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Abstract

In current power grids, a massive amount of power equipment raises various emerging requirements, e.g., data
perception, information transmission, and real-time control. The existing cloud computing paradigm is stubborn to
address issues and challenges such as rapid response and local autonomy. Microgrids contain diverse and adjustable
power components, making the power system complex and difficult to optimize. The existing traditional adjusting
methods are manual and centralized, which requires many human resources with expert experience. The adjustment
method based on edge intelligence can effectively leverage ubiquitous computing capacities to provide distributed
intelligent solutions with lots of research issues to be reckoned with. To address this challenge, we consider a power
control framework combining edge computing and reinforcement learning, which makes full use of edge nodes to
sense network state and control power equipment to achieve the goal of fast response and local autonomy.
Additionally, we focus on the non-convergence problem of power flow calculation, and combine deep reinforcement
learning and multi-agent methods to realize intelligent decisions, with designing the model such as state, action, and
reward. Our method improves the efficiency and scalability compared with baseline methods. The simulation results
demonstrate the effectiveness of our method with intelligent adjusting and stable operation under various conditions.
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Introduction

With the continuous evolution and innovation of current
power construction, millions of smart devices collaborate
in the power grid to support various services, and a con-
siderable number of heterogeneous data will be generated
and transmitted. The diversified demand for data analy-
sis and processing lists serious requirements to the power
system. In the face of rapid response and real-time inter-
action, traditional fixed allocation of resources has a series
of shortcomings in scalability, utilization efficiency and
deployment cost. Unlike centralized cloud computing suf-
fered from various pressures in data collection, analysis
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and processing, edge computing can realize rapid per-
ceptual response and support regional autonomy, which
has become a promising way of following the trend of
intelligent power grids.

As an important research issue of smart grid, power
flow calculation determines the steady-state parameters
of the power system according to the given structure
and operating values, which can evaluate the impact of
power supply and demand changes on safety. However,
this problem will encounter a non-convergence situation
under different conditions, and previous solutions rely on
both expert experience and human resources. Further, an
intelligent power grid can dynamically adjust its setting
when the environment changes, and different power units
have a variety of optional configurations, which brings
more restrictions and uncertainties for the management
of microgrids.
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Edge intelligence is a combination of edge computing
and artificial intelligence [1], which has been applied to
power networks with positive results by some studies.
In terms of edge computing, some works advocate that
enabling smart grid with edge computing to overcome
the defects of bandwidth and latency in cloud comput-
ing, and produce a large number of application basis and
design ideas. In terms of artificial intelligence, some stud-
ies focus on how to apply feature engineering or expert
systems to manage power flow. However, some of them
have shortcomings in scalability and performance. How
to carry out power flow adjustment with edge intelligence
still needs to be considered. In this paper, we consider
the problem of power adjustment and propose the frame-
work of multi-agent deep reinforcement learning and edge
computing for distributed power control in microgrids.
Firstly, we analyze the typical service requirements of
power calculation in the microgrid and propose the entire
framework with three different aspects. Then, we model
the power flow adjustment problem with Markov pro-
cesses and design a learning-based adjustment algorithm
for microgrids. Finally, with the IEEE 39 bus system simu-
lated by the tool Pandapower [2], the experimental results
demonstrate that the proposed framework can effectively
obtain solutions.

The main work presented in this paper is summarized
as follows: 1) We present a comprehensive framework for
smart grid management and control, which enables the
data sensing, processing and controlling of smart grids
to realize the functions of real-time response and local
autonomy. 2) A learning-based distributed algorithm is
presented for power flow adjustment, considering sys-
tem requirement and current state. The simulation results
demonstrate that our framework can obtain successful
adjustment results under various power conditions.

After introducing the research background, we sum-
marize some related works in “Related works” section
and propose our framework with learning-based decision
algorithm in “The framework of power flow adjustment
based on edge intelligence” and “Automatic adjustment of
power flow convergence based on DRL” sections. Then,
we present the configuration and evaluation results of
simulation experiments in “Numerical results” section.
Finally, we conclude the paper and detail further work in
“Conclusion” section.

