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Abstract

This paper examines possibilities for improving the existing strategies of consistency management for
highly-distributed transactional database in a hybrid cloud environment. With a detailed analysis of the existing
consistency models for distributed database and standard strategies including Classic, Quorum and Tree Based
Consistency (TBC), it is concluded that an improved advanced model of so-called visible adaptive consistency needs
to be applied in a highly-distributed cloud environment, as necessary and sufficient degree of synchronization of all
replicas. Along with the proposed model, research and development of an advanced novel strategy for consistency
management Rose TBC (R-TBC) approach has been conducted, by improving standard TBC approach. Regarding
implementation, a specific agglomerative Rose Tree Algorithm (RTA) has been developed, based on Bayesian
hierarchical clustering and Graph Partitioning Algorithm - Multidimensional Data Clustering (GPA-MDC) intelligent
partitioning of transactional Cloud Database Management System (CDBMS). The final result is constructed R-TBC
model that changes in accordance with dynamic changes of entire heterogeneous CDBMS environment.

Keywords: Consistency management, Rose Tree Based Consistency model, Cloud Database Management System,
Intelligent partitioning, Hybrid cloud

Introduction
One of themost important aspects related tomanagement
of complex, highly-distributed transactional database sys-
tems in a heterogeneous cloud environment is application
of well-known ACID (Atomicity, Consistency, Isolation
and Durability) rules, in particular its consistency rule.
Furthermore, it is crucial to preserve ACID rules without
degrading the key features of the cloud platform: scal-
ability, availability and reliability [1, 2]. The higher the
number of replicas in the cloud environment, the more
difficult is to achieve a desired degree of data consistency
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in Cloud Database Management System (CDBMS). Main-
taining all the replicas simultaneously up-to-date, results
with significant degradation in performance, as well as
increased number of unsuccessfully executed transactions
in the entire distributed Database Management System
(DBMS) [3, 4]. However, all these mentioned problems
are exactly in accordance with the Brewer’s CAP (Con-
sistency, Availability, Partition-Tolerance) theorem [5, 6]
claiming that in a distributed environment it is not pos-
sible to achieve all three of the key features simultane-
ously, and thus give guarantees on consistency, availability
and network partitioning of a highly-distributed system.
Thus, in order to achieve targeted system performance
and contracted Quality of Service (QoS) of Data as a Ser-
vice (DaaS)/Database as a Service (DBaaS) launched from
the cloud platform, it is possible to achieve only two of
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three selected properties [5]. Since network partitions in
a distributed environment are common and logical, the
application of this theorem in practice results in a com-
promise between two remaining properties: consistency
and availability. Realizing that the unavailability of a ser-
vice in cloud environment is in fact unacceptable since
it affects its basic functionality, thus consistency prop-
erty is left open for further consideration and rationing
in accordance with the dynamic changes of system, user
requirements and other relevant cloud DBMS environ-
mental factors.
Standard strategies for preserving and managing the

consistency of a highly-distributed transactional database
in a hybrid cloud environment were analyzed and dis-
cussed in “Standard strategies for consistency manage-
ment of a highly-distributed transactional DBMS database
in cloud environment” section of this paper, in order to
achieve the main goal of undertaken research dynamic
and adaptive consistency management of the entire dis-
tributed system. The effects of application of proposed
novel consistency management strategy or advanced Rose
Tree Based Consistency (R-TBC) model approach are
thoroughly observed and analyzed specifically for energy
sector companies, collaborating within heterogeneous
hybrid cloud sharing common highly-distributed transac-
tional database.

Standard strategies for consistencymanagement
of a highly-distributed transactional DBMS
database in cloud environment
In order to achieve a primary goal of dynamic con-
sistency management for transactional DBMS within a
highly-distributed cloud environment, extensive research
of the current state of domain was conducted, includ-
ing existing standard models and strategies for maintain-
ing consistency with the application in distributed envi-
ronments [7–9]. Regarding consistency management of
distributed database systems, several fundamental consis-
tency models exist, including: Strong [10], Weak [11] and
Eventual Consistency (EC) [12] models, as well as other
variations of weak consistency model (casual, monotonic
reads/writes, session, and so on). Strong Consistency or
Linearization is the strongest consistency model. Each
operation must appear committed immediately, and all
clients operate over the same valid data state. Strong Con-
sistency leads to a high-level consistency system, but it
compromises scaling by decreasing availability and net-
work partition tolerance. Although Strong consistency is
the ideal requirement for transactional DBMS, it deeply
compromises horizontal-scalability which is very impor-
tant property of highly-distributed cloud environments
since it enables higher throughput and replication of data
across distinct database nodes [10]. Weak Consistency
model, as the name implies, weakens the consistency of

distributed database system. It states that a read operation
does not guarantee the return of the latest value written
[11]. The most commonly used model in cloud environ-
ment is actually the Eventual Consistency model which is
half-way a Strong consistency model and a Weak consis-
tency model. It states that all replicas gradually become
consistent and tend to converge to the same data state if no
write operation occurs. This means that all user inquiries
or requests addressed to a database become consistent
only after some time has passed. While this convergence
process runs, it is possible for read operations to retrieve
an older version instead of the latest one [12].
In this regard, at the very beginning of this research

the conventional strategies for consistency management
of DaaS/DBaaS services were considered and thoroughly
examined, including the Classic [6], Quorum [11, 12] and
Tree-Based Consistency (TBC) [13, 14] strategy, then fur-
ther explored the possibilities for generalizing these exist-
ing standard approaches and strategies, with potential for
their improvements.
In the Classic strategy or approach [6] for consistency

management of a highly-distributed CDBMS environ-
ment, one replica node (master or root - usually the
environment controller) is selected to be responsible for
communicating with all other replica nodes and notifying
them of the latest system updates. Thus, the root node is
responsible for monitoring the execution and distribution
of update operations to all replicas nodes of the environ-
ment. It means that all replicas must be up-to-date, before
the next read operation of the distributed database data
is started with its execution. Consequently, this increases
the response time of the system or DaaS/DBaaS ser-
vice. The first layer of replicas and direct descendants
of the root node will result in a reduction in workload,
since they only process issued write/update operations of
the distributed database. Conversely, the secondary layer
of replica nodes will result in an increase in the work-
load volume, since all read (but also write) operations of
the distributed database are forwarded directly to these
nodes.
Figure 1 illustrates an example of the execution of

read (‘Read’, R) and write (‘Write’, W) operations within
the Classic consistency management approach for dis-
tributed cloud DBMS environment. According to the
Classic model [6], the data value is not returned and for-
warded for use to the next read or write operation, until
all replicas of the distributed environment return the same
value. This means that when the execution of update oper-
ation on the distributed database is required, then all
replicas of the environment must be up-to-date in order
for the next request to be taken into consideration and
released for the execution within the system. Figure 1
shows the general principle of the Classic consistency
management approach, on the example of the execution
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Fig. 1 Standard approach for consistency management - an example of the execution of read and write operations within the Classic approach [13]

of write (‘Write’, W) and read (‘Read’, R) operations within
the distributed environment. The presented cluster con-
figuration consists of six (6) replica nodes, along with the
primary node or root replica. The entire established dis-
tributed environment of replica nodes is managed by a
controller - a special node that performs, among other
multiple functions, forwarding requests issued by system
users to the root node (root) or its successors depending
on current requirements and the degree of synchroniza-
tion of the entire distributed environment [6, 13]. In this
way, implemented replication within distributed environ-
ments based on the Classic strategy supports a Strong
consistency model [10].
In practice, the Classic approach [6, 10] proved to

be very suitable for serving distributed applications that
include a lot of read-only (RO) operations and a small
number of write (RW) operations. Thus, only in these
cases, the system shows satisfactory response time and
overall performance, which is not the general case with
the Classic approach and represents one of its major
disadvantages.
The next standard approach or strategy for consistency

management of a highly-distributed CDBMS environ-
ment is the Quorum replication [11, 12], which is based
on the consensus quorum. In this approach, received
user requests are processed through an established replica
quorum, before the results of the request are returned
back to the system user. The quorum Q is defined as the
group of the most nodes of the environment so that the
relation (Q > N/2) is valid, where N is the total number of
replicas (or nodes) and Q are the members of the quorum.

The general principle of this protocol or quorum repli-
cation is that all operations are processed and approved
by the most node replicas, members of the quorum Q,
before returning the results to the end user, thus giving
guarantees of access to the latest updated data items of
CDBMS.
The main algorithm for implementation of the Quorum

consistency model [13] is based on allowing the client to
update any of the replica(s), and then this same data or
replica update information is passed on and distributed
in the background to other replica nodes, using so-called
gossip protocol (based on the principle of "gossip spread-
ing"). Since uncommitted updates can arrive at different
replicas in different order of operations, this requires the
implementation of an effective conflict-resolution mech-
anism that may occur during the execution of operations.
Thus, during the actual voting of the quorum members, a
decision can be made only when the majority of the mem-
bers of the elected quorum agree with a certain decision.
Accordingly, a distributed system based on the Quorum
consistency management model [13] requires more than
half of the replicas of the members (servers) to complete
read or write operations, before the distributed database
data items are available for the execution in the next read
or write operation, as shown in Fig. 2. Also, it is impor-
tant to note that there is no specifically designed and
selected primary or secondary replica in Quorum-based
systems. Namely, each replica can operate as a primary,
and read or write operations are periodically sent to each
replica node of the established distributed environment,
for the execution and further synchronization. In this
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Fig. 2 Standard approach for consistencymanagement - an example of the execution of read and write operations within the Quorum approach [13]

way, implemented replication within distributed environ-
ments based on the Quorum strategy supports a Weak
consistency model [11, 12].
Also, it is important to note that the Quorum approach

shows a better response time compared to the Clas-
sic approach, specifically in applications and distributed
systems that perform a large number of write (RW) oper-
ations [13]. However, the requirement for obtaining the
consent or quorum consensus from all included replicas,
when executing each individual DB operation, can signifi-
cantly slow down the overall system performance and thus
increase the response time of the DaaS/DBaaS services.
To achieve a degree of the Eventual Consistency

[12] in cloud environment, most of today’s commer-
cial DaaS/DBaaS solutions use the Quorum protocol or
strategy for maintaining and preserving data consistency
of distributed database. However, the Quorum protocol
proved to be unsatisfactory and in most scenarios results
in a significantly longer response time comparing to the
Classic protocol. With detailed elaboration of this model
and research of its applications, it was concluded that
using the most exploited model for consistency man-
agement and preservation cannot provide necessary and
sufficient levels of the consistency for entire distributed
system. This is especially manifested through often con-
flicting situations of multiple user queries and requests
addressed to a CDBMS, as well as evident inaccuracy and
invalidity of data affected by the same issued queries [12].
Conversely, the TBC approach [13, 14] provides opti-

mized performance for a highly-distributed transactional

database in cloud environment, and also a significant
advantage over other conventional approaches (Classic,
Quroum) [6, 11] for managing and preserving the con-
sistency of a distributed system. TBC is a structural,
tree-based approach that promotes an adaptive model
in which the consistency changes dynamically through-
out the TBC tree and actually declines from a Strict or
Strong [10] to a Eventual Consistency [11, 12] manifested
on the leaves of the tree. This leads to the concept of a
more advanced model in the form of so-called “visible”
or Apparent Consistency (AC) as a necessary and suffi-
cient degree of synchronization of all replicas and related
nodes of the transactional cloud DBMS database. From
the side of the end user of a cloud web application or
DaaS/DBaaS service based on cloud transactional DMBS,
“visible” consistency is quite sufficient since the highest
levels or layers, i.e. synchronized database replicas are
always consistent with a complete, integral transactional
cloud database. The end user, in fact, does not even know
about the temporary inconsistency of invisible nodes or
layers of replicas of the distributed environment. This is
primarily because it remains hidden in the lower parts of
the entire system hierarchy with replicated nodes. This
temporary inconsistency is automatically and procedu-
rally processed throughout background synchronization
technique.
In practice, it is shown that maintaining the consis-

tency of the cloud environment, using the TBC approach,
is determined mostly by the number of replicas in the
system, but also by delays in communication links and
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Fig. 3 Standard approach for consistency management of a highly-distributed environment - an example of the execution of read and write
operations within the TBC approach [13]

the overall system workload. As can be seen from Fig. 3,
within the TBC approach for consistency management of
the distributed environment, all paths that replicas use to
communicate with each other and propagate user requests
with update operations are defined and established first.
Also, one of the nodes is designated as the primary or root
node of the environment. In particular, upon receipt of a
request with read or write operations over data items in
the distributed database, a replica should send a notifica-
tion to its own and assigned subset of replica nodes. Thus,
upon receipt of a request with update or write (‘Write’, W)
operations over some data items Y, the root node noti-
fies its immediate (or direct) descendants i.e. child nodes
in the TBC tree structure, in order to update their own
replicas or assigned copies of distributed CDMBSwith the
same values of data items Y. Replicas proceed with the
execution of these updates, and upon completion of oper-
ations send a confirmation or ‘ACK’ to the root node or
primary replica of the environment, on successfully com-
pleted update operations on data items Y. After that, the
next read or write operations are taken into consideration
and further execution within the distributed environment,
as shown in Fig. 3.
Regarding the execution of the user requests with read

