the algorithms.
The CPS-GA selection routine is the stochastic tourna-

ment. It presents a parameter k that represents the size
of the group that compete in each GA iteration, which is
equal to 5 in the performed experiments. BDE and DDE
use greedy selection that is applied on two individuals
(parent and offspring) choosing the one with the highest
fitness.
GA uses the one-cut-point crossover and bit-flip muta-

tion. BDE has its own specific crossover (“Binary dif-
ferential evolution” section) and bit-flip mutation too.
DDE uses only its specific mutation routine, according to
Eq. 2, with a mutation weighting factor of 0.5. The CPS-
GA is the only EA that uses an elitism routine that is
executed after the fitness evaluation of the new gener-
ated population. This routine replaces the individual with
lower fitness on the current generation with the previous
generation’s best fitness one.
Moreover, comprising the EAs, 30 independent runs

were performed for each problem instance. Regarding the
deterministic methods, a single execution is performed.
The weights for price (wp), quantity of CPs (wn) and
penalty (wpen) on the fitness function (Eq. 17) have the
same importance and are constant and unitary (wp =

wn = wpen = 1). EAs and hybrid algorithms use this
fitness function.
A statistical analysis of the results was performed. The

null hypothesis of normality was rejected by the Shapiro-
Wilk [47] test with a 5% significance level, i.e., α =
0.05, presenting p-values smaller than 0.05. Hence, the
non-parametric Dunn’s test is employed also with a 5%
significance level, i.e., α = 0.05 [48]. Due to the mul-
tiple comparisons involved, the Bonferroni α correction
is used.

Problem instances
Table 6 informs the basic CP candidates database used in
the experiments. This database is fictitious and involves
ten CPs with six PIs and their values that occur in real
scenarios. The used PIs are the total amount of “RAM”
available (Gb); maximum “HDMemory” for storage (Gb);
the maximum amount of usable “CPU Power” (e.g., CPU
frequency times the number of CPU cores); average CP
resources “Availability” available via the Internet (percent-
age of accessible resources per year); estimated CP level
of information “Security” (levels 1-5); and, finally “Price”
of all that resources available for each CP (US$ per month
of use). Each PI has one type of utility function behavior
associated (HB, LB, or NB), one group id and one value for
each CP.
On the other hand, Table 7 informs eight possible

cloud user requests considering the CP database shown in
Table 6. Note that not necessarily all database stored PIs
are needed to the user. Request 4, for example, ignores PI
“Security”, that is, its value does not matter to the user and
it can assume anyone.
Price is a special PI, which is not stated explicitly in the

user request though it is always considered in the fitness
function and the CPS-DEAmethod. However, in the CPS-
Matching method, the price must be explicitly specified
in each request. Otherwise, it will be ignored. Therefore,
for the sake of comparison, to the experiments with the
CPS-Matching the prices used are 8.25 (Req. 1 and 2); 10.0
(Req. 3); 1.25 (Req. 4); 7.5 (Req. 5 and 8); 2.5 (Req. 6) and
4.5 (Req. 7).
In this example, each PI has the same importance weight