Related works

Power flow adjustment is considered as an emerging prob-
lem in smart microgrids. As a dynamic decision problem
under uncertainty, emergency control of power systems is
generally regarded as the last safety net for grid resiliency
[3]. Due to the complexity of power demand and supply,
the stability of a power system is dependent on multiple
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adjustable power devices, which mathematically is essen-
tially the solution of nonlinear equations. Previous works
have carried out some studies on power flow control.
However, applying edge intelligence to the adjustment of
power flow still needs to be addressed.

Smart grids based on edge computing have recently trig-
gered an unprecedented upsurge, changing the model of
power management in the past. Different from some gen-
eral designs on edge computing [4—6], Trajano designs
an edge computing-based architecture to support the
implementation of smart grid applications, which pro-
vides a stable and low latency communication network to
achieve an effective end-to-end power management [7].
With a hardware-implemented architecture, Barik adopts
the concept of edge computing in smart grids to migrate
task loads from the cloud, resulting in improved perfor-
mance metrics in power consumption, storage require-
ments, and analysis capabilities [8]. Huang considers an
edge computing-based framework to realize real-time
monitoring with an efficient heuristic algorithm, which
can significantly optimize the frame rate as well as the
detection delay compared with cloud framework [9]. Sim-
ilarly, Awadi considers detecting abnormal samples in
electricity consumption records in advance through the
collaboration of distributed devices based on edge com-
puting. The paper tests the performance of the proposed
model on service latency and network resilience [10]. To
process, analyze and store power consumption informa-
tion, Chen proposes a smart grid system based on IoT
and mobile edge computing, and demonstrates that the
proposed system supports substantial terminal manage-
ment, real-time analysis and massive data processing [11].
The above works propose a series of architectures and
frameworks for applying edge computing to smart grids.
However, they do not specifically consider the application
of edge intelligence to microgrids. Albataineh proposes a
two-level solution that combines the advantages of cloud
computing for power distribution and edge computing
for power information processing, which a learning-based
engine can establish the communication between the two
levels. This engine is enable the system to load balance
between the cloud and the edge, which can achieve a
higher power grid throughput and power utilization [12].

Different from some papers on general resource man-
agement in edge computing [13-15], it is worth not-
ing that this paper applies edge intelligence to dis-
tributed grids, but does not consider power flow calcula-
tions between microgrids. Along with power consumers’
increasing demand for power services, the microgrid
framework is increasingly seen as a hot issue in current
smart grids. Yang uses deep reinforcement learning to
design an online scheduling strategy to manage energy
dispatch in microgrids under uncertainties of energy gen-
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eration [16]. Fang considers an economic dispatch prob-
lem in microgrids and proposes a learning-based coopera-
tive auction algorithm, which has the advantages of avoid-
ing single point of failure and strong scalability [17]. Ji
proposes a learning-based microgrid scheduling strategy
for economic energy management, which does not require
an explicit model that requires predictors to estimate
stochastic variables with uncertainties [18]. Etemad puts
forward a learning-based charging strategy for microgrid
batteries with renewable energy to improve electrical sta-
bility, power quality and the peak power load [19]. Liu
proposes a collaborative reinforcement learning method
to address a distributed scheduling problem in micro-
grid, which reduces the coupling of nodes in the micro-
grid and improves the efficiency of distributed scheduling
[20]. Brida proposes a data-driven reinforcement learn-
ing method to generate optimal scheduling strategies for
given system states [21]. Dabbaghjamanesh proposes a
deep learning algorithm with gated recurrent unit to
obtain the optimal decision of reconfigurable microgrids.
The algorithm learns the network topology characteris-
tics that vary with time and make real-time reconfigura-
tion decisions [22]. The above works present a series of
strategies and approaches for economic energy manage-
ment and show that the application of edge intelligence
to microgrid management can effectively improve various
performance indicators. However, they do not specifically
consider the dynamic configuration of microgrids.