(‘Read’, R) operations over data set Y, only the upper lay-
ers of the TBC tree are referred, i.e. the primary replica
(root node) or set of its immediate (direct) successors, and
returned the value of the requested data items Y to the
end user. Thus one of these nodes (descendants) sends

an acknowledgment ‘ACK’ to the root node or primary
replica of the environment, to inform it on the success-
fully completed updates over data items Y, as the same
update operations are propagated throughout the TBC
tree. This is a signal to the primary node that it can return
the requested values of data items Y back to the end user,
and that the requested data is guaranteed to be consistent.
All subsequent write operations require the root node to
notify its immediate successors again in order to complete
the write operations. Read operations are not propagated
through the TBC tree, but are retained or executed at the
first two (highest) levels or layers of the tree (root node
and first descendants), so it is guaranteed return of con-
sistent and valid data. Specifically, at these highest levels
of TBC tree, guarantees are given for the Strong or Strict
consistency [10] on data items of the replicated CDBMS
in cloud environment. Therefore, a faster system response
time is expected when it comes to read operations, and a
slightly slower response time for write operations on data
items of the distributed database.
Results show that the TBC approach has much better

response time when compared to the other two leading
conventional approaches (Classic, Quorum), regardless of
the various relevant performance factors of the entire
cloud environment, such as: the arrival rate of issued oper-
ations in the system, read-write (RO/RW) distribution
ratio of operations, variations in targeted data selection,
database size, etc. Also, the TBC approach reduces the
interdependency between replica servers of the entire
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cloud and highly-distributed heterogeneous database sys-
tem, which results in a shortened response time of cloud
database, while generally maximizing the performance
of launched user applications and services. Furthermore,
application of the TBC approach causes a significant
decrease of so-called “Inconsistency Window” (IW) as
the key characteristic concerning consistency manage-
ment of a highly-distributed system [13]. Finally, surveys
in the relevant literature [14, 15] show that maintaining
the consistency of cloud environment with the application
of TBC approach is determined not only by the num-
ber of system replicas but also delays on communication
links and overall system or network load. Therefore, in
order to reduce the effect of replica servers interdepen-
dency on overall system performance, TBC sets a limit
on the maximum number of allowed “children” for each
replica server or “parental” node within the TBC tree
structure of entire distributed environment. It is necessary
to take into account the fact that increasing the num-
ber of “children” per replica server requires each “parent”
node to wait until all its “children” complete their cur-
rent updates on copies or assigned partitions (fragments)
of distributed cloud database. This, in effect, means that
in the TBC approach replica servers are interdependent
relating execution of write operations (RW) or updates
on the cloud database, which certainly has a signifi-
cant impact on overall system performance and launched
DaaS/DBaaS services. Consequently, this fact promotes
the Modified TBC (MTBC) approach [13, 14] that is
designed specifically to reduce the InconsistencyWindow
(IW) of the distributed transactional DBMS in cloud envi-
ronment. Thus, using the MTBC approach the effect of
the IW for entire distributed cloud system is practically
minimized.
Furthermore, a detailed analysis of Performance Eval-

uation Metric (PEM) [16] for highly-distributed transac-
tional CDBMS as well as thorough identification of key
PEM network parameters were conducted, and then the
role of these parameters in maintaining the consistency
of cloud database for all three conventional approaches
(Classic, Quorum, TBC/MTBC). Since Classic and Quo-
rum strategies have not shown sufficient performances
in managing and preserving consistency but also the
other PEM parameters of highly-distributed transactional
DBMS in cloud environment, a further research is focused
exclusively on TBC strategy or Tree-Based Consistency
approach for managing and preserving the consistency of
cloud transactional database.

Development of advanced strategy for consistency
management of highly-distributed transactional
database
The existing TBC approach proposed in [13–15] rep-
resents one of the most advanced standard approaches

for managing and preserving the consistency of a highly-
distributed transactional database. It provides the neces-
sary and sufficient guarantees on data consistency as well
as high performance of the entire cloud environment. This
approach is based on the construction of the TBC tree
of consistency as optimally organized structure of replica
nodes for the entire cloud environment. Thus, the consis-
tency dynamically changes throughout the TBC tree, and
actually decreases from the Strong consistency [6] on the
upper layers to the Eventual consistency [12] that is evi-
dent on the leaves of the tree. This results in introducing
a new and advanced consistency model-so-called “visible”
or Apparent Consistency (AC). Also, the TBC approach
is designed specifically for network environments, taking
into account the PEMmetrics and relevant factors or net-
work parameters while in the same time reducing the
interdependency and necessary communication between
replica nodes. But most importantly, the TBC approach
preserves and maintains the cloud transactional database
in a continuously consistent state. Taking into account
the specifics of the TBC approach, the implementation
must be performed with the application of a wide set
of different tools and complementary mechanisms, pro-
tocols, algorithms, etc. in order to achieve the targeted
levels of AC for CDBMS. TBC approach with data cat-
egorization ensures dynamic management and rational-
ization of consistency across the entire CDBMS, with a
degree of variation of this property depending on business
needs, transactional workload, network bandwidth, type
of transactions, ABC data categories [17], and many other
identified PEM factors [16].
As already mentioned, the TBC approach [13–15] has

a significantly better response time than conventional
consistency management approaches (Classic, Quorum),
regardless of the arrival rates of user requests, the ratio
of read-write operations, variations in data selection and
preference, database size, and other PEM network fac-
tors. In this regard, it is very important to identify relevant
environmental factors that affect the overall performance
of the system, but also the construction of TBC tree.
Thus, when propagating an update operation within dis-
tributed database, several PEM network factors of cloud
DaaS/DBaaS service are taken into account, including:
disk update time, replica node workload, network work-
load, bandwidth and network reliability, link speed, net-
work traffic and many others. These factors are especially
taken into account during the construction of TBC tree
with replica nodes for cloud highly-distributed environ-
ment and generally play the most important role in this
process.
In this way, the levels or degrees of consistency within

TBC tree are variable and in direct correlation with the
dynamic changes of the relevant PEMnetwork parameters
[16] of the entire environment. This means that a change
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in the environment is the cause of a change in the degree
of consistency within the TBC tree. Therefore, the consis-
tency levels of the cloud DBMS represent a real reflection
of the actual state and parameters for the formed cloud
transactional database environment. Also, the PEM envi-
ronmental parameters determine the level of consistency
for the transactional cloud database items. It is impossible
for entire database to have high degree or level of con-
sistency on data items if certain preconditions or most
important environmental factors are not satisfied. There-
fore, the possible lack of consistency of the distributed
database first should be addressed at the root of the prob-
lem - key PEM factors or performance parameters of the
transactional DBMS cloud. Therefore, lower levels of con-
sistency indicate that something has changed or degraded
in the structure and organization of the entire cloud net-
work, the number of nodes or quality of server replicas
like reliability, hardware characteristics, etc., then quality
and speed of network connections, average percentage of
packet loss, degree of network congestion, user require-
ments in the form of an unplanned, highly increased input
transactional load, etc.
In particular, it should be taken into account that the

cloud infrastructure is usually built using heterogeneous
systems and network components, which leads to a great
diversity of embedded systems, data formats and transfer
standards, communication protocols, etc. Also, it is often
the case that some communication links are slower or
unreliable, while other parts (or segments) of the network
are much faster. Therefore, in some parts of the cloud
heterogeneous network, there may be more frequent bot-
tlenecks and congestion occurrences, for example due to
heavy loads in network traffic, and thus the formation
of the requests queues with write/update operations on
distributed database and likewise. On some other parts
of the cloud network, there may be periodical outages,
e.g. communication links or server units (or even clus-
ters of replicas), which all together lead to an increase
in response time and consequently decrease the perfor-
mance of a DaaS/DBaaS service and entire distributed
system. This degradation in the performance of the cloud
transactional database or DaaS/DBaaS service has a very
significant impact on the strategy of maintaining the
consistency of a highly-distributed cloud DBMS envi-
ronment. The proposed advanced R-TBC/RTA approach,
which represents an improvement and extension of the
existing standard TBC approach, solves a number of
these mentioned problems. This is primarily because it
is designed for application within highly-distributed, net-
worked environments and its intensive exploitation of
advanced hierarchical data structures such as Bayesian
BRT Rose tree [18–20] within entire cloud environment.
Therefore, the proposed advanced R-TBC/RTA approach
takes into account and relies on the foundation of the

PEM network metrics with the most relevant network
parameters, which is more discussed and analyzed in
“PEM metric for managing the structure of the R-TBC
tree with replica servers of cloud environment” section.
Thus, this advanced approach achieves minimal perfor-
mance degradation while maintaining the desired degree
of consistency for transactional cloud DBMS database and
highly-distributed heterogeneous network [21–23].
Standard TBC approach is based on the application

of the Modified Dijkstra (MD) Shortest Path (SP) algo-
rithm, with a limitation to a maximum number of two
children for each single node of the final tree structure.
The application of the MD SP algorithm for the construc-
tion of TBC tree is based on search for the shortest path
between server replicas of the environment. The problem
of the shortest path in the weighted interconnection graph
means the search for the path between the two selected
vertices with the lowest weight (i.e. weight coefficients).
The algorithm detects the shortest path from a specific
vortex, denoted as 1, to all other vertices, denoted as 2,3...n
in the graph G. Modified Dijkstra algorithm is imple-
mented in the main control node of the environment, and
shows a rather satisfying performance within the standard
TBC tree consistency management approach.