(1.0) as all others. Last line of Table 7 presents the known

Table 6 Simulated CPs database with their PIs

PIs Type ID P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

RAM HB 1 1 2 4 8 16 32 64 32 16 8

HD Memory HB 1 5 20 40 25 50 100 200 150 20 10

CPU Power HB 1 2.0 2.5 3.5 4.0 5.5 6.0 10.0 8.0 7.0 5.0

Availability HB 0 99.99 95.2 98.3 96.8 97.9 98.9 99.3 98.5 96.4 97.5

Security NB 0 1 2 2 3 3 5 4 4 3 4

Price LB 0 0.50 1.25 2.50 3.80 4.50 7.50 10.0 8.25 7.80 6.50

de Moraes et al. Journal of Cloud Computing (2022) 11:5 Page 18 of 23

Table 7 Simulated user requests

PIs Req. 1 Req. 2 Req. 3 Req. 4 Req. 5 Req. 6 Req. 7 Req. 8

RAM 8 16 64 2 16 4 – –

HD Memory 20 50 200 20 100 40 50 –

CPU Power 4.0 8.0 10.0 2.0 5.0 – – –

Availability 98.0 98.0 99.9 99.0 – 98.0 97.0 99.99

Security 4 5 5 – – 2 3 5

Optimal Answer P8 P6 & P8 P1 & P6 & P7 P1 & P2 P6 P3 P5 P1 & P6

answers (optimal) for each request. The easiest requests
are 1, 5, 6, and 7, because a single CP, of the 10, is already
able to attend them completely. Themost complex request
to be answered in this scenario is the third request since
the answer demands the highest values of resources and
criteria levels being composed of three CPs.

Results and analysis
Tests with all methods discussed were performed for 10,
50, 100 and 200 CPs using data from Table 6. To accom-
plish that, those data were replicated 5, 10, and 20 times,
respectively, to make new databases with 50, 100, and 200
CPs (horizontal scalability). Thus, data replicated to 50
CPs will generate the following data repetition on CPs:
cloud provider P11 with the same original data of P1; P12
tied to P2, P13 tied to P3, and so on for each replication.
This data replication was performed because it is a simple
way to increase the database size without modifying the
known optimum. The requests (Table 7) are the same for
all these databases.
Table 8 presents results obtained when applying the

CPS-Matching (“Mtc”) method, CPS-DEA (“DEA”), CPS-
GA (“GA”), CPS-BDE (“BDE”) and CPS-DDE (“DDE”)
methods on the database on Table 6 replicated for 200
CPs, taking as input each one of the eight requisitions.
The results for databases with fewer CPs (instances with
50 and 100 CPs) were omitted because they have identical
results with 200 CPs. For all methods, the hits percent-
age (based on the known answer) has been calculated. For

the evolutive methods, average and standard deviation of
the fitness has been calculated as well. CPS-Matching and
CPS-DEA methods did not use a fitness function. Thus,
they have different answers for each request that can be
satisfied by more than one CP. The top-scored CP for each
request according to CPS-Matching and CPS-DEA meth-
ods are P8 (Req. 1), P6 (Req. 2), P7 (Req. 3), P7 (Req. 4), P6
(Req. 5), P3 (Req. 6), P5 (Req. 7), P1 (Req. 8).
According to Table 8, it is possible to notice that

the performance of deterministic methods (“Mtc” and
“DEA”) reached the expected limits by attending half of
the requests. They are optimal for simple requests but
unsuitable attending the most complex ones. Each EA’s
performance was surprisingly the maximum because each
of the 30 executions finds an optimum CP set, count-
ing each as one hit. It is important to remember that
there are several optimal CP sets because of the multi-
modality problem instances created by the several initial
database replications. So, at using the aforementioned
replicated CP database, the higher the number of CPs,
the more optimal combinations exist (e.g., request 3). This
fact increases the probability of the evolutive methods
converging to any of these optima. Therefore, in order to
explore a search scenario without these multiple optima,
the price of the first 10 CPs that composes each solution
of the current request was arbitrarily lowered, generating
the results present in Table 9. These instances configure a
more demanding search space to be solved by any of these
evolutive methods. The results with 50 and 100 CPs were

Table 8 Hit percentage results for 200 CPs without arbitrary price decrease (multiple global optimal)

Request Mtc DEA GA BDE DDE GA (Av.± Sd.) BDE (Av.± Sd.) DDE (Av.± Sd.)