For the problem itself, Ma discusses the application
difficulties of deep learning in power flow calculation,
proposes the network structure and training process of a
deep neural network, as well as the method to solve the
over-fitting problem [23]. Aiming at the non-convergence
problem of power flow calculation in large-scale power
grids, Wang combines professional experience with arti-
ficial intelligence to propose a learning-based power flow
adjustment method [24]. To quantifying the impact of the
wind speeds correlation among multiple wind power sta-
tions, Zhu proposes a probabilistic power flow calculation
framework with a learning-based distribution estimation
approach [25]. A learning-based approach is proposed
by Yang to speed up the calculation process of proba-
bilistic power flow problem. The performance differences
among neural networks with various structures are com-
pared, and three kinds of power bus systems are used
for evaluation benchmark. Compared with the pure data-
driven deep learning method, the proposed method can
comprehensively improve the approximate accuracy and
training speed [26]. Compared with the current situa-
tion that learning-based approaches are mostly proposed
to identify and evaluate system situations, Su proposes
a power system control method with deep belief net-
work [27]. Huang proposes an adaptive emergency control
scheme based on the feature extraction and nonlinear
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generalization capabilities of deep reinforcement learning
for complex power systems [28]. Some of the above works
consider how to apply the deep learning method to the
power flow calculation problem. However, the research
on the application of edge intelligence to the problem of
microgrids is still in the preliminary stage.

From the viewpoint of the literature, few research works
have considered how to apply edge intelligence to the
power flow calculation of microgrids. The existing meth-
ods have poor adaptability to the edge computing frame-
work and are unable to deal with local autonomy, or
lead to the failure of calculation result, thus leading to
system instability. Different from the above works, our
research proposes a power flow adjustment framework
based on edge computing and multi-agent learning. Con-
sidering the complexity of the power flow, we focus on
the situation that the system does not converge, proposes
our learning-based distributed framework to tackle this
problem.

The framework of power flow adjustment based on
edge intelligence
Framework overview
As shown in Fig. 1, we consider the power flow adjustment
framework based on edge intelligence from the following
three aspects: architecture, function and application. First,
we introduce the framework based on edge intelligence
to connect three kinds of computing entities, namely
cloud server, edge node, and end device, using ubiqui-
tous communication networks. The term cloud refers to
the data center using cloud computing technology, which
can uniformly manage multiple power regions, coordinate
decision-making content between power regions, gather
and analyze power sensing data. Although the cloud has
powerful computing capabilities and extensive network
coverage, the network distance to end devices results in
a noticeable transmission overhead. The term end refers
to the power sensing equipment that senses the environ-
ment and the power control equipment that executes the
action in the power network, which can directly moni-
tor, collect or perceive the running condition. As a key
component of edge intelligence, edges realize nearby com-
putation and data processing through edge nodes, play the
role of connecting cloud and end architecturally. Edges
are closer to underlying end devices than the cloud server,
and can provide a better application experience for end
devices through collaborative computing technology.
From the perspective of environment sensing, the pro-
cess of power flow adjustment mainly includes three steps:
data processing, task scheduling and system evaluation.
Firstly, data processing, as the basic function of power
flow adjustment, needs to perform multi-dimensional
data collection from the power network and perform pro-
cessing steps such as filtering, conversion, aggregation
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Fig. 1 The Framework of Power Flow Adjustment based on Edge Intelligence

and packaging. At the same time, the processing function
also needs to have detailed configuration options, which
should be compatible with multiple operation modes,
so as to facilitate the agile deployment and application
improvement for technical personnel. Finally, as the exe-
cution result of the adjustment, system evaluation can
analyze the results of the decision-making process in time,
then realize the dynamic and adaptive strategy adjust-
ment, which can continuously optimize the application
business, e.g., decision-making accuracy, system stabil-
ity and task latency. The purpose of the power adjust-
ment framework based on edge intelligence is to support
power applications more efficiently, comprehensively and
flexibly.