Hierarchical data structures in the TBC/R-TBC tree
construction process
Formed binary TBC tree of “visible” consistency is shown
as an infused and illusory data structure, since it does
not usually reflect the real state and inherent struc-
tures and models contained in the background data sets.
Usage of the Bayesian tree structure model based on the
Bayesian Rose Tree (BRT) model and hierarchical clus-
tering [18–20], with an arbitrary number of nodes chil-
dren in the whole structure, results with the formation
of an optimized structures. Limitation with the num-
ber of allowed children for parent node is similar as in
the process of constructing the TBC tree of consistency.
Produced data models are with much greater likelihood
of representation of analyzed data sets and with bet-
ter distribution in the search space. In this paper, an
advanced Rose Tree approach (R-TBC/RTA), based on
the R-TBC model of consistency and intelligent parti-
tioning of highly-distributed transactional database in a
hybrid cloud environment, is proposed and presented as
an improvement compared to the existing consistency
strategies.
Figure 4 shows comparison of the two leading models of

hierarchical clustering - Bayesian Hierarchical Clustering
(BHC) Binary model and Bayesian BRT Rose Tree model.
It is very obvious that Bayesian hierarchical structure is
optimized, better distributed in the search space, with bet-
ter utilization of memory and other computing resources
and capabilities, and with a much smaller resultant set
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Fig. 4 Binary hierarchical data structure (left) vs. BRT Bayesian Rose Tree structure (right) for the same synthetic data set [20]

of generated partitions of the final Rose Tree, comparing
to Binary BHC. In general, research [20] shows that the
resulting partition sets in the BHC and the BRT models
significantly differ in size, in most applications and sce-
narios of their implementation. Thus, the first and funda-
mental difference between the existing, standard TBC and
proposed advanced R-TBC approach for managing and
preserving consistency of transactional cloud database
is based on the exploitation and application of different
data structures in the execution of the TBC/R-TBC tree
construction process.
The next essential difference, but also improvement in

the proposed advanced R-TBC, relates to the steps or
sequence of the RTA Rose Tree Algorithm for the con-
struction of R-TBC consistency tree, as well as the domain
of its application. Specifically, as can be noticed in the
standard TBC MD SP-based approach [13, 14], the con-
struction of the TBC tree primarily refers to cloud replica
servers, taking into account PEM network performance
factors [15, 16] and calculated metrics for each of the
included replica servers in the final tree-structure. On
the other hand, advanced R-TBC approach, based on the
Rose Tree and the agglomerative RTA algorithm [18],
constructs hierarchical tree structure not only with the
replica servers of entire cloud environment, but also with

the cloud transactional database and all its fragments
(partitions). Thus, there is a certain parallelisam between
the standard TBC/MTBC and the proposed advanced
R-TBC/RTA consistency approach since both perform
construction process of the fundamental tree structure
with main difference in scope of the process, as shown on
upper part of Fig. 5. However, the standard TBC approach
does not deal with the partitioning and data placement
(distribution) of generated partitions of the transactional
database across the replica servers of the environment, as
shown on lower part of Fig. 5. This actually represents the
main advancement of the proposed advanced R-TBC/RTA
consistency management approach. Relating the standard
TBC/MTBC consistency approach, the process of parti-
tioning and autoscaling of the cloud DBMS environment
is only generally introduced. Thus, the existing, standard
TBC approach is limited to the formation of the TBC
tree with the replica servers of the cloud environment,
but it does not deal with cloud transactional database
and its fragments. On the other hand, advanced R-TBC
approach, based on the Rose Tree and the agglomerative
RTA algorithm [18], constructs hierarchical tree structure
not only with the replica servers of entire cloud environ-
ment, but also with the cloud transactional database and
all its fragments (partitions).
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Fig. 5 Proposed advanced R-TBC/RTA approach and specific
sequence of steps in the process of construction the R-TBC Rose Tree
of consistency for a highly-distributed transactional database in a
hybrid cloud environment

Generally, main differences between BHC Binary Hier-
archical Clustering and BRT Bayesian Rose tree struc-
tural data model are presented in the Table 1. It is
concluded that BRT data model shows significant advan-
tages comparing to standard BHC datamodel - used in the
most database applications and todays implementations
[18, 20].

The process of construction the R-TBC tree using the
proposed advanced R-TBC/RTA consistency management
approach
The following Fig. 5 presents the main contribution of
the research presented in this paper, the advanced R-
TBC/RTA approach with specific sequence of steps in the
process of constructing the Rose Tree of consistency, as
well as the differences and improvements in relation to

the standard TBC (Tree-Based Consistency) approach for
managing and preserving consistency of the transactional
cloud database:
Furthermore, the resulting R-TBC Rose Tree includes

not only cloud DBMS data items but also includes other
components of the entire environment (for example: ser-
vices and application software, organizational units, and
so on). In general, the proposed advanced R-TBC/RTA
approach and the Rose Tree extend to the entire cloud
heterogeneous hybrid environment as a unique and rep-
resentative hierarchical network model of all its internal
structures and elements. It is alreadymentioned that there
is a certain parallelism between the standard TBC/MTBC
and the proposed advanced R-TBC/RTA approach, as
shown on Fig. 5. More precisely, both approaches have
in common the first three steps related to the construc-
tion and formation of the Rose Tree which consists of
replica servers of the cloud environment. Obviously, dif-
ferent algorithms were used, but the essence of the process
is identical in both approaches.
At the very beginning, an interconnection graph G (V,

E) representing the entire distributed cloud environment
is prepared, and then PEM metric of performance factors
(pf ) is calculated for each of the replica servers [16]. The
obtained PEM metric represents the input for the next
step - root node selection for the final structure of the
R-TBC tree. This node represents the replica server with
the highest total for obtained PEM performance metrics.
Therefore, it is very logical for this node to be selected as
the root node of the R-TBC tree. After that, going through
the other algorithmic steps and the main program loop,
leads to the formation of the final R-TBC tree with replica
servers of the cloud environment. This results with for-
mation of a binary tree of replica servers (in the case
of the TBC/MTBC algorithm) and a BRT tree [20] with
replica servers of the same environment (in the case of the
advanced R-TBC/RTA algorithm). With completing first
three steps and exiting the main loop ends the process of
executing the standard TBC/MTBC algorithm.
On the other hand, the R-TBC/RTA algorithm [18]

continues its execution, and this is precisely the main
enhancement of this innovative approach for managing
the consistency of the heterogeneous cloud environment
of a highly-distributed transactional database. Specifically,
the following three steps perform construction and for-
mation of the Rose Tree of consistency for transactional
database and all its partitions, generated as a result of
the process of intelligent partitioning and the applica-
tion of the Graph Partitioning Algorithm - Multidimen-
sional Data Clustering (GPA-MDC) algorithm, as shown
on Fig. 5. The generated partitions and clusters of data
serve again as input to the RTA, and are building blocks of
the final Rose Tree of consistency for the cloud database.
Upon completion of the construction and formation of
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Table 1 Main differences between BHC Binary Hierarchical Clustering and BRT Bayesian Rose tree structural data model

BHC Binary Hierarchical Cluster-
ing structure

BRT Bayesian Rose Tree structure

Applicability of structure specialized general

Quality of data structure poor/good very good

Emptiness of data structure supported not supported

Basic DML operations supported supported

Number of children maximum two arbitrary

Degree of node (in/out) limited unlimited

Number of subtrees mainly two (left/right) zero or many

Height of tree log2 N (where N is the number of
nodes)

logM N (where M is the order of
tree)

Data order ordered unordered/ordered

Order criteria single zero or multiple

Resulting partition set large small

Performance requirements performed when data is loaded in
the RAM

performed when data is loaded in
the disk and/or RAM

Execution time logarithmic exponential

Scope of appliance mostly in coding and code opti-
mizations

in DBMS internal structures and dis-
tributed environments

the R-TBC tree for the transactional database, the pro-
cess of distribution the generated cluster-partitions (CP)
over the replica servers of the cloud environment is ini-
tiated, shown as the last step on sequence diagram of
Fig. 5. In simple terms, mapping and integration of appro-
priately formed Rose Tree occurs, for replica servers of
the cloud environment and a transactional database. This
leads to the construction of the final R-TBC consistency
tree, which is a specific hierarchical structure, composed
of both replica-servers of the entire environment with
assigned responsibilities for partitions (or fragments) of
the transactional database, as well as other essential com-
ponents of the cloud environment.
Thus, the third important difference between the exist-

ing, standard TBC and this novel, advanced R-TBC/RTA
approach consists in the execution process of the RTA
algorithm [18] that have been substantially expanded
with additional steps and thus functionally improved.
After forming the R-TBC tree of consistency with replica
servers of the environment, through the first three (3)
steps of the algorithm, start the process of cloud database
intelligent partitioning with Multidimensional Data Clus-
tering (MDC), as shown on Fig. 5. In this step, first
ABC categorization of data on sets of different consis-
tency levels takes place [17]. At the same time comes
horizontal data partitioning with generating larger range
partitions, and then vertical partitioning by key attributes
or data dimensions. This phase of the process is also called
dimensionalization of cloud database. Thus, Hybrid data
partitioning strategy that consists precisely of the efficient

combination of horizontal with vertical partitioning, with
the application of MDC, is introduced. More specifically,
the intelligent data partitioning is based on horizontal cuts
or cross sections of the R-TBC tree structure and then
grouping of related table data from a backbone of highly-
distributed cloud database. That produces partitions or
fragments (rose subtrees) of groups i.e. clusters of related
data. Vertical cuts or sections of these generated rose sub-
trees are then applied on groups of related and bound
data, thereby generating sets of smaller (rose) subtrees
or fragments (partitions) with even stronger intercon-
nections, common attributes, and other features of the
covered data groups. The MDC technique facilitates the
management of complexity of the CDBMS environment
by introducing dimensioning of contained data, based on
previously defined relevant dimensions or data categories.
Also, multidimensional clustering of background CDBMS
data further shortens the execution time of queries
and issued transactions over CDBMS data and con-
tributes to improving the overall performance of the cloud
environment.
So, this whole process results in the formation of cluster-

partitions or rose subtrees (rosettes) that are linked or
merged together by the hierarchical clustering into the
construction of the R-TBC tree for the transactional cloud
database. Finally, at the last phase of the process (see
Fig. 5), the distribution of cluster-partitions of formed
R-TBC tree across replica servers of the environment
is performed simply by overlapping the corresponding
rose trees (replica servers vs. database). Logically, the
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conclusion is that clusters of replica servers of a higher
degree of PEM performance factors correspond to rose
trees or CDBMS cluster-partitions of higher degree of
consistency. There are many other advantages of the inno-
vative R-TBC/RTA approach, but these three described
differences represent the main improvements to the exist-
ing, standard TBC approach.
Pseudocode 1. presents steps within the sequential dia-

gram with key phases in the process of executing the RTA
algorithm for construction of the Rose tree of consistency
on which advanced R-TBC/RTA approach is based (see
Fig. 6):
In the sequence of steps of the RTA algorithm for the

construction of optimal structure of hierarchical cluster-
ing performed on given data set i.e. the R-TBC Rose Tree
(as it is shown in Pseudocode 1.), used parameters are
defined as follows:

• D = {x(1), x(2), . . . , x(n)} represents an input set of
data items or nodes of the initial graph of the
interconnection G that is modeled into the Rose Tree
R of the optimal hierarchical structure,

• k represents the total number of clusters or
individual rose subtrees Ti identified in the input data

set D and generated as a result of applying a specific
GPA-MDC intelligent partitioning algorithm. This
completes the first phase of initialization of the entire
construction process of the R-TBC tree,

• pM or p(x|θ) represents a probability model of the
Rose Tree and (input probabilities) of clusters of rose
subtrees,

• pH or p(θ |β) represents a priori probability of a
hyperparameter beta for adjusting and tuning the
final structure of the Rose Tree, as well as maximizing
the probability of the R-TBC/RTA model,

• The main part of the algorithm is a recursive process
with the operation of merging with the greatest
probability model ratio pM for selected rose subtrees
Ti and Tj into an optimally merged (inter)structure of
the resulting rose subtree Tm, with the optimal value
of a hyperparameter beta probability pH for adjusting
and tuning the final structure of the R-TBC tree,
using appropriate merge operation: 1. join, 2.
absorption, 3. collapse,

• The final result of the algorithm is constructed Rose
Tree with the optimal hierarchical structure Tm
(T/RT ).