Req. 1 100% 100% 100% 100% 100% 0.9963 ±0.0 0.9963 ±0.0 0.9963 ±0.0

Req. 2 0.0% 0.0% 100% 100% 100% 0.9930 ±0.0 0.9930 ±0.0 0.9930 ±0.0

Req. 3 0.0% 0.0% 100% 100% 100% 0.9921 ±0.0 0.9921 ±0.0 0.9921 ±0.0

Req. 4 0.0% 0.0% 100% 100% 100% 0.9969 ±0.0 0.9969 ±0.0 0.9969 ±0.0

Req. 5 100% 100% 100% 100% 100% 0.9967 ±0.0 0.9967 ±0.0 0.9967 ±0.0

Req. 6 100% 100% 100% 100% 100% 0.9990 ±0.0 0.9990 ±0.0 0.9990 ±0.0

Req. 7 100% 100% 100% 100% 100% 0.9981 ±0.0 0.9981 ±0.0 0.9981 ±0.0

Req. 8 0.0% 0.0% 100% 100% 100% 0.9967 ±0.0 0.9967 ±0.0 0.9967 ±0.0

Average 50% 50% 100% 100% 100% – – –

de Moraes et al. Journal of Cloud Computing (2022) 11:5 Page 19 of 23

Table 9 Hit percentage results for 200 CPs with arbitrary price decrease (single global optimal)

Request Aa GA BDE DDE GA (Av.± Sd.) BDE (Av.± Sd.) DDE (Av.± Sd.) Best Fit.

Req. 1 100% 56.67% 100% 83.33% 0.9966 ±0.0002 0.9968 ±0.0 0.9967 ±0.0002 0.9968

Req. 2 0.0% 40% 36.67% 76.67% 0.9935 ±0.0004 0.9936 ±0.0002 0.9938 ±0.0002 0.9939

Req. 3 0.0% 26.67% 6.67% 53.33% 0.9926 ±0.0004 0.9926 ±0.0003 0.9929 ±0.0003 0.9931

Req. 4 0.0% 83.33% 50% 86.67% 0.9973 ±0.0001 0.9972 ±0.0001 0.9973 ±0.0001 0.9974

Req. 5 100% 73.33% 100% 73.33% 0.9970 ±0.0002 0.9971 ±0.0 0.9970 ±0.0002 0.9971

Req. 6 100% 80% 100% 90% 0.9994 ±0.0002 0.9995 ±0.0 0.9994 ±0.0002 0.9995

Req. 7 100% 73.33% 100% 90% 0.9984 ±0.0002 0.9986 ±0.0 0.9985 ±0.0002 0.9986

Req. 8 0.0% 43.33% 53.33% 83.33% 0.9969 ±0.0003 0.9970 ±0.0002 0.9970 ±0.0002 0.9971

Average 50% 59.58% 68.33% 79.58% – – – –

aColumn A shows the equal results fromMtc and DEAmethods

omitted because they show almost 100% hits in all the req-
uisitions with price changes. Table 9 last column presents
the best possible fitness value, i.e., the fitness of the known
optimum answer encoded.
Therefore, according to Table 9, EAs present consis-

tent results and have a satisfactory average assertiveness
(above 50%), specially CPS-DDE (almost 80%). The fitness
standard deviation is in the order of 10−4, showing EA’s
robustness for that instance. CPS-Matching and CPS-
DEA present the same top ranking CPs, so they have the
same hits. Moreover, Table 10 presents results of Dunn’s
statistical test with 5% significance level (α = 0.05) and
Bonferroni α correction for the hits values presented in
Table 9 for each request and each EA. Table 10 shows
p-values associated with EA hits in its respective row
and column for each request. Values in bold are Dunn’s
test results with α correction of those EA considered
statistically different.
Analyzing Table 10 and results obtained by the EA

with the best average result (i.e., CPS-DDE), 3 out of 8
requests (i.e., requests 2, 3, and 8) makes CPS-DDE statis-
tically better than CPS-GA and CPS-BDE. It is essential to
notice that these requests are considered the most com-
plex requests in this experimentation scenario. On the
other hand, in 5 out of 8 requests (i.e., requests 1, 4, 5, 6,
and 7), CPS-DDE statistically achieved the same results
compared to CPS-GA and CPS-BDE.
Figure 4 presents an average convergence plot regarding

30 executions for the CPS-GA, CPS-BDE, and CPS-DDE
in the hardest problem instance (request 3 with 200 CPs
and price decrease). The other requests have similar con-
vergence behavior than request 3, for each EA. The y-axis
shows fitness values and the x-axis shows generations.
The y-axis scale starts at 0.95 in order to allow a bet-
ter view and analysis. The upper curve represents the
fitness of the best individual in the population, and the
bottom curve represents the average fitness of the entire
population.