The primary application of the framework is the per-
ception of a power network, i.e., to obtain the real-time
state of everything in the power system, including the state
of supply equipment, storage equipment and consump-
tion equipment. The sensing information, as an impor-
tant factor of decision-making processes, can effectively
support the intelligence of the decision-making process.
Further, the framework can analyze the status or behav-
ior pattern of power equipment, e.g., a failure happened if
some power unit parameters fluctuate considerably. Addi-
tionally, it can also analyze the adjustment strategy and
stability capability of one grid region and then summa-
rize the enabling state of non-renewable and renewable
energy to identify efficient behavior strategies and even
obtain model descriptions that are easy for professionals
to understand. i.e., the learning-based strategy can be ben-
eficial to human analysis. Power flow adjustment needs
to dynamically adjust the control equipment in the power
system, so how to determine the strategy of power supply

and power distribution becomes a crucial problem. If the
calculation process does not converge, it is necessary to
adjust the system parameters with actual operating steps.
In addition, the control of carbon emissions has become a
emerging problem in recent years. Therefore, the control
of renewable resources should be taken into consideration
in the process of power flow control, which is promising
to improve the utilization of new energy and reduce the
use of non-renewable resources.

Deep reinforcement learning

A tuple (S, A, T, r) is used to define a reinforcement learn-
ing task, as shown in Fig. 2. At each time-step ¢, the agents
observe the state s; € S of the environment and take
actions a; € A to transform themselves into a new state
and receive a reward r. T = p(s¢+1|S,a¢) is a mapping
from state-action pairs (s, ;) to a probability distribution
of the next state s;11. The goal of an agent is to maximize
its expected return during iterations, which is given by
R=>20R =Y 2, y'r, where y €[0,1] is the future
discount factor. The state-action value function is defined
as Q7 (s,a) = E[R;|s; = s,a; = a, ], which means the
expected discounted return based on the current state and
action (s¢, a;). The following Bellman equation is used
to express the optimal Q function Q* under the suitable
action:

Q*(s,a) = Ey—p(jsa) [f (ssa)+y max Q* (¢, a’)] .
a

In addition, each DRL agent has a target network. It has
the same structure as the Q-network. Due to the unsta-
ble training process and poor performance with non-
stationary targets, the target network’ goal is to fix the Q
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Traditional reinforcement learning algorithms are
classified into value-based approach and policy-based
approach. Both two categories of approaches have signifi-
cant drawbacks.

Asynchronous advantage Actor-Critic(A3C) algorithm

Actor-Critic, as a mixed approach of value-based
approach and policy gradient-based approach, usually
performs better than each of them. There are two parts in
Actor-Critic algorithm. One part is Actor, which selects an
action using a neural network. The corresponding neural
network approximating the policy is called a policy net-
work. The other part is Critic judging whether good or
bad the actions selected by Actor are, where the network
estimating the value of actions is called the value network.
We define 0; as the weights of the policy network. Besides,
the learning rate « and the policy g are defined. Then, we
use the parameter 6 to update the policy network:

Or1 ~ 0+« [VGZOgﬂe(ﬂ|S)Qn (s, 61)] ,

where Qy (s, a) is the total value by following the policy 7
after the selected action a in the current state s.

Since the training process involves multiple neural net-
works, the Actor-Critic algorithm has the disadvantage of

slow convergence. A3C is an Actor-Critic algorithm pro-
posed to solve the non-convergence problem. In some
classical reinforcement learning algorithms, such as deep
Q-network (DQN), they use experience pool to improve
convergence by reducing the correlation between data.
Instead, in order to reduce the memory usage, A3C algo-
rithm uses multiple workers to perform their own training
on multiple environment instances asynchronously, and
updates the global network asynchronously. In this way,
A3C improves the speed of convergence. Compared with
actor-critic algorithm, A3C algorithm mainly makes three
optimizations: First, asynchronous training framework
makes the network model interact with the environment
better, which helps the model to converge quickly; Sec-
ond, network structure optimization puts Actor and Critic
together, so that the input state can output the state value
and strategy. The third is critic assessment.