PSEUDOCODE 1: RTA( D, pM, pH )

# Algorithm is performed over data items or nodes of interconnection graph G,
# taking into account probabilities and structure of the Rose Tree model

1: k � n; # Initialization of total number of rose subtrees Ti
2: Ti � {x(i)}, where i=1,2,...,n;

3: Tm � {}; # Initialization of merged R-TBC tree
4:

5: while k >1 do

6: # Select pair of rose subtrees (Ti,Tj) for merge operation m
7: findRsubtrees(D, (Ti,Tj));

8:

9: # Calculate the Tree model ratio of the relevant probabilities
10:

11: L(Tm)=
p(leaves(Tm)|Tm)

p(leaves(Ti)|Ti)p(leaves(Tj)|Tj)
;

12:

13: # Perform merge operation m with the greatest probability model ratio pM
14: mergeRsubtrees((Ti,Tj), Tm, pM, pH); # automatic context based merging
15:

16: # Delete processed rose subtrees Ti and Tj
17: deleteRsubtrees((Ti,Tj), D);

18:

19: # Decrease the counter of clusters
20: k � k - 1;

21:

22: end

23:

24: # Return constructed and optimally merged R-TBC Rose Tree
25: return Tm;
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Fig. 6 Rose Tree Algorithm for construction of the R-TBC consistency
tree with replica servers of heterogeneous transactional cloud DBMS
environment

Input into the RTA represents clusters or rose subtrees
generated as a result of execution of the GPA-MDC intel-
ligent partitioning algorithm on a transactional database.
Pseudocode 2. presents general steps of MDC algorithm
used within GPA process of intelligent partitioning of
background data set of a highly-distributed cloud database
and the R-TBC/RTA approach for construction of the final
Rose Tree (see Fig. 7).
In the sequence of steps of the GPA-MDC intelligent

partitioning algorithm (as it is shown in Pseudocode 2.)

for the construction of the MDC multidimensional cube
of the R-TBC tree, used parameters are defined as follows:

• C = {
x(1), x(2), . . . , x(n)

}
represents the initial set of

data items i.e. nodes of the interconnection
hypergraph H of a highly-distributed cloud database,

• k represents the total number of input clusters by the
ABC-categorization process with Hybrid partitioning
of transactional cloud database,

• D = {
d(1), d(2), . . . , d(m)

}
represents a vector of

relevant dimensions or key data attributes of
hypergraph elements (initialization phase and
dimensioning of CDBMS) with the priority of
dimensions in accordance with their position,

• f (minDT) is a goal function of the minimum of
distributed DT transactions while preserving the
predetermined degree of “visible” apparent
consistency AC for transactional CDBMS (input into
the main loop of algorithm with MDC),

• MDCij represents the multidimensional cube with
sorted elements of resulting clustering process,

• The main part of the algorithm is a recursive process
with the operation of merging or clustering selected
clusters Ci and Cj (orMDCi−1,j−1) into optimal
cluster Cij (orMDCij) with the greatest value of goal
function fc,

• The final output or the result of the GPA-MDC
intelligent partitioning algorithm is optimally
constructed MDC multidimensional cube R-TBC of
the rose tree for transactional cloud database.

Therefore, a summary of the main differences between
existing, standard TBC and novel, advanced R-TBC/RTA
approach, with proposed improvements for managing
and preserving the consistency of transactional database
within a hybrid cloud environment includes the following:

• exploitation and application of different data
structures in the process of constructing the
TBC/R-TBC consistency tree,

• approach in modeling the entire heterogeneous cloud
environment including the replica servers and other
components of the entire cloud environment as well
as virtual organizations, with a primary focus on
modeling of highly-distributed transactional cloud
database into the structure of the R-TBC consistency
tree,

• extending the sequence or execution steps of the
RTA algorithm for constructing the R-TBC
consistency tree, including intelligent partitioning of
cloud database with MDC and, finally, optimized and
balanced distribution of generated cluster-partitions
(CPs) across replica servers of heterogeneous hybrid
cloud environment.
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PSEUDOCODE 2: GPA-MDC( D, D, fminDT )

# Algorithm is performed over data items or nodes of interconnection hypergraph H
# relating a highly-distributed transactional cloud DBMS database

1: k � n; # Initialization of total number of clusters k
2: Ci � {x(i)}, where i=1,2,...,n;

3: Dj � {d(j)}, where j=1,2,...,m; # Initialization of data dimensions vector
4:

5: # Goal function for merge operation as minimum distributed transactions
6: # with predefined level of apparent consistency for CDBMS data items
7: fc � goalFunc(D, D, minDT, AC);
8:

9: # Initialization of PEM metrics (price) for merging each pair of clusters
10: Pij � ∅, where i=1,2,...,n, j=1,2,...,m;

11:

12: while k >1 do

13: # Calculate the price (minDT) of merging between each pair
14: # of elements from selected clusters Ci and Cj (or MDCi−1,j−1)
15: Pij � calcPrice(fc, (Ci, Cj)) or calcPrice(fc, (Ci, MDCi−1,j−1));

16:

17: # Select the best scored pair of clusters (Ci, Cj) for merge operation m
18: findRsubtrees(D, Pij, (Ci, Cj));

19:

20: # Perform merging of selected clusters into optimal cluster Cij
21: # within the final MDCij multidimensional cube
22: mergeRsubtrees((Ci, Cj), Cij) or

23: mergeRsubtrees((Ci, MDCi−1,j−1), MDCij);

24:

25: # Sort elements of resulting cluster into MDC cubes
26: # in accordance with predefined dimensions of elements
27: MDCij � sortMDCelements(D, (Cij, MDCij));

28:

29: # Delete processed clusters Ci and Cj from initial clusters set C
30: # for the construction of the final MDC cube of the R-TBC tree
31: deleteRsubtrees(C, (Ci, Cj));

32:

33: # Decrease the counter of clusters
34: k � k - 1;

35: end

36:

37: # Return optimally constructed MDC R-TBC Rose Tree cube
38: return MDCij;

The final output or the result of the GPA-MDC intelli-
gent partitioning algorithm is optimally constructedMDC
multidimensional cube R-TBC of the Rose tree for trans-
actional cloud database.

Final construction of the R-TBC tree of consistency for
transactional database in a hybrid cloud
The process of construction of the R-TBC tree of consis-
tency for transactional cloud database consists of several
key phases including following: initialization of data sets,

initialization of clusters, background data dimensioning,
and multiphased (multidimensional) hierarchical cluster-
ing until formation of the final structure of the Rose
Tree, as shown on Fig. 8. So, the beginning of the for-
mation of the R-TBC tree starts from the available heap
of data of the background cloud database, visually rep-
resented by hypergraph H, which is first clustered into
groups of related data sets or rose subtrees (rosettes).
In addition, through the classification and categorization
process, the data included in these rose subtrees (and
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Fig. 7 GPA-MDC algorithm of intelligent partitioning for transactional
database in a heterogeneous cloud environment

corresponding DB tables) are labeled with the appropriate
categories of ABC-consistency set [17]. Thus, in the clus-
ters initialization phase, ABC-data categorization takes
place producing the clusters of different degrees of guar-
anteed consistency. This takes into account the fact that
not all transactional database data require the same level
and guarantee of consistency as they do not have the
same importance, volume, scope or price. In this way, the
advanced R-TBC model allows the rationalization of the
degree of consistency by individual replica servers, that

is, the system nodes and other components. Therefore,
the adaptive and dynamic rationalization of consistency
implies primarily ABC-data analysis, which is carried out
by different categories, data type, price and importance
(priority) of the background CDBMS data as well as the
other relevant factors. This process finishes with setting of
flags with different degrees of consistency depending on
the results of the performed ABC-analysis and data cate-
gorization. These flags refer primarily to different types of
consistency (partial and complete), but also different data
categories (A, B, C).
Further, the Hybrid partitioning process first performs

horizontal partitioning of related clusters into appropri-
ately recognized data ranges, and then vertical parti-
tioning into dimensioning background CDBMS data (see
Fig. 8). Thus, strongly linked columns and attributes, or
even entire relational tables that exactly match these sets
or ranges of related data, group together, and then form
higher-order clusters.
With the primary objective of reducing the volume of

distributed transactions, the advanced R-TBC approach
with the implementation of the RTA algorithm [18]
applies an efficient combination of horizontal and ver-
tical partitioning of a transactional database, within an
innovative intelligent partitioning technique for cloud
DBMS environment. Also, this technique includes proac-
tive organization of data within a back-end transac-
tional database to maximize performance and balance
the overall workload of the system and the entire cloud
environment.
In the later stages of the RTA process, a multistage

MDC of generated clusters is performed through all rec-
ognized, relevant data dimensions, taking into account the
goal function and respecting the predefined probability
model of the Rose Tree. It is important to note that in the
process of executing MDC, objects and data items that
are highly interconnected are placed in the same cluster
(rose subtrees) or joint partition within the cloud network
and the background transactional database. These objects
can be: replica servers or nodes of the cloud environment
and other network and hardware infrastructure, software
applications, schemas and tables, and other objects of
the background CDBMS, but also virtual organizations
(VO), associated organizational structures and units, etc.
Thus, in the particular scenario under consideration (this
research is focused on scenario for energy companies),
everything that constitutes a conceptual hybrid cloud can
be part of the R-TBC tree construction and an input for
the partitioning process.
Further, based on the dataset requirements of the cloud

environment, as well as the connectivity of these objects
represented by the appropriate network hypergraph,
the objective function is defined, which is to be opti-
mized when performing the partitioning process. In this
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Fig. 8 Process of constructing the R-TBC tree of consistency for transactional database in a hybrid cloud environment

particular case, this is a minimization of the number of
distributed transactions DT when executing user queries
and requests, in order to shorten the response time of the
launched DaaS/DBaaS service(s) and increase the overall
system performance while maintaining the required adap-
tive level of consistency of the background CDBMS data
items.
Figure 8 shows the whole process of construction of

the R-TBC tree of consistency for the transactional cloud
database, including all the key phases in the process of
executing the GPA-MDC algorithm.

After the RTA algorithm [18] is executed over the ini-
tial set of CDBMS data items and recognized ABC-data
clusters [17], as the final result of all this processing is
formation and establishment of the optimal structure of
the Rose Tree for the entire R-TBC hybrid cloud DBMS
environment, as shown on Fig. 8.
Upon completion of the main RTA process, the R-TBC

cloud environment controller initiates the auxiliary pro-
cesses for distribution of just (re)constructed Rose Tree
with all generated data clusters i.e. intelligent partitions
and related DB fragments across entire heterogeneous
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cloud environment. This actually means initialization
(or refreshing) of all included replica servers and net-
work components, leading to the actualization of the
final Rose Tree consistency structure for the entire cloud
environment. It is important to note that the controller
periodically initiates these repartitioning and redistribu-
tion processes throughout the structure, especially in
cases of heavy system bursts and decrease or significant
drop in system performance and launched DaaS/DBaaS
services [24, 25]. Therefore, the formed Rose Tree is of the
optimal dynamic consistency, properly partitioned, with
classified and grouped related data items, appropriately
dimensioned, connected and constructed in accordance
with the given procedure, and finally supported by the
backbone cloud infrastructure and replica servers of the
whole environment. Also, the complete tree can be con-
sidered as a largeMDCmultidimensional cube which rep-
resents specific infinitesimal structure, customized and
optimized for executing Data Manipulation Language
(DML) operations and user queries, thus efficiently servic-
ing of input RO/RW transactional workload.
It is important to emphasize that in the particular case

and in the considered scenario of optimal organization
or arrangement of the cloud environment for companies
of energy sector, the application of the RTA hierarchi-
cal clustering algorithm [18] based on the R-TBC tree is
very suitable as well as reasonable, since it significantly
reduces the number of finally generated partitions and
clusters (or rose subtrees) on the order of 103 and mul-
tiple times (relative to other hierarchical structures and
algorithms [19]).