It is possible to note that the amount of generations suf-
fices good convergence at CPS-GA and CPS-DDE. The
fitness improved is very noticeable for up to 500 gen-
erations. After that, small improvements still occur, and
they are essential for convergence to the optimal solution,

Table 10 Dunn test with Bonferroni α correction for the hit
values in Table 9

GA BDE

Req. 1

BDE 0.0 –

DDE 0.0154 0.1628

Req. 2

BDE 1.0 –

DDE 0.0071 0.0031

Req. 3

BDE 0.1338 –

DDE 0.0352 0.0001

Req. 4

BDE 0.0055 –

DDE 1.0 0.0021

Req. 5

BDE 0.0108 –

DDE 1.0 0.0108

Req. 6

BDE 0.0154 –

DDE 0.2988 0.2988

Req. 7

BDE 0.0026 –

DDE 0.075 0.3595

Req. 8

BDE 0.6477 –

DDE 0.0025 0.0275

Values are in bold when results are statistically different

de Moraes et al. Journal of Cloud Computing (2022) 11:5 Page 20 of 23

Fig. 4 Convergence plots for request 3 with 200 CPs, with price decrease

resulting in a hit. CPS-BDE has a smoother convergence
curve and would probably benefit from more genera-
tions. Conversely, CPS-DDE has the best performance
with these parameter values. The curve shape for average
fitness in CPS-GA is different from the others because of
the selection routine adopted (stochastic tournament).
Table 11 presents the hit percentages obtained with the

hardest instances (requests with 200 CPs, with arbitrary
price decrease) for the three hybrid methods: Mtc-GA,
Mtc-BDE, andMtc-DDE. The difference in the percentage
of average hits of Mtc-GA andMtc-DDEmethods is 14.59
and 7.92 compared to GA and DDEmethods, respectively.
The Mtc-BDE hits percentage remained the same. In this
case, starting the process with the CPS-Matching method
did not make any difference.
Table 12 presents results of Dunn’s statistical test (p-

values) with 5% significance level and Bonferroni correc-
tion. These results correspond to the hit values presented
in Table 11 for requests 2, 3, 4, and 8, and each hybrid
method. Requests 1, 5, 6, and 7 were not tested because
their hits percentage are the same for all methods (same
performance), which is 100%. Values are in bold for those
methods whose results (hits percentage) are considered
statistically different.
Analyzing Table 12 and results obtained by the hybrid

method with best average results (i.e., Mtc-DDE), it is pos-
sible to notice that in 3 out of 4 requests (i.e., requests 2,
3, and 8) the Mtc-DDE is statistically better than Mtc-GA
and Mtc-BDE. Statistically, Mtc-DDE achieved the same
results that Mtc-GA for request 4.
Finally, Table 13 shows the average execution time

for all main selection algorithms, in milliseconds (ms),
per execution. Thus, in ascending order, the execution
time ranking is CPS-Matching, CPS-DEA, Matching-
BDE,Matching-GA, CPS-BDE, CPS-GA,Matching-DDE,
and CPS-DDE.

Therefore, according to Tables 8, 9, 11 and 13, it is pos-
sible to state that the EAs are able to find very satisfactory
answers, even for the most complex cases (e.g., request
3 with 200 CPs) in an acceptable execution time. This
behavior ensures the validity of the proposed fitness func-
tion for the problem, one of the main contributions of this
work.
Deterministic methods like CPS-Matching and CPS-

DEA presents minimal execution time. They are more
stable (the same type of response, regardless of database
size) than the others and can find optimal solutions for the
more straightforward requests with 100% of request atten-
dance. However, they are not adequate for more complex
cases (requests 2, 3, 4, and 8), where more than one CP is
required to attend each request fully.
The hybrid methods present the most optimized

answers for more extensive databases. They merge both
the natures of CPS-Matching (quick answers, stability, sin-
gle run, efficient finding of the single best CP) and EAs
(find the best CP set for complex multi-cloud requests),

