Liu et al. Journal of Cloud Computing: Advances, Systems
and Applications (2021) 10:13
https://doi.org/10.1186/s13677-021-00226-w

RESEARCH Open Access
Check for
updates

Journal of Cloud Computing:
Advances, Systems and Applications

A port-based forwarding load-balancing
scheduling approach for cloud datacenter
networks

Zhiyu Liu, Aqun Zhao and Mangui Liang”

Abstract

Today's datacenter networks (DCNs) scale is rapidly increasing because of the wide deployment of cloud services and
the rapid rise of edge computing. The bandwidth consumption and cost of a DCN are growing sharply with the
extensions of network size. Thus, how to keep the traffic balanced is a key and challenging issue. However, the
traditional load balancing algorithms such as Equal-Cost Multi-Path routing (ECMP) are not suitable for high dynamic
traffic in cloud DCNs. In this paper, we propose a port-based forwarding load balancing scheduling (PFLBS) approach
for Fat-tree based DCNs with some new features which can overcome the disadvantages of the existing load
balancing methods in the following aspects. Firstly, we define a port-based source-routing addressing scheme, which
decreases the switch complexity and makes the table-lookup operation unnecessary. Secondly, based on this
addressing scheme, we proposed an effective routing mechanism which can obtain multiple available paths for flow
scheduling based in Fat-tree. All the path information is saved in servers and each server only needs to maintain its
own path information. Thirdly, we propose an efficient algorithm to implement large flows scheduling dynamically in
terms of current link utilization ratio. This method is suitable for cloud DCNs and edge computing, which can reduce
the complexity of the switches and the power consumption of the whole network. The experiment results indicate
that the PFLBS approach has better performance compared with the ECMP, Hedera and MPTCP approaches, which
decreases the flow completion time and improves the average throughput significantly. PFLBS is simple and can be

implemented with a few signaling overheads.

Keywords: Load-balancing, Link utilization ratio, Addressing scheme, DCNs, Edge computing

Introduction

Recently datacenter networks (DCNs) have became the
most important infrastructure and attracted more atten-
tion in industry. A large number of DCNs have been
deployed worldwidely with massive layered switches [1]
and thousands of servers to interchange a great quan-
tity of data. The DCN architectures (Leaf-Spine, Fat-tree,
etc.,) with multi-tier switching layers need to provide the
required network efficiency and flexibility to interconnect
thousands of top of the racks (ToRs), each with tens-
Tb/s aggregated traffic [2, 3]. The DCNs have to scale

*Correspondence: mgliang@bjtu.edu.cn
Institute of Information Science, Beijing Jiaotong University, Beijing, China

@ Springer Open

up to accommodate the tremendous increase in quantity
of traffic [4, 5] and assign resources to tasks reason-
ably for the quality of service [6—8]. How to reduce the
end-to-end delay, increase the throughput and keep the
traffic load-balanced is a key issue. In most DCN archi-
tectures, multiple paths are commonly available between
a pair of servers. Therefore, the data flows can be sched-
uled dynamically to evenly distribute traffic load on these
paths. However, the traffic patterns in DCNs are quite dif-
ferent from those in the traditional Internet, so the flow
scheduling is a very desirable but extremely challenging
task.

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The

images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-021-00226-w&domain=pdf
mailto: mgliang@bjtu.edu.cn
http://creativecommons.org/licenses/by/4.0/

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications

In order to find an effective load balancing method
suitable for cloud DCN to improve network utiliza-
tion, we have studied the current theoretical and prac-
tical solutions