Organization of a hybrid cloud environment
according to the rose treemodel using proposed
advanced R-TBC/RTA approach for energy sector
companies
It is important to note that proposed advanced R-
TBC/RTA approach is implemented in the main con-
trol node of the entire cloud environment - controller
which manages the whole structure of the rose tree
and performs its periodic reconstruction in accordance
with the requirements of the cloud environment. This
dynamic and adaptive management of the environment,
through the control node, allows the formation of a lay-
ered and virtual hierarchical structure of the R-TBC tree
which consists of replica servers originating from different
organizations, in order to create a consolidated working
environment (for energy sector companies, in this case
scenario) [24]. Thus, the highest layers of the tree struc-
ture are replica servers of P2P ring, with the highest
PEM performance factors, because they have the highest
degree of ownership and responsibility over the partitions
of a highly-distributed transactional database. There-
fore, the key aspect in preserving the consistency of the

conceptualized highly-distributed, hybrid cloud environ-
ment is the tree structure of the whole environment
with contained virtual units, replicas, and other cloud
components [25, 26]. Each virtual organization (VO)
refers to a separately formed R-TBC consistency tree,
as illustrated on the Fig. 9. By periodical construc-
tion and reconstruction of the R-TBC tree, the con-
troller performs creation of a dynamic tree with the
partitions or fragments of a distributed transactional
database, taking into account the relevant PEM factors or
parameters of the network metrics for the entire cloud
environment.
In order to achieve high-performance of a hybrid cloud

environment, it is necessary to form it having in mind
the relevant PEM factors while simultaneously perform-
ing the fragmentation or partitioning [26] of the back-
ground transactional database. In this way, replica nodes
of the environment will be assigned to corresponding
responsibilities to the database fragments (or partitions)
depending on their degree of importance and posi-
tion, i.e. priority in the R-TBC Rose Tree of the entire
cloud environment. PEM metrics discussed in following
section were used to evaluate the replica servers per-
formances as well as other crucial components of the
environment [21–23].

PEMmetric formanaging the structure of the R-TBC
tree with replica servers of cloud environment
In order to enable the controller to dynamically manage
the R-TBC tree structure, it is necessary, on a regu-
lar basis, to perform the calculation of key performance
parameters for the entire cloud environment and based
on that continuously reconstruct (or restructure) the R-
TBC tree. Thus, the R-TBC tree becomes an image or
a reflection of the internal state of the cloud environ-
ment, in terms of relevant PEM network parameters [21].
PEM metric for highly-distributed environment include
the following key factors:

• Workload of replica servers,
• Reliability of replica servers,
• The time required for forwarding messages,
• Network reliability,
• Network bandwidth,
• Network load,
• etc.

After the calculation of the current value of each of
these factors, the controller performs an analysis of the
impact of PEM factors on the total preservation of consis-
tency for cloud distributed transactional database. Con-
troller performs calculation of the PEM metric, based
on n performance factors, according to the following
formula:
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Fig. 9 The R-TBC tree structure of replica nodes for public companies or virtual organizations of the energy sector [21]

PEM =
n∑

i=1
(pfi ∗ wfi) (1)

, where pfi is i-th performance factor, andwfi is i-th weight
factor, positive or negative real number.
After calculating the PEM metric and performance

evaluation factors [21, 27], the environment controller
prepares the R-TBC consistency tree according to the
obtained results and parameter values using proposed
approach.
As can be seen on the Fig. 10, in the proposed advanced

R-TBC/RTA approach, the system is organized as a tree,
where the controller manages entire cloud environment

and primary replica is the root node. The tree defines a
path that is used by the replica servers to propagate the
update requests to other replicas (leaves).
The process of constructing the R-TBC consistency tree

consists of the following mandatory steps:
(i) Preparing the interconnection graph: The con-

troller first prepares a weighted interconnection graph G
(V, E) where V represents a set of vertices, and E denotes a
set of edges with assigned weights (or weight coefficients).
Each replica server represents a vertex in the intercon-
nection graph, and is therefore a member of the set V.
All direct connections between replica servers are consid-
ered as edges, and so are members of the set E. A separate

Fig. 10 Communication connections of different components within the R-TBC tree structure [15]
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matrix of performance factors for included replica servers
is then prepared and calculated for any performance fac-
tor considered. It is important to emphasize that the
obtained graph G represents so-called weighted graph of
interconnections, with weight factors indicated. Figure 11
(a) illustrates an example of a graph of interconnections
in the process of constructing the R-TBC consistency tree
by applying the RTA algorithm [18] for highly-distributed
cloud environment.
(ii) Selection of root for the R-TBC consistency tree:

Based on the PEM metric obtained for all replica nodes
in the environment, the controller selects the root node of
the tree that will be the primary replica server. A primary
server is a server that maintains direct connection with

the end user. The controller then calculates the PEM value
for each replica server based on the performance fac-
tors (pf ) of the engaged replica servers, combining them
together with the corresponding weight factors or coeffi-
cients (wf). As a result, the controller selects a root server
or replica node that has the maximum PEM evaluation
metric value.
Figure 11 (a), (b) illustrate weighted graphs of net-

work interconnections for various performance factors,
with pf1 representing time delay and pf2 path reliability.
Figure 11 (c), (d), (e) and (f ) illustrate the performance
factors or adjacency matrices as well as the totals for the
same example. Each matrix represents (weighted) graph
G, which is a square n x n matrix. Both matrices are sym-

Fig. 11 PEM metrics calculation in a process of construction the R-TBC tree of consistency with replica servers of heterogeneous cloud environment
[15]
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metric. The cost of crossing the path from node Vi to
node Vj is denoted as a member (i, j) of the presented
matrices. In this case, the ‘price’ of the matrix specifically
refers to network performance factors [21]. Node 5, which
has optimal performance (in this case, the least delay on
the path and the highest reliability of packet transmission
along the same path, as well as other relevant PEM factors)
was selected as the root node of the R-TBC consistency
tree.
It is important to point out that the value 0 (often the

symbol ∞) in the adjacency matrices indicates that there
is no connection or link between the two replica servers
or nodes in the interconnection graph, or that it is a con-
nection of the node with itself i.e. cyclical bond (which
does not exist in the specific case under consideration). As
mentioned above, node 5 was selected for the root node
since this node or replica server had the least delay (10ms)
and the highest path reliability (0,99).
(iii) Preparation of R-TBC consistency tree: After

selecting the root node by the environment controller,
preparation of consistency tree from the weighted inter-
connection graph is started. The controller implements
the RTA algorithm [18] for constructing a rose tree,
which is an improvement comparing to the standard TBC
approach. The root of the tree will then be selected as a
single source or initial node of the tree. The RTA algo-
rithm will then find the appropriate (best) path (or inter-
connection) to each replica server, to maximize system
performance, with all paths or interconnections together
forming a consistency tree. The algorithm also allows an
arbitrary number of children or offspring for the parent
node, since the R-TBC tree structure is based on Bayesian
Rose Tree which has no limit on the maximum number of
children allowed (as it is the case with Binary TBC tree).
Further, the advanced RTA algorithm allows the use of
negative weight coefficients (which is a difference compar-
ing to the original TBC algorithm). Figure 11 (c) and (d)
illustrate the performance factors used for the same exam-
ple, where pf1 is a time delay and pf2 is a path reliability.
Also, weight factors wf1 = -0,02 and wf2 = 1 were used in
this example [21].
It is important to note that the RTA algorithm [18]

for construction and optimization of the R-TBC tree
shows good results of expected performances for the
entire environment and cloud DBMS TBC replication
structure. Also, it operates with a relatively small num-
ber of parameters, so it is easy to implement. This is
because this algorithm is originally designed to man-
age consistency of a highly-distributed network envi-
ronments, which is not the case with the other two
standard consistency management algorithms (Classic,
Quorum). Also, the RTA algorithm does not require sig-
nificant computing capacities and resources to execute the
program code.

This algorithm, as mentioned above, is embedded and
implemented in the main node of the entire structure -
the controller. For the purposes of processing of a request
(or issued query), the user first addresses this node, under
whose control a complete further procedure of executing
transactions is automatically performed and supervised.
Obviously, end user has no any knowledge of the execu-
tion processes in the background. Further, the controller
has well-defined procedures in the case of some hazard
situations like server failures or, even, crashes of parts of
the R-TBC tree. It also manages autoscaling processes, i.e.
the expansion and contraction of the entire cloud DBMS
environment.
Figure 11 shows adjacency matrices for two perfor-

mance factors and weighted network interconnection
graphs in the PEM metrics calculation process for con-
structing the R-TBC consistency tree using an advanced
RTA algorithm for a highly-distributed, cloud environ-
ment [18, 21]. As mentioned before, each factor has an
appropriate performance weight factor which indicates
the importance of this factor in relation to the others as
well as its impact on overall system performance. The
top layers of tree with replica servers show the best per-
formance which decreases by moving down the tree to
the leaves. In this way, the main objective of conducted
research is achieved, that is dynamic and adaptive man-
agement of consistency as well as other performance
factors of a highly-distributed transactional CDBMS envi-
ronment.
Finally formed and constructed R-TBC consistency tree

represents Bayesian Rose Tree, shown on the Fig. 12
(right). On the left side of Fig. 12 is shown an intercon-
nection graph of a distributed system, and on the right is
a final structure of the R-TBC consistency tree - node 5
of the initial interconnection graph is selected for the root
node of the final R-TBC consistency tree:
It is important to note that the controller as the main

component and key node of the entire environment has
always an up-to-date copy of the integral cloud database
as well as all the necessary information or knowledge of
the nodes and other components of entire distributed net-
work, thus having a complete picture of the general state
of the heterogeneous cloud database system.
Essentially, PEM factors are assigned as weight coeffi-

cients to the hypergraph nodes (as shown on the Fig. 11)
and thus participate in the goal function calculation dur-
ing the phase of partitioning and redistribution of the
MDC cluster-partitions (CPs) across replica servers of
the entire cloud DBMS environment [21, 28]. The usual
timing of the repartitioning and redistribution operation
of the CDBMS (or the restructuring of the R-TBC Rose
Tree of consistency) is immediately at the beginning of
the workday, before starting normal, regular workflows
(in this case within energy companies, sharing common
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Fig. 12 Initial interconnection graph of highly-distributed system and final R-TBC consistency tree with the application of advanced RTA Rose Tree
Algorithm [21]

working cloud DBMS environment, with built-in secu-
rity options for the SLA service agreements of the cloud
service network) [25, 26].

Analysis of experimental results
Experimental setup in this case scenario, relating the pro-
posed advanced R-TBC/RTA approach, included imple-
mentation of a simple cluster with six replica servers of
standard configuration, connected into cloud configura-
tion as previously shown on Fig. 12 (right). Designed
within simulation environment of MathLab framework,
CDBMS is based onMySQL Server and highly-distributed
transactional database for energy sector companies,
resided on Amazon S3 (Simple Storage Service) open
platform. MySQL supports several consistency model
configurations [11, 14, 15] which is important require-
ment for this particular experimental setup. In each
node i.e. replica server of established cluster configura-
tion are implemented all three conventional approaches
(Classic, Quorum, TBC/MTBC) as well as proposed
advanced R-TBC/RTA approach for consistency man-
agement of a highly-distributed transactional database.
A simulation program was developed to generate user
requests with transactions sent to the database servers
of the cloud DBMS. Default input workload ratio with
read/write operations (RO/RW) is 70:30. In this exper-
iment were used other ratios of read/write operations,
as well. An arrival of a transaction requests is con-
trolled by a Poisson distribution. The requests with
queries contain basic DML SELECT/INSERT operations
related to the tables of the common highy-distributed
database of energy sector companies. Which tables and
columns are going to be used depend on generated
user queries and contained read/write opeations. These

queries relate to data on energy consumption, user pay-
ments and debts, actual price of products and ser-
vices, discounts, energy package reservations, subscrip-
tions, etc. The goal is to make it easier for the end
user to access the necessary data through the con-
stantly available online cloud service and thus increase
customer satisfaction with provided services and prod-
ucts. Therefore, a special testing DaaS/DBaaS cloud ser-
vice is launched on the Java platform and represents a
shared user program. Response time is the metric used
in conducted experiments. The average time a server
spends on processing an operation is calculated by sum-
ming the disk and CPU time, and then multiplying this
amount by the appropriate percentage of read or write
operations.
As already mentioned, six replica servers with a dis-

tributed, replicated database and assigned partitions, as
well as a configured application server (AS) have been
allocated and connected to the main implemented cloud
DBMS database on the Amazon S3 platform. On the
same servers, DaaS/DBaaS application or test service was
launched, which users directly access, depending on the
location and availability of the same. Therefore, users and
other clients of the DaaS/DBaaS service access the same
by using a standard browser and making active connec-
tion with AS application and DB replica servers, in the
background.
The simulation environment and the conceptual archi-

tecture of cloud DBMS for the performed experiment
and validation of the results as well as the effectiveness
of the proposed advanced R-TBC/RTA approach for pre-
serving the consistency of the environment are shown in
the following Fig. 13 which illustratesMathLab simulation
environment:
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Fig. 13 Simulation environment and cloud DBMS architecture for the performed experiment and validation of the results of the proposed
advanced R-TBC/RTA approach