Table 11 Hit percentages of the hybrid methods for 200 CPs
with arbitrary price decrease

Request Mtc-GA Mtc-BDE Mtc-DDE

Req. 1 100% 100% 100%

Req. 2 40% 36.67% 76.67%

Req. 3 26.67% 6.67% 53.33%

Req. 4 83.33% 50% 86.67%

Req. 5 100% 100% 100%

Req. 6 100% 100% 100%

Req. 7 100% 100% 100%

Req. 8 43.33% 53.33% 83.33%

Average 74.17% 68.33% 87.5%

de Moraes et al. Journal of Cloud Computing (2022) 11:5 Page 21 of 23

Table 12 Dunn test with Bonferroni α correction for the hit
values in Table 11

Mtc-GA Mtc-BDE Mtc-GA Mtc-BDE

Req. 2 Req. 3

Mtc-BDE 1.0 – Mtc-BDE 0.1338 –

Mtc-DDE 0.0071 0.0031 Mtc-DDE 0.0352 0.0001

Req. 4 Req. 8

Mtc-BDE 0.0055 – Mtc-BDE 0.6477 –

Mtc-DDE 1.0 0.0021 Mtc-DDE 0.0025 0.0275

Values are in bold when results are statistically different

making them an appropriate choice for real applications.
Statistical analysis shows that Mtc-DDE hybrid method
achieved the overall best performance.

Conclusions and future work
This work proposes a general approach for solving the
Cloud Provider Selection problem. To accomplish that,
several methods are developed using cloud provider PIs
as selection criteria: deterministic using MCDM meth-
ods (e.g., CPS-Matching and CPS-DEA), metaheuristic
(evolutionary algorithms, e.g., CPS-GA, CPS-BDE, and
CPS-DDE) and hybrid ones (Matching-GA, Matching-
BDE, and Matching-DDE). The experiments performed
show that the hybrid methods present the most optimized
answers, concerning hit percentage and execution time,

Table 13 Execution time for the developed experiments with
200 CPs, in milliseconds

Request Mtc DEA GA BDE DDE Mtc-GA Mtc-BDE Mtc-DDE

Req. 1 99 234 588 477 1611 99 99 99

Req. 2 89 284 592 487 1635 681 576 1724

Req. 3 70 254 593 488 1621 663 558 1691

Req. 4 85 218 580 465 1598 665 550 1683

Req. 5 74 192 573 458 1588 74 74 74

Req. 6 82 221 584 471 1602 82 82 82

Req. 7 76 184 580 464 1610 76 76 76

Req. 8 45 143 561 441 1575 606 486 1620

Average 78 216 581 469 1605 368 313 881

With arbitrary decrease in price (single global optimal)

Req. 1 100 224 584 476 1603 100 100 100

Req. 2 88 272 587 487 1610 675 575 1698

Req. 3 75 262 585 489 1614 660 564 1689

Req. 4 94 209 576 465 1591 670 559 1685

Req. 5 83 198 571 457 1587 83 83 83

Req. 6 86 217 578 471 1596 86 86 86

Req. 7 78 172 575 465 1588 78 78 78

Req. 8 46 132 554 440 1567 600 486 1613

Average 81 211 576 469 1594 369 316 879

for more demanding cases (200 CPs with price decrease),
showing promise for a real large-scale application. Among
them, the Matching-DDE hybrid method is the best one
to solve the CPS problem. Moreover, this work provides
a common ground by means of modelling the raw CP PIs
into a usable search space for deterministic, metaheuris-
tic, and hybrid methods to solve the CPS problem.
The uniqueness of the proposed approach can be

depicted from its contributions: i) It can handle qualita-
tive PIs (e.g., using the newly developed utility function -
HT, LT andHLT - ontology); ii)A suitable PI-based fitness
function allowing the use of metaheuristics; iii) A proper
PI tolerance mechanism for deterministic methods and
the cornerstone conversion equations of raw CP PIs into
DEA inputs and outputs; The proposed approach design
itself contributes to a potential standardization regarding
the information and mechanisms to be used to solve the
CPS problem.
This work can be improved. The access to a real and