In the equation above, the Q value is not normalized.
If Q is too large, the parameter 6 changes too much. On
the contrary, & won't change a lot while the predicted
value is small. Thus, A3C uses the difference value of
the Q value and the value of the previous state, instead
of the predicted Q value. The difference is called the
advantage function, which represents the increase of value
obtained with action a. If the value function at time-step
tis V(sy) = E[R¢|s; = s], the advantage function can be
expressed as:

A(styar) = Q(sgyar) — V(sy) = E[Rylss, ar] — V(sy)
Rre+ Yy Vistrilse, ar) — V(s = 8(sy).
The gradient of the actor is VOlogmg (als)d(s;), then
01 0+« [V@logm; (a|s)8(st)] .
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In addition, when updating the value network, the loss
function is given as § (sp)2.

The knowledge and experience of power flow convergence
Knowledge of generator active power output on the
convergence

In the actual power grid, the unreasonable arrangement
of generator sets may result in excessive active power
transmission, exceeding the transmission capacity of the
network [29]. In response to this situation, adding reac-
tive power compensators or changing the transformer
ratio on the line can improve the transmission capacity
of the network to a certain extent. However, when faced
with extremely unreasonable arrangements, these meth-
ods are difficult to achieve a satisfactory decision result.
Therefore, to ensure that the active power transmitted
by the power line does not exceed the upper limit of its
transmission capacity, the output of each generator in the
generator set needs to be adjusted [30].

Knowledge of power line transmission limit on the
convergence

The capacity of the transmission line reaching the limit is
the main factor for the static stability of the system. Under
general conditions, the transmission power of the lines in
the grid changes with the changes in the generator output
and the active and reactive power of the load.

There are two situations when the active power of a
transmission line reaches its transmission power limit:
(i) With the continuous increase of the injected power,
the active power of the transmission line reaching the
limit will not continue to increase (or increase very little),
and the increase in injected power is transmitted through
other transmission channels; (ii) The active power of the
transmission line increases with the increase of injected
power, but the reactive power transmission of the line
reaches the limit.

The line reaching its transmission power limit is a
necessary condition for the power system to lose static
stability. In this case, the system power flow has no solu-
tion, and the adjustment does not converge. By finding the
line that reaches the transmission limit as knowledge and
experience, it is possible to add the corresponding reac-
tive power compensation and adjust the method of power
injection. In this way, we can realize the purpose of non-
convergence adjustment for power flow management in a
given power network.

Experience in manual adjustment of non-convergent power
flow

a) Adjustment of generator output

For small-scale distribution networks with power sup-
ply path compensation and direct power supply with-
out boosting, adjusting generator output is a relatively
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economical power flow adjustment method. At this time,
changing the generator terminal voltage can achieve good
results, and it is no need to add additional electrical equip-
ment for adjustment. For power supply systems with long
lines and multiple voltage levels, the adjustment of gener-
ators alone cannot meet the requirements of power flow
convergence.

b) Adjustment of transformer ratio

Changing the transformer ratio can increase or decrease
the voltage of the secondary winding. There are
several taps for selection on the high-voltage side
winding of the double-winding transformer and the
high-voltage side and medium-voltage side winding
of the three-winding transformer. The one corre-
sponding to the rated voltage is called the main
connector.

c) Reactive power compensation

The generation of reactive power does not consume
energy, and the transmission of reactive power along the
power grid will cause active power loss and voltage loss.
Suitable configuration of reactive power compensation
and changing the reactive power flow distribution of the
network can reduce the active power loss and voltage loss
in the power system.