For the purpose of this experiment, a special simulation
program was used to manage the read and write requests
sent to the replicated CDBMS database. Each read request
is represented by a query (SQL SELECT) against the
MySQL database, and each write request is also rep-
resented by an insert operation (SQL INSERT) into a
background, replicated transactional database. Thousands
of user requests are generated by random distribution
and then sent to the database to determine the average
response time.
The final results for the proposed advanced R-TBC/RTA

approach are compared to the results relating conven-
tional approaches (Classical, Quorum, TBC) formanaging
and preserving the consistency of a highly-distributed
transactional database, presented by A.Islam and S.Vrbsky
[15]. As experimental results demonstrated the basic
TBC approach shows the best overall results in com-
parison to the other conventional approaches (Classic,
Quorum) for maintaining the consistency of the dis-
tributed transactional CDBMS, taking into account vari-
ous aspects and relevant network parameters. As already
mentioned, this is primarily because the TBC approach is
specifically designed for highly-distributed network envi-
ronments, which is not the case with the two other
approaches. Although it might be assumed otherwise,
Quorum approach has shown the worst total performance

due to the mandatory participation of all active replica
servers (quorum) in each operation of reading and writ-
ing data items (RO/RW) of the distributed transactional
CDBMS. Also, the Classic approach [10] has not shown
satisfactory performance when it comes to the transac-
tional cloud DBMS database. Specifically, in the Classic
strategy or approach for maintaining the consistency of
a highly-distributed CDBMS environment, one replica
node (master or root) is responsible for notifying all other
replicas of the system on recent and actual updates. In
this way, all replicas must be updated before starting
the next read/write operation (RO/RW) within the dis-
tributed transactional database. Therefore, according to
this approach, each write/update operation (RW) requires
the participation of all replica nodes of the environment.
Obviously, this increases the response time of the system
or DaaS/DBaaS service(s). In addition, only a few direct
descendants of the root node i.e. the ‘first-level replicas’
will result in a reduction of the response time, specifi-
cally for the update operations. On the other hand, there
will be an increase in workload on the root node, as well
as its direct descendants, since all the read/write oper-
ations (RO/RW) issued by the end-user using selected
DaaS/DBaaS service are directed exactly to these nodes.
This is very reasonable taking into account the fact that
they are the most potent and updated nodes of the entire
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cloud environment. Therefore, the Classic approach [10]
and related strong consistency management model are
recommended for databases that are rarely updated, i.e.
proanalytical, because it requires a long time until all
replica servers of the entire environment become com-
pletely synchronized.
Furthermore, the main disadvantage of the Quorum

approach or strategy for maintaining the consistency
of DaaS/DBaaS services and system implementations is
exactly the application of the eventual EC consistency
model [11, 12]. As already mentioned, it represents a vari-
ation of the weak model and thus guarantees that the data
of the back-end distributed database will only ultimately
become consistent. This means that the service database
ultimately converges to Strong consistency, but most of
the time database items report Weak consistency. How-
ever, the Quorum-based and Eventual Consistency mod-
els give poor guarantees, and in a large number of data
accesses, accuracy and consistency in fact cannot be guar-
anteed. All of this contributes to the increased generation
of conflicts among user requests and queries issued to
the highly-distributed cloud database, which is certainly
not a satisfactory solution within heterogeneous, highly
exploited and multi-user cloud environments. Therefore,
the Quorum approach cannot be an adequate solution
when it comes to consistency management of highly-
distributed database systems, as in this particular case
conceptualized and formed hybrid cloud of consolidated
transactional database for energy sector companies [21].
The Classic and TBC approaches use a centralized entry

point for write requests, while the Quorum approach uses
a distributed entry point. As it is known, a centralized
entry point could represent the ‘bottleneck’ of the system.
Therefore, the calculation of system load for each of the
conventional approaches (Classic, Quorum, TBC/MTBC)
as well as the proposed advanced R-TBC/RTA approach
will be performed in this section on the basis of related
mathematical models.
When considering server load, it consists of two parts:

load for disk operations and load due to CPU usage. It
is assumed that the load due to disk operations actually
represents the amount of time it takes to execute and com-
plete the disk operations, while the load due to the use
of the processor represents the time that the CPU has to
spend to perform a read or write operation.
In the Classic approach, the primary server processes

the input load with database write operations, while the
secondary servers handle the load with read operations.
Obviously, every secondary server must take part in every
write operation in order to maintain a Strong consis-
tency of highly-distributed CDBMS data, so the following
equations apply [10, 15]:

PL = (DWP + CWP) ∗ W (2)

SL = (DWS + CWS) ∗ W + (DRS + CRS) ∗ R (3)

, whereDWP is disk write time for primary server, andDWS
for secondary server. Analogly, DRP is disk read time for
primary server, andDRS for secondary server. Also,CWP is
CPU usage time for write operation on primary sever, and
CWS is CPU usage time for write operation on secondary
server. Similarly,CRP is CPU usage time for read operation
on primary server, and CRS is CPU usage time for read
operation on secondary server. Furthermore, the primary
server load is denoted as PL, while secondary server load is
denoted as SL.The number of write operations is denoted
asW, while the number of read operations is denoted as R.
In the Quorum approach, servers participate in pro-

cessing and executing each request with read and write
operations on distributed database data items, while each
replica server or node can take a role as the primary server
with the remaining replica servers serving as secondary
servers, so the following equations apply [11, 12, 15]:

PL = (DWP + CWP) ∗ W + (DRP + CRP) ∗ R (4)

SL = (DWS + CWS) ∗ W + (DRS + CRS) ∗ R (5)

In the TBC tree based approaches, the root node pro-
cesses the input load with database write operations, while
the direct descendants or immediate children of the root
node processes the load with read operations. Each direct
descendant of the root must participate in each writing
operation to preserve the consistency of the TBC-based
system. If we denote the primary or root node load as PL
and the load of intermediate children or secondary nodes
of the system as SL, then the following equations apply
[13–15]:

PL = (DWP + CWP) ∗ W (6)

SL = (DWS + CWS) ∗ W + (DRS + CRS) ∗ R (7)

Table 2 shows the measured values as a result of con-
ducted experiments for each of the standard consistency
management approaches (Classic, Quorum, TBC), includ-
ing the primary and secondary replica servers, as well
as for the proposed advanced R-TBC/RTA approach,
taking into account 70:30 ratio of read and write opera-
tions as input workload. On average, for Classic approach,
the primary server spends approximately 26 ms (25,8) per
operation ((31 + 55) * 0,3), and the secondary servers
spends approximately 24 ms (24,1) per operation ((15 + 7)
* 0,7 + (21 + 8) * 0,3) = (15,4 + 8,7) = 24,1 ms, respectively.
It is concluded that the Classic approach actually performs
better when write requests represent a low volume (as it is
case in this particular experimental setup). On average, all
servers based onQuorum approach consume above 30ms
per operation, much more than Classic approach. Specifi-
cally, the Quorum technique is better to write requests in
subsequent read or when write operations are high.
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Table 2 The processing times (ms) of read/write operations (70/30 R/W ratio) for standard approaches (Classic, Quorum, TBC) and
proposed advanced R-TBC/RTA approach for maintaining the consistency of the cloud DBMS

Classic approach Quorum approach TBC approach R-TBC/RTA approach

Read Write Read Write Read Write Read Write

Primary Disc - 31 16 17 - 16 - 11

server /

root CPU - 55 23 25 - 30 - 16

replica

Secondary Disc 15 21 16 17 18 19 9.3 9.6

replica

servers CPU 7 8 16 18 12 11 4 6.1

Average Primary - 25.8 27.3 12.6 - 13.8 - 8.1

operation replica:

processing Avg 25.8 39.9 13.8 8.1

time(ms) (Disc+CPU)

Secondary 15.4 8.7 22.4 10.5 21 9 9.3 4.7

servers:

Avg 24.1 32.9 30 14

(Disc+CPU)

Finally, the TBC approach performs better in most
cases than the previous two approaches (Classic, Quo-
rum) regardless of the input workload. On average, a
TBC tree root spends 14 ms (13,8) per operation ((16
+ 30) * 0,3), and secondary replica servers spend 30 ms
per operation ((18 + 12) * 0,7 + (19 + 11) * 0,3) = (21
+ 9) = 30 ms, respectively. Finally, in this case scenario
and conducted experiment for the proposed advanced R-
TBC/RTA approach, results show that, on average, tree
root spends 8 ms (8,1) per operation ((11 + 16) * 0,3),
and secondary replica servers spend 14 ms per operation
((9,3 + 4) * 0,7 + (9,6 + 6,1) * 0,3) = (9,3 + 4,7) = 14
ms, respectively. On the basis of obtained data from per-
formed experimental analysis, it can be concluded that
Quorum servers spend significantly more time than other
considered approaches (Classic, TBC-based). So when the
write operations ratio is low compared to read opera-
tions (as in the experiment, the R:W ratio is 70:30), then
Quorum servers spend more time on average per oper-
ation (since every operation that is performed within a
Quorum-based system requires a consensus of all quorum
members). Also, considering the fact that this analysis
takes the average time to process operations, the arrival
rate of DB requests has no effect on the complete analysis
undertaken.
The results obtained prove that a unique, singular

entry point for a write operation (Classic, TBC-based
approaches) will not result in a ‘bottleneck’ scenario in a
system with 70:30 ratio of read and write operations, as
shown in the Table 2. Also, it can be concluded that the

proposed advanced R-TBC/RTA approach shows better
overall performances comparing to standard approaches
(Classic, Quorum, TBC) taking into account the fact that
it expands to entire cloud DBMS and not only to replica
servers of the environment.
Also, it is important to note that 70:30 ratio of read

and write operations is considered typical ratio for the
most data management applications. In the second exper-
iment, the effect of the percentage of read versus write
requests on the response time for the standard consis-
tency approaches (Classic, Quorum, TBC), as well as for
the proposed advanced R-TBC/RTA approach, is mea-
sured for read intense applications. For that purpose,
90:10 ratio of read and write operations is taken into
consideration and experimental runs were proceeded on
the basis of previously presented mathematical models. A
constant arrival rate λ = 0.1 is maintained for this experi-
ment, meaning there is a 10% chance a request will arrive
every 5 ms. Transmission time is taken for regular net-
work, meaning that up to 10% of the packets are delayed
due to network congestion.
Table 3 shows the measured values as a result of con-

ducted experiments for each of the standard consistency
management approaches (Classic, Quorum, TBC), includ-
ing the primary and secondary replica servers, as well as
for the proposed advanced R-TBC/RTA approach, taking
into account 90:10 ratio of read and write operations as
input workload. Measured values represent elapsed time
in milliseconds. On average, for the Classic approach,
the primary server spends approximately 8 ms (8,1) per
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Table 3 The processing times (ms) of read/write operations (90/10 R/W ratio) for standard approaches (Classic, Quorum, TBC) and
proposed advanced R-TBC/RTA approach for maintaining the consistency of the cloud DBMS