large scale database to performmore experiments is a lim-
itation. Moreover, as future work, more selectionmethods
can be added with standardized inputs and outputs. Also,
a CP PI historical set of values can also be further con-
sidered to enhance the methods output. In addition, there
are plans for working on a cloud broker where these issues
are addressed including dealing with more dynamic user
requests and database management. Moreover, the imple-
mentation of the selection method automatic choice for a
particular CPS scenario is also planned.
Acknowledgments
The authors would like to express their gratitude to Santa Catarina State
University, Joinville, Brazil for providing administrative and technical support.

Authors’ contributions
Leading authors, Profs. Rafael Stubs Parpinelli and Adriano Fiorese: text
structure, content advisement and review. Lucas Borges de Moraes: Text
writing, programming, data collection and data analysis. All authors read and
approved the final manuscript.

Funding
There was not funding to this research.

Availability of data andmaterials
All data and materials are available at: https://github.com/LBMbr/
SelectionMethodsProject:/tree/master/.

Declarations

Ethics approval and consent to participate
The authors declare that they have no conflict of interest. All authors have
participated in (a) conception and design, or analysis and interpretation of the
data; (b) drafting the article or revising it critically for important intellectual
content; and (c) approval of the final version. This article does not contain any
studies with human participants or animals performed by any of the authors.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Computer Science (DCC), Joinville, SC, Brazil. 2Graduate
Program in Applied Computing (PPGCA), Joinville, SC, Brazil. 3Santa Catarina
State University (UDESC), Joinville, SC, Brazil.

https://github.com/LBMbr/SelectionMethodsProject:/tree/master/
https://github.com/LBMbr/SelectionMethodsProject:/tree/master/

de Moraes et al. Journal of Cloud Computing (2022) 11:5 Page 22 of 23

Received: 17 December 2020 Accepted: 26 November 2021

References
1. Hogan MD, Liu F, Sokol AW, Jin T (2013) Nist Cloud Computing Standards

Roadmap. NIST Special Publication 500 Series, USA
2. Senyo PK, Addae E, Boateng R (2018) Cloud computing research: A review

of research themes, frameworks, methods and future research directions.
Int J Inf Manag 38(1):128–139

3. Lee Y-C (2019) Adoption Intention of Cloud Computing at the Firm Level.
J Comput Inf Syst 59(1):61–72

4. Ishizaka A, Nemery P (2013) Multi-Criteria Decision Analysis: Methods and
Software. John Wiley & Sons, Ltd, United Kingdom

5. Whaiduzzaman M, Gani A, Anuar NB, Shiraz M, Haque MN, Haque IT
(2014) Cloud service selection using multicriteria decision analysis. Sci
World J 2014:1–10

6. Dhivya R, Devi R, Shanmugalakshmi R (2016) Parameters and methods
used to evaluate cloud service providers: A survey. In: 2016 International
Conference on Computer Communication and Informatics (ICCCI). IEEE,
Coimbatore. pp 1–5

7. Garg SK, Versteeg S, Buyya R (2013) A framework for ranking of cloud
computing services. Futur Gener Comput Syst 29:1012–1023

8. Baranwal G, Vidyarthi DP (2014) A framework for selection of best cloud
service provider using ranked voting method. In: 2014 IEEE International
Advance Computing Conference (IACC 2014). IEEE, Gurgaon. pp 831–837

9. Achar R, Thilagam PS (2014) A broker based approach for cloud provider
selection. In: 2014 International Conference on Advances in Computing,
Communications and Informatics (ICACCI 2014). IEEE, Delhi. pp 1252–1257

10. Jaiswal A, Mishra R (2017) Cloud service selection using TOPSIS and fuzzy
TOPSIS with AHP and ANP. In: Proceedings of the 2017 International
Conference on Machine Learning and Soft Computing (ICMLSC 2017).
ACM, Ho Chi Minh City. pp 136–142

11. Meesariganda BR, Ishizaka A (2017) Mapping verbal AHP scale to
numerical scale for cloud computing strategy selection. Appl Soft
Comput 53:111–118