Automatic adjustment of power flow convergence
based on DRL

Deep reinforcement learning has been used to adjust
the non-convergence of power flow automatically. How-
ever, it is challenging to realize the real-time information
sharing of each microgrid, and it is also difficult to dis-
patch and control each microgrid through a centralized
organization. Therefore, we proposed to solve this prob-
lem by using multi-agent deep reinforcement learning.
In some similar research work, in addition to the obser-
vation information of the environment, each decision
unit also needs the observation information, such as the
strategies and rewards of other agents. Considering the
balance of active power and reactive power simultane-
ously, we propose the solution of automatic power flow
non-convergence adjustment based on the knowledge and
experience of power flow adjustment and multi-agent
deep reinforcement learning.

Sub-grid partition

As shown in Fig. 3, according to the actual geographi-
cal location and electrical equipment distribution of the
IEEE 39 bus system, the power grid is divided into three
sub-grids. An agent is responsible for dispatching and
controlling each sub-grid. Each agent can only observe the
grid information of its sub-grid and maintain the electrical
equipment of the sub-grid. In addition, the grid allows dif-
ferent agents to communicate with each other to achieve
more efficient scheduling and control.
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State design

For an agent, its state refers to the variables observed
from the environment, which will affect the agent’s explo-
ration efficiency. In the selection of state variables, we
mainly consider the output of each generator, the voltage
on each bus and the load of each transformer. Therefore,
for the data of m samples, the total size of state space
is: m(g + p + q) where g is the total number of gener-
ators, p is the total number of buses, and Q is the total
number of transformers. However, each agent can only
observe the state information of its sub-grid, so the num-
ber of its observation space is: m(g; + p; + ¢;) where,
gi, pi and ¢q; are the number of generators, buses and
transformers in the sub-grid of each agent respectively.
In addition, it can be seen from Table 1 that for differ-
ent types of electrical equipment in the power system,
the observation range settings of each observation equip-
ment point are also different. This is mainly due to the
combination of the characteristics of various electrical
equipment.

Action design

Action is the actual strategy taken by the agent in the pro-
cess of exploration. It is the key to the real-time flow con-
vergence. We consider the regulation of both active power
and reactive power, including the output multiple of each
generator, the number of reactive power compensators on
each heavy-duty bus and the ratio of each transformer.
Therefore, for the data of m samples, the number of action
Spaces constructed is:m(g + p + ¢q). Similarly, each agent
can only control the electrical equipment in its sub-grid,
and the number of its action space is:m(g; + p; + qi).
Similar to the state design, in addition to the different
number of electrical equipment in each sub-grid, for dif-
ferent types of electrical equipment, we combined their
own characteristics and set different action ranges for
each type of equipment to reduce the action space to
achieve differentiation. As shown in Table 2, in order to
reduce the difficulty of the agent’s decision-making, we
discretize all the variables in the power grid, so that the
whole action space is transformed into a discrete action
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Table 1 The state space of the agent in each sub-grid
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No. Active power of generators Buses voltage magnitude Transformers load rate
agent 1 2 (0 — 10000) 14 % (0—3) 4 % (0 — 500)
agent 2 2 % (0 — 10000) 10% (0 —3) 2 % (0 — 500)
agent 3 5% (0 — 10000) 14 % (0 —=3) 5% (0 — 500)

space, thus accelerating the whole process of multi-agent
deep reinforcement learning.

In addition, we will also select the region with heavy line
load in each flow adjustment process, which is helpful for
agents to make better decisions to adjust the movement.

Reward design

To make full use of the relevant knowledge and expe-
rience of flow adjustment and improve the exploration
efficiency of agents, we set up a variety of reward mech-
anisms. First of all, if the power flow adjustment of the
sample converges, the highest positive return value r; can
be obtained; if the power flow adjustment does not con-
verge, the negative return value ry is finally added. Next,
consider the upper limit of the generator output. Accord-
ing to whether the output active power of the generator is
greater than its maximum active power limit, the reward
value r3 is set. Similarly, depending on whether the reac-
tive power output of the generator is greater than its
maximum reactive power limit, increase the reward value
r4. Line load rate is also an important part of power flow
adjustment. If the line load rate exceeds its maximum line
load rate limit, the agent receives a negative reward of rs.
In addition, we also consider the voltage level across the
bus. If the voltage on the bus is within the specified max-
imum and minimum voltage range, the plus value r¢ is
increased. Finally, the maximum load limit on the trans-
former constitutes the bonus value ;7. The reward value R
for each step of the agent is equal to the sum of the above
7 types of rewards:

R=ri+ro+r3s+rs+rs+rg+ry.