Classic approach Quorum approach TBC approach R-TBC/RTA approach

Read Write Read Write Read Write Read Write

Primary Disc - 28 17 18 - 12 - 8

server /

root CPU - 53 25 26 - 25 - 12

replica

Secondary Disc 17 18 17 19 17 15 8 7

replica

servers CPU 9 5 18 18 11 8 2 3

Average Primary - 8.1 28.8 4.4 - 3.7 - 2

operation replica:

processing Avg 8.1 33.2 3.7 2

time(ms) (Disc+CPU)

Secondary 23.4 2.3 31.5 3.7 25.2 2.3 9.9 1

servers:

Avg 25.7 35.2 27.5 10.9

(Disc+CPU)

operation ((28 + 53) * 0,1), and the secondary servers
spends 25,7ms per operation ((17 + 9) * 0,9 + (18 + 5) * 0,1)
= (23,4 + 2,3) = 25,7 ms, respectively. In this case, the load
on the primary server significantly decreased due to the
reduced volume of write operations which results in much
faster response time. On the other hand, due to increase
in load on secondary servers, the response time slightly
increased since secondary servers participate in process-
ing each request with read and write operations on cloud
DBMS.
On average, for the Quorum approach, the primary

server spends approximately 33 ms (33,2) per operation
((17 + 25) * 0,9 + (18 + 26) * 0,1) = (28,8 + 4,4) = 33,2
ms, and the secondary servers spends approximately 35
ms (35,2) per operation ((17 + 18) * 0,9 + (19 + 18) * 0,1)
= (31,5 + 3,7) = 35,2 ms, respectively. Generally, it is con-
cluded that the Quorum approach performs worse than
the other consistency management approaches because of
its higher response time in execution of read-only transac-
tions. Further results show that performance of the TBC
approach is better than the standard approaches. On aver-
age, a TBC tree root spends 3,7 ms per operation ((12 +
25) * 0,1), and secondary replica servers spend 27,5 ms
per operation ((17 + 11) * 0,9 + (15 + 8) * 0,1) = (25,2 +
2,3) = 27,5 ms, respectively. Finally, in this case scenario
with 90:10 ratio of read and write operations, performance
results for the proposed advanced R-TBC/RTA approach
show that, on average, tree root spends 2 ms per opera-
tion ((8 + 12) * 0,1), and secondary replica servers spend
approximately 11 ms per operation ((8 + 3) * 0,9 + (7 +

3) * 0,1) = (9,9 + 1) = 10,9 ms, respectively. On the basis
of obtained data from performed experimental analysis, it
can be concluded that Quorum servers spend significantly
more time than other considered approaches (Classic,
TBC-based). So when the write operations ratio is very
low compared to read operations (as in the experiment,
the R:W ratio is 90:10), then Quorum servers spend more
time on average per operation (due to requirement of the
quorum). In this case, proposed advanced R-TBC/RTA
approach shows 2-3x better response time comparing to
the standard consistency approaches (Classic, Quorum,
TBC) due to appropriate load balancing throughout the
tree structure of entire cloud DBMS.
In the next experimental setup, 50:50 ratio of read

and write operations is used representing write intense
applicational workload. In this case, R/W workload is
balanced which is especially suitable for TBC-based con-
sistency approaches and satisfactory performance results
in response time. Default network parameters were used
as in previous experimental runs. All measured values
represent elapsed time in milliseconds.
Table 4 shows the measured values as a result of

conducted experiments for each of the standard consis-
tency management approaches (Classic, Quorum, TBC),
including the primary and secondary replica servers, as
well as for the proposed advanced R-TBC/RTA approach,
taking into account 50:50 ratio of read and write oper-
ations as input workload. On average, for the Classic
approach, the primary server spends 49 ms per opera-
tion ((36 + 62) * 0,5), and the secondary servers spends
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Table 4 The processing times (ms) of read/write operations (50/50 R/W ratio) for standard approaches (Classic, Quorum, TBC) and
proposed advanced R-TBC/RTA approach for maintaining the consistency of the cloud DBMS

Classic approach Quorum approach TBC approach R-TBC/RTA approach

Read Write Read Write Read Write Read Write

Primary Disc - 36 18 19 - 19 - 13

server /

root CPU - 62 25 27 - 33 - 19

replica

Secondary Disc 14 28 18 19 17 22 7.2 13

replica

servers CPU 6 13 19 20 11 14 2 10

Average Primary - 49 21.5 23 - 26 - 16

operation replica:

processing Avg 49 44.5 26 16

time(ms) (Disc+CPU)

Secondary 10 20.5 31.5 3.7 14 18 4.6 11.5

servers:

Avg 30.5 35.2 32 16.1

(Disc+CPU)

30,5 ms per operation ((14 + 6) * 0,5 + (28 +13) * 0,5)
= (10 + 20,5) = 30,5 ms, respectively. In this case, it is
concluded that the Classic approach performs worse than
the other consistency management approaches because of
its higher response time in execution of write operations.
Also, the Quorum approach does not show satisfactory
performance results as the same servers are involved in
both the read and write operations. On average, for the
Quorum approach, the primary server spends 44,5 ms per
operation ((18 + 25) * 0,5 + (19 + 27) * 0,5) = (21,5 + 23) =
44,5 ms, and the secondary servers spends approximately
35 ms (35,2) per operation ((18 + 19) * 0,5 + (19 + 20) *
0,5) = (31,5 + 3,7) = 35,2 ms, respectively. Conversely, the
TBC-based approaches show much better results com-
paring to the standard consistency approaches. Further
results show that on average, a TBC tree root spends
26 ms per operation ((19 + 33) * 0,5), and secondary
replica servers spend 32 ms per operation ((17 + 11) *
0,5 + (22 + 14) * 0,5) = (14 + 18) = 32 ms, respectively.
Finally, in this case scenario with 50:50 ratio of read and
write operations, performance results for the proposed
advanced R-TBC/RTA approach show that, on average,
tree root spends 16 ms per operation ((13 + 19) * 0,5),
and secondary replica servers spend approximately 16 ms
(16,1) per operation ((7,2 + 2) * 0,5 + (13 + 10) * 0,5)
= (4,6 + 11,5) = 16,1 ms, respectively. So, it is obvious
that balanced read/write input workload ratio will result
in balanced distribution and processing time overall tree
structure. In this case, proposed advanced R-TBC/RTA
approach shows 2-3x better response time comparing to

the standard consistency approaches (Classic, Quorum,
TBC) due to appropriate load balancing and dynamic con-
sistency management throughout the entire CDBMS tree
structure.
In the next experimental setup, the response time of the

DaaS/DBaaS service is measured based on different clus-
ter configurations of input interconnection network graph
as well as various density of tree structure. Performance
results were carefully observed and measured relating
presented cluster configurations, as shown on Fig. 14.
The results obtained prove that a different density of

input tree structure for the interconnection graph plays
an important role in final performance of standard TBC-
based consistency approaches (TBC, MTBC), as well as
proposed advanced R-TBC/RTA consistency approach.
Different levels of density (high, medium, low) were
taken into account while measuring elapsed response time
in milliseconds. A typical data management application
70:30 read/write ratio was used in the experiment. As
expected, the response time increases as the density of the
tree increases [13].
On average, for standard TBC approach, the response

time of service ranges from 134 ms for the sparse tree, to
166 ms for the medium trees, to 227 ms for the dense tree,
as shown in the Table 5. Cluster configuration consists
of 6 nodes connected into heterogeneous hybrid cloud
DBMS environment. A sparse tree, as shown on Fig. 14
(b), results in a faster response time for the TBC approach,
but has fewer immediate children of the root node and
fewer updated replicas that are available for access by
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Fig. 14 Effect of tree density on standard TBC/MTBC and proposed advanced R-TBC/RTA consistency approaches in a hybrid cloud DBMS
environment

the client. Conversely, a dense tree, as shown on Fig. 14
(a), has a slower response time, but more updated repli-
cas available. On average, for the Modified Tree-Based
strategy or MTBC approach, the response time of service
ranges from 113 ms for the sparse tree, to 145 ms for the
medium trees, to 192 ms for the dense tree. Since MTBC

approach has a restriction on maximum allowed number
of children for parent node, there is a higher rate of occur-
rence of conflicting operations over CDBMS data items. It
is concluded that MTBC approach reduces total amount
of response time for DaaS/DBaaS service due to restric-
tion on maximum allowed number of children for parent

Table 5 Average response time (ms) of DaaS/DBaaS service with various density of tree structure using standard 70/30 ratio of
read/write operations for standard TBC/MTBC approaches and proposed advanced R-TBC/RTA approach for maintaining the
consistency of the cloud DBMS

TBC approach MTBC approach R-TBC/RTA approach

Average response High density tree-structure 227 192 144

time of DaaS/DBaaS Medium density tree-structure 166 145 102

service (ms) Low density tree-structure 134 113 76
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node, but it increases the chances of possible conflicts
and increases the complexity of addressing those conflicts.
This is specifically the case for high and medium density
tree structures, as shown on Fig. 14 (a), (c) and (d). Finally,
on average, for the proposed advanced R-TBC/RTA con-
sistency approach, the response time of service ranges
from 82 ms for the sparse tree, to 104 ms for the medium
trees, to 149ms for the dense tree, as shown in the Table 5.
From obtained experimental results, it is concluded that
proposed advanced R-TBC/RTA approach provides a flex-
ible framework that allows fast adaptation to different
cluster configurations of input interconnection network
graph as well as various density of tree structure. Thus it
provides dynamic trading off the availability and consis-
tency while preserving optimal levels of the performance
and QoS of DaaS/DBaaS service delivered to the end user.
Finally, in the next conducted experiments, large num-

ber of issued transactions were processed, and specifically
the response time of the DaaS/DBaaS service as well as the
Inconsistency Window IW were carefully observed and
measured (in milliseconds). The first experiment measur-
ing read and write times show that the proposed advanced
R-TBC/RTA approach represents a significant improve-
ment comparing to standard approaches. Surprisingly,
the Quorum approach did not performed as expected.
According to Table 2, while the existing TBC approach
shows 2x-3x faster processing time compared to the Clas-
sic and Quorum approaches, the proposed R-TBC/RTA
approach improves the TBC approach for approximately

45%-55%, both on primary and secondary replica servers
(in average weighted time).
Regarding the TBC approach and its modification

MTBC approach, obtained average results from repeated
experiments relating actual Inconsistency Window are
shown on the Fig. 15. It is important to emphasize that
the Inconsistency Window IW [16] is the key PEM per-
formance factor that is in the focus of the overall analysis
of results when comparing standard vs. advanced consis-
tency management strategies. As already mentioned, the
MTBC strategy [13, 14] as well as the proposed advanced
R-TBC/RTA strategy are designed precisely with the goal
to significantly reduce the Inconsistency Window as a
key PEM factor of the entire distributed CDBMS system.
Thus, the response time of the system was precisely mon-
itored and measured in order to demonstrate the overall
effects on system induced by decreasing the length of the
Inconsistency Window IW (in milliseconds).
As shown on Fig. 15 the Classic approach has the Incon-

sistency Window of approximately 270 ms (268), while
the Quorum approach has IW factor with the length of
380 ms, much longer than Classic (due to requirement for
quorum replica set). On the other side, the TBC approach
has very short Inconsistency Window of 144 ms, while
the MTBC approach has IW factor with the length of
109 ms. The experiments demonstrate that the Modified
TBC approach MTBC can noticeably reduce the length of
the system IW Inconsistency Window, but on the other
side significantly increase the chances for generating and