12. Abdel-Basset M, Mohamed M, Chang V (2018) NMCDA: A framework for
evaluating cloud computing services. Futur Gener Comput Syst 86:12–29

13. Mukherjee P, Patra SS, Pradhan C, Barik RK (2020) HHO Algorithm for
Cloud Service Provider Selection. In: 2020 IEEE International Women in
Engineering (WIE) Conference on Electrical and Computer Engineering
(WIECON-ECE). IEEE, Bhubaneswar. pp 324–327

14. M. S (2020) Cloud service provider selection using non-dominated sorting
genetic algorithm. In: 2020 4th International Conference on Trends in
Electronics and Informatics (ICOEI). IEEE, Tirunelveli. pp 800–807

15. Moraes L, Fiorese A, Matos F (2017) A multi-criteria scoring method based
on performance indicators for cloud computing provider selection. In:
Proceedings of the 19th International Conference on Enterprise
Information Systems (ICEIS 2017), vol. 2. INSTICC, Porto. pp 588–599

16. Moraes L, Cirne P, Matos F, Parpinelli RS, Fiorese A (2018) An Efficiency
Frontier Based Model for Cloud Computing Provider Selection and
Ranking. In: Proceedings of the 20th International Conference on
Enterprise Information Systems (ICEIS 2018). INSTICC, Madeira. pp 543–554

17. Moraes L, Fiorese A, Parpinelli RS (2017) An evolutive scoring method for
cloud computing provider selection based on performance indicators. In:
Proceedings of the 16th Mexican International Conference on Artificial
Intelligence (MICAI 2017). Springer, Baja California. pp 1–12

18. Bishop DA (2018) Key Performance Indicators: Ideation to Creation. IEEE
Eng Manag Rev 46(1):13–15

19. Jain R (1991) The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation, and
Modeling. John Wiley & Sons, Littleton

20. CSMIC (2014) Service measurement index framework. Technical report.
Carnegie Mellon University, Silicon Valley, Moffett Field

21. Siegel J, Perdue J (2012) Cloud services measures for global use: The
service measurement index (SMI). In: Annual SRII Global Conference 2012.
SRII/IEEE, San Jose. pp 411–415

22. Somu N, Kirthivasan K, Shankar Sriram VS (2017) A computational model
for ranking cloud service providers using hypergraph based techniques.
Futur Gener Comput Syst 68:14–30. https://doi.org/10.1016/j.future.2016.
08.014

23. Emrouznejad A (2005) Measurement efficiency and productivity in sas/or.
Comput Oper Res 32(7):1665–1683

24. Charnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency of
decision making units. Eur J Oper Res 2(6):429–444

25. Khezrimotlagh D, Chen Y (2018) Decision Making and Performance
Evaluation Using Data Envelopment Analysis, International Series in
Operations Research & Management Science, 1st ed. Springer, Cham

26. Holland JH (1975) Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control, and Artificial
Intelligence. MIT Press, Bradford Books

27. Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley, University of Michigan

28. André L, Parpinelli R (2015) The multiple knapsack problem approached
by a binary differential evolution algorithm with adaptive parameters.
Polibits 51:47–54

29. Das S, Mullick SS, Suganthan PN (2016) Recent advances in differential
evolution - An updated survey. Swarm Evol Comput 27:1–30

30. Krause J, Lopes HS (2013) A comparison of differential evolution
algorithm with binary and continuous encoding for the MKP. In: 2013
BRICS Congress on Computational Intelligence and 11th Brazilian
Congress on Computational Intelligence. IEEE, Recife. pp 381–387

31. Sundareswaran S, Squicciarin A, Lin D (2012) A brokerage-based
approach for cloud service selection. In: 2012 IEEE Fifth International
Conference on Cloud Computing. IEEE, Honolulu. pp 558–565

32. Garg SK, Versteeg S, Buyya R (2011) SMICloud: A framework for comparing
and ranking cloud services. In: Proceedings of the 2011 Fourth IEEE
International Conference on Utility and Cloud Computing (UCC 2011).
IEEE, Melbourne. pp 210–218