In particular, since power flow convergence is the com-
mon goal of all agents, the benefits brought by flow con-
vergence can make every sub-grid gain benefits. There-
fore, the whole process of flow adjustment convergence
adjustment can be regarded as a cooperative game among
multiple agents. Furthermore, we set the reward of each
agent to be the same.

Table 2 The action space of the agent in each sub-grid

Multi-agent asynchronous advantage actor critic algorithm
We design multi-agent asynchronous Advantage Actor
Critic (MAA3C) as our multi-agent deep reinforcement
learning algorithm. Each agent maintains an A3C struc-
ture, which is used to select and evaluate strategies
for the local states observed by the agent. Different
agents maintain their own sub-grid and can communi-
cate with each other to jointly pursue the power flow
convergence goal of the whole grid. However, each A3C
of the next layer has multiple workers composed of
actor-critic to receive parameter updates of the global
network, undergo reinforcement learning training, and
update the global network asynchronously. Each actor-
critic consists of 2 deep neural networks, namely the
strategy network and the value network. Policy networks
are used to explore policies, and value networks evalu-
ate actions and provide critic values, which help actors
learn the gradients of policies and tune the parame-
ters of their networks to make updates work in a better
direction.

Numerical results

Simulation setting

In the experimental part, based on the Python 3.7 envi-
ronment, we adopted Pandpower, an open-source third
party simulator for power flow adjustment and analysis.
By modifying some parts of the source code in the sim-
ulator, we obtained the intermediate data of power flow
calculation as our knowledge experience of multi-agent
deep reinforcement learning.

As for the method of power flow calculation, Newton-
Raphson power flow algorithm with optimal multiplier is
adopted. The correction vector obtained in each iteration
of conventional Newton-Raphson algorithm is used as the
search direction, and the objective function is regarded
as one variable function of the step factor, with the scalar
multiplier introduced to adjust the correction step size
of the variable. In this way, better robustness than the
Newton-Raphson algorithm can be obtained.

No. multiples of generators’ output Number of compensators Transformer ratio value
agent 1 2%(0—=05) 14 % (0 —10) 4% (0—=05)
agent 2 2%(0—5) 10% (0 —10) 2% (0—=15)
agent 3 5%(0—5) 14 % (0 —10) 5%(0—5)
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Fig. 4 The impact of loads and generators’ output on power flow adjustment
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Data preprocessing

We select the IEEE 39 bus system in New England as
the target of our experiment. The 345kV network con-
sists of 10 generators, 12 double-winding transformers
and 34 transmission lines, with a base power of 100MVA.
According to the convergent data in the initial system,
we randomly adjust the load and output of the genera-
tor in the range of 0-4 times. Then the Newton-Raphson
method with the optimal multiplier is used to carry out
the power flow calculation one by one. Consequently, we
get 996 non-convergent samples, which are used as the
data for adjustment. As shown in Figs.4(a) and (b), it can
be found that within the random adjustment range of 0-
1 times, with the decrease of load and generator active
power, the number of non-convergent samples in power
flow adjustment gradually increases. However, within the

range of 1-3 times of random adjustment, when the load
and power generation output are farther away from the
rated value, the number of samples that do not converge
in power flow calculation also increases gradually. Espe-
cially after the proportion exceeds 200%, the number of
non-convergent samples gradually occupies most of the
samples.