Fig. 15 Comparison of standard approaches (Classic, Quorum, TBC/MTBC) and proposed advanced R-TBC/RTA approach relating Inconsistency
Window IW
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causing conflicts over data items and different replicas of
the environment, as well as the complexity of these con-
flict situations and their efficient resolutions. On contrary,
in this case scenario and conducted experiment relat-
ing proposed advanced R-TBC/RTA approach, results in
prove that this novel approach prevents occurrence of
conflicts among data items of cloud transactional database
as well as different replica servers of the entire cloud
environment. Also, having IW factor with the length of
approximately 60 ms (58), advanced R-TBC/RTA shows
improved performances for about 55% comparing to
Modified MTBC approach and for about 42% comparing
to standard TBC approach. This reduction of IW param-
eter using novel R-TBC/RTA approach is significant due
tominimized interdependency of replica servers within R-
TBC consistency tree. Based on the obtained results from
experimental analyzes, it is confirmed the high customiza-
tion and the complete justification of using the proposed
advanced R-TBC/RTA approach to maintain optimal lev-
els of consistency for data items of a highly-distributed
transactional cloud DBMS database, with application for
energy sector companies cooperating within common
heterogeneous cloud [21]. Also, this improvement in per-
formances is achieved due to the implementation of intel-
ligent partitioning of a highly-distributed transactional
CDBMS database, and then appropriate distribution of
data partitions across replica servers within entire cloud
environment.
Relating failure recovery, the proposed advanced R-

TBC/RTA approach has developed procedures for man-
aging network failures of certain components of the cloud
highly-distributed network. Managing failures ultimately
comes down to the reconstruction of the R-TBC con-
sistency tree. So if any replica server or communication
link fails within the established consistency tree, then the
responsibility for handling such a problematic situation is
taken over by the environmental controller [28]. As it is
already known, the controller maintains continuous com-
munication with the primary (root) replica of the R-TBC
consistency tree but also with the other replica servers
of the environment. The controller’s task is to keep the
R-TBC consistency tree valid and communication links
active. Also, it is responsible for managing the synchro-
nization processes of the transactional cloud DBMS. If the
primary (root) replica fails and the same server cannot
be restored in the short term, then the controller starts
the selection of the new root node for the R-TBC consis-
tency tree, based on the regularly calculated PEM metric
for replica servers of the environment. The server with
the highest PEM performance metric is selected for the
new root node of the consistency tree. Then, the con-
troller establishes the network connections of the R-TBC
tree and thus completely reconstructs it. Also, the inter-
connection graph is reconfigured with all available replica

servers, and thus successfully built using described proce-
dure. However, if some other replica servers or communi-
cation links fail within the R-TBC consistency tree, then
the controller first tries to communicate with the same
server or revive the network link. If this non-responsive
behavior continues, then the controller starts the proce-
dure of removing the same server and/or deactivating the
communication link from the existing R-TBC consistency
tree and immediately begins the process of reconstructing
it. The connection graph is then reconfigured without that
particular server or communication link and all servers
are informed about the new tree structure. In the event the
communication link is down, the controller can still com-
municate with the server via another link. The controller
will then reconfigure the connection graph including that
server and build the consistency tree.
From the aforementioned, it can be concluded that

the network quality, i.e. the loss of packages and traf-
fic congestion does not have a significant impact on the
efficiency and performance of the proposed advanced
R-TBC/RTA approach. Thus the R-TBC tree structural
approach shows much better performances for manag-
ing network failures compared to the standard approaches
of consistency management of transactional cloud DBMS
(Classic, Quorum). Network quality has a very large
impact on the response time of the Classic approach due
to regular synchronization procedures of the entire cloud
environment. Also, Quorum approach does not show
satisfactory performances in managing network failures
[28] due to the requirements on the quorum server set.
Coversely, the proposed advanced R-TBC/RTA approach
reduces the network and transactional failure risk due
to reduced interdependency among replica servers and
achieves high performances regardless of network load,
bandwidth and other performance factors.
Furthermore, the comparison of standard TBC/MTBC

approach and the proposed advanced R-TBC/RTA
approach performed in continuation of the experiment,
focused primarily on basic data structures exploited
within these approaches, i.e. Binary BHC and R-TBC Rose
Tree, also confirms these findings and conclusions. As it
is already mentioned, adopting the Bayesian tree structure
based on the BRT Bayesian Rose Tree model of hierarchi-
cal clustering [20], with an arbitrary number of node chil-
dren into the TBC tree structure, leads to the formation
of an optimized structures with much greater likelihood
of representation of the analyzed data sets. Experiments
show that Bayesian hierarchical structure is efficiently
optimized, better distributed in the search space, with bet-
ter utilization of memory and other computing resources
and capabilities, and with a much smaller resultant set
of generated partitions of the final Rose Tree. Also, the
resultant partition sets in the BHC and BRT models sig-
nificantly differ in size thus contributing to the BRTmodel
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preference over the BHC Binary model. This leads to a
very clear and obvious conclusion regarding overall per-
formance, applicability and primarily efficiency of the
two leading models of hierarchical clustering, the Binary
BHC and Bayesian BRT Rose Tree model. Consequently,
the results demonstrated limitation in application of the
standard TBC/MTBC approach based on BHC Binary
Tree model when compared to the proposed advanced
R-TBC/RTA Rose Tree model and novel consistency man-
agement approach. While TBC/MTBC data structure or
Binary TBC tree of consistency is very often forced and
illusory, the RTA data structure - Rose Tree of consis-
tency - is natural and easily found in various analyzed data
sets. Also, TBC/MTBC is more specific and limited to
replica servers, while R-TBC/RTA is designed for general
application within entire highly-distributed transactional
cloud DBMS environments. When observing the execu-
tion time of R-TBC/RTA algorithm, it shows an expo-
nential O(nk log n) complexity referring the entire cloud
environment, where k is the input set of clusters or rose
subtrees (rosettes), and n is a total number of data items
from initial data set D. On the other side, TBC/MTBC
Dijkstra algorithm executes with O(mn log n) complex-
ity, where m is a number of relevant performance factors,
and n is a total number of replica servers in distributed
system. Considering the fact that standard TBC/MTBC
approach is limited to replica servers while advanced
R-TBC/RTA approach relates to the entire cloud envi-
ronment, these complexities contribute to the prefer-
ence of the proposed advanced R-TBC/RTA consistency
approach for management of highly-distributed cloud
DBMS environments [21].
Obtained experimental results show that the proposed

advanced R-TBC/RTA approach and “visible” consistency
model, successfully handle input workload, distribute
and balance it across entire cloud replica servers and
thus achieve high performance levels and quality of ser-
vice QoS while maintaining dynamic data consistency.
This adapted quality of data QoD is achieved by relax-
ing and enforcing the consistency level on datasets as
needed and in accordance with real requirements of cloud
service users. Finally, all mentioned facts confirm that
the proposed advanced R-TBC/RTA approach represent
the reasonable choice for consistency management of a
highly-distributed transactional CDBMS database and
optimal model of hierarchical clustering for various data
structures and components within heterogeneous cloud
environment.

Discussion
By performing experiments, presented in the previous
section, and on the basis of obtained results, the work
hypothesis is successfully confirmed. Conclusions pro-
vide general picture related to the performance of the

examined leading approaches for managing the consis-
tency of highly-distributed transactional cloud DBMS
environment, as well as leading algorithms for hierarchical
clustering but also the efficiency of generated data struc-
tures (trees) using the appropriate models. Comparisons
were made between standard, conventional consistency
management strategies (Classic, Quorum, TBC) and the
advanced TBC-based strategies (MTBC, R-TBC/RTA),
along with comparing appropriate hierarchical cluster-
ing models, i.e. BHC Bayesian Binary and BRT Bayesian
Rose Tree model [20], in relation to their representation
in the analyzed data sets, degree of efficiency and opti-
mization as well as the scope of their application. The
obtained experimental results point to the fact that the
effects of the Inconsistency Window IW on distributed
system with the application of the MTBC approach are
minimized [14, 15]. The reason for this is significantly
reduced the interdependency of involved replica servers
within the highly-distributed transactional CDBMS envi-
ronment. On the other hand, as a consequence of this
improvement, there is an evident increase in generating
conflicts over data items and different cloud components
as replica servers owning assigned fragments or CDBMS
partitions. At the same time, this means increased com-
plexity in resolving the same conflict situations and con-
sequently searching for some more effective solutions.
Therefore, opportunities have been explored to further
improve the existing standard TBC and Modified TBC
(MTBC) approach, in the form of the proposed advanced
R-TBC/RTA approach, based on the optimized hierar-
chical structure of the Rose Tree of consistency for the
transactional cloud DBMS environment. By analyzing the
hierarchical clustering models (Bayesian Binary BHC and
Bayesian Rose BRT), summarized findings support the
conclusion that the BRT model of hierarchical cluster-
ing [18, 19] shows significantly better results and finds
much better quality hierarchical structures (i.e. rose trees)
than any other BHC algorithm (or its variations). This is
because the latter are based on the illusory and forced data
structure of Binary Tree which very often does not depict
the actual condition of the analyzed data sets and primar-
ily their internal structure with nodes and connections of
all included data items. Therefore, based on the under-
taken research can be concluded that the BRT model and
Rose Tree [20] are proven to represent optimal cluster-
ing and hierarchical structure model for most application
and modeling of background data sets within the highly-
distributed transactional CDBMS environment. This is
because they support inherent, the actual and already
contained, existing data structures in analyzed data sets.
Finally, the application of innovative RTA/R-TBC Rose

Tree Algorithm in the construction of CDBMS consis-
tency tree, based on the BHC Bayesian Hierarchical clus-
tering, shows significantly improved overall performances
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compared to conventional approaches (Classic, Quorum,
TBC/MTBC). Generally, the proposed advanced RTA/R-
TBC approach demonstrates a number of advantages over
the existing, conventional approaches for maintaining the
consistency of a transactional database within a hybrid
cloud environment. While the standard TBC approach
constructs minimum spanning tree of replica nodes by
running a Modified Dijkstra’s algorithm, the RTA/R-TBC
approach builds a multi-way tree by using a cluster-
ing algorithm. The research carried out in this paper
suggests that, using the proposed advanced R-TBC/RTA
approach to preserve and maintain the targeted levels of
dynamic (adaptive) consistency of the established hybrid
transactional cloud DBMS environment, the necessary
and sufficient consistency guarantees of the analyzed data
sets are achieved. Thus, the ultimate goal of undertaken
research is successfully reached by proving the hypoth-
esis that Eventual Consistency [11, 12] model does not
adequately satisfy the needs of end users of the cloud
environment for the accurate and consistent data of the
highly-distributed transactional CDBMS database, but
rather novel adaptive consistency model AC Apparent
Consistency.

Conclusion
The standard consistency management strategies for
a highly-distributed transactional CDBMS environment
have not demonstrated sufficient performances in all
applications. Most of them are based on the eventual
consistency model, which does not provide satisfactory
levels of data consistency. Aim of this research was to
explore the possibilities for improving them and devel-
oping new strategies for consistency management and
preservation, with application in highly-distributed trans-
actional cloud DBMS environments. Structural TBC Tree
Based Consistency approach showed significantly better
performance compared to the other considered standard
approaches (Classic, Quorum). It represents the basis for
further exploration and improvements in this domain. All
the weaknesses and disadvantages of the TBC approach
were thoroughly analyzed, resulting in the conclusion that
the binary structure of the finally formed TBC consistency
tree is not adequate for use inmost problem situations and
does not adequately model realistic background data sets.
Thus, the application of the Bayesian hierarchical struc-
ture of the Rose Tree has been introduced, and the pro-
posed advanced R-TBC/RTA approach is practically based
on it. Also, the basic TBC approach algorithm (Modi-
fied Dijkstra Shortest Path MD SP) has been replaced
by the innovative RTA and GPA-MDC algorithms for
the construction of the Rose Tree for entire hybrid
cloud environment together with intelligent partitioning
of a highly-distributed transactional CDBMS database.
The CDBMS fragments or partitions are controlled

and distributed across the R-TBC tree organized cloud
environment, and that way achieving optimal perfor-
mances and values of the relevant parameters of PEM
network metric. Finally, the ultimate goal of conducted
research - a dynamic and adaptive management of
the desired degree of data consistency for the transac-
tional cloud database is achieved, that way promoting
an advanced model of so called “visible” or Apparent
Consistency as a necessary and sufficient degree of syn-
chronization of all replicas of entire heterogeneous cloud
environment.
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