33. Saaty TL (1990) How to make a decision: The analytic hierarchy process.
Eur J Oper Res 48:9–26

34. Sun L, Dong H, Hussain OK, Hussain FK, Liu AX (2019) A framework of
cloud service selection with criteria interactions. Futur Gener Comput
Syst 94:749–764

35. Chen W, Goh M, Zou Y (2018) Logistics provider selection for
omni-channel environment with fuzzy axiomatic design and extended
regret theory. Appl Soft Comput 71:353–363

36. Shirur S, Swamy A (2015) A cloud service measure index framework to
evaluate efficient candidate with ranked technology. Int J Sci Res
4(3):1957–1961

37. Hogben G, Pannetrat A (2013) Mutant apples: A critical examination of
cloud sla availability definitions. In: 2013 IEEE 5th International
Conference on Cloud Computing Technology and Science, vol. 1. IEEE
Computer Society, Los Alamitos. pp 379–386

38. Wagle S, Guzek M, Bouvry P, Bisdorff R (2015) An evaluation model for
selecting cloud services from commercially available cloud providers. In:
7th International Conference on Cloud Computing Technology and
Science (CloudCom). IEEE, Vancouver. pp 107–114

39. Patra SS, Jena S, Mund GB, Gourisaria MK, Gupta JK (2021) Meta-Heuristic
Algorithms for Best IoT Cloud Service Platform Selection. In: Integration of
Cloud Computing with Internet Of Things, chap 17. John Wiley & Sons,
Ltd, New York City. pp 299–318

40. Mohamed AM, Abdelsalam HM (2020) A multicriteria optimization model
for cloud service provider selection in multicloud environments. Softw
Pract Exp 50(6):925–947

41. Hwang C-L, Yoon K (1981) Methods for multiple attribute decision
making. In: Multiple Attribute Decision Making. Springer, USA. pp 58–191

42. Jatoth C, Gangadharan GR, Fiore U, Buyya R (2019) SELCLOUD: a hybrid
multi-criteria decision-making model for selection of cloud services. Soft
Comput 23(13):4701–4715

43. Kore NB, Ravi K, Patil SB (2017) A simplified description of FUZZY TOPSIS
method for multi criteria decision making. Int Res J Eng Technol (IRJET)
4:2047–2050

44. Saaty TL (1996) Decision Making with Dependence and Feedback: The
Analytic Network Process. RWS Publications, Pittsburgh

45. Al-Faifi A, Song B, Hassan MM, Alamri A, Gumaei A (2019) A hybrid multi
criteria decision method for cloud service selection from smart data.
Futur Gener Comput Syst 93:43–57

46. Mirjalili S (2019) Introduction to Evolutionary Single-Objective
Optimisation. In: Evolutionary Algorithms and Neural Networks: Theory
and Applications, Studies in Computational Intelligence. Springer, Cham.
pp 3–14

https://doi.org/10.1016/j.future.2016.08.014
https://doi.org/10.1016/j.future.2016.08.014

de Moraes et al. Journal of Cloud Computing (2022) 11:5 Page 23 of 23

47. Wilk MB, Shapiro S (1968) The joint assessment of normality of several
independent samples. Technometrics 10(4):825–839

48. Dunn OJ (1964) Multiple comparisons using rank sums. Technometrics
6(3):241–252

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

	Abstract
	Keywords

	Introduction
	General background
	Performance indicators
	Data envelopment analysis
	Genetic algorithms
	Binary differential evolution
	Discrete differential evolution

	Related work
	Deterministics
	Metaheuristics
	Hybrids

	Cloud provider selection approach
	Cloud provider database
	User request
	The pI attendance condition concept
	Selection methods modelling
	CPS-Matching
	CPS-DEA
	Metaheuristic methods: individual and fitness modelling
	Hybrid methods

	Experiments and results
	Experimental setup
	Problem instances
	Results and analysis

	Conclusions and future work
	Acknowledgments
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	Author details
	References
	Publisher's Note