Simulation results

To comprehensively present the advantages of our algo-
rithm, we firstly compare the algorithm with centralized
learning algorithm in one agent, such as A2C and A3C.
Furthermore, the comparison with other multi-agent rein-
forcement learning algorithms are also considered. As can
be seen from the total reward of the grid in Fig. 5, MAA3C
algorithm can reach a convergence value faster than other
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Fig. 5 The convergence performance under different algorithms
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multi-agent reinforcement learning algorithms, and the
stability in the process of convergence is much better than
other algorithms. This relies heavily on the asynchronous
updating method in the A3C architecture, which reduces
the correlation between data, achieving faster conver-
gence. In addition, our algorithm can finally obtain the
maximum reward value among all the algorithms, which
will also be reflected in the subsequent experiments. From
the comparison of curve between MAA3C and A3C,
under the condition of incomplete information, the con-
vergence speed of multi-agent learning is almost the same
as that of centralized learning. In face of such a large envi-
ronment as the power grid, the multi-agent system may be
more robust than centralized control.

The actions of electrical devices controlled by different
agents under different sub-grids reflect the actual changes
of power grid decided by each agent under the MAA3C
algorithm. As shown in Fig. 6, we randomly select genera-
tors, reactive power compensators and transformers from
sub-grid 1 and sub-grid 3 to check their output multiples,
increase number of compensators and percentage change
of transformer ratio, respectively. It can be seen that
after 300 iterations, each electrical device converges to a
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specific value. It fluctuates a little due to the exploration
of each agent.

We randomly select a sample that has completed the
power flow adjustment, and plot the load rates of the bus
and transmission lines in the grid system before and after
the power flow adjustment. Figure 7 shows that the power
grid before adjustment on the left has the situation that
the load rate of local transmission lines is too high, and the
bus voltage is too low, which is probably the main reason
for the non-convergence of power flow adjustment. From
the adjusted power grid on the right, it can be seen that
the overload situation of local transmission lines has been
well improved, and the bus voltage has also been reduced
from too low to a relatively high and controllable level, so
the power flow can be converged again.

To intuitively reflect the adjustment effect of MAA3C
algorithm on power flow calculation of grid, we randomly
selected 160 samples from 996 non-convergent samples
as the test set, with the rest as the training set. Then
we compare the successful adjustment numbers of non-
convergent samples under different algorithms. To min-
imize the impact of accidental factors on the results, we
calculate 10 times and average the results of 10 times. As
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Fig. 7 Voltage and loads distribution of power system before and after power flow adjustment

shown in Fig. 8, MAA3C algorithm has obvious advan-
tages, whether compared with the single-agent deep rein-
forcement learning algorithm or with other multi-agent
deep reinforcement learning algorithm. It can be observed
that if the random strategy is used, the success rate of
adjustment is less than 10%.

Conclusion

In this article, we proposed an edge computing-assisted
comprehensive framework for smart grid management
and control. Consequently, it assists microgrids in real-
izing real-time demand response and local autonomy in
data sensing, processing and controlling. Primarily, we

120 1

100 1

80 1

60 1

40 1

20 1

The number of samples adjusted to convergent

Fig. 8 Numbers of successful adjustment under different algorithms

MAA3C MAPPO MAPG MAA2C Random A2C
Different algorithm

A3C




Pu et al. Journal of Cloud Computing (2021) 10:48

proposed a power flow adjustment algorithm based on
multi-agent deep reinforcement learning considering the
grid knowledge and requirement in microgrids, which
improves the efficiency and flexibility compared with the
traditional methods. Finally, we adopt the IEEE 39 bus
system with the Pandapower simulator to verify the effec-
tiveness of our proposed algorithm under various grid
conditions.

In future work, we will further discuss the following two
points. Deployment and application of computing power
near perception and control devices are emerging trends
in smart grids. Edge-cloud collaboration can realize intel-
ligent collaboration and efficient decision-making of IoT
devices, which will gradually be widely adopted. How to
realize the dynamic adaptation and flexible scheduling of
the system is an open question. On the other hand, there
will be more supply units, storage units, and load units in
the power grid. How to model and analyze the character-
istics of these new units becomes another problem worthy
of further study.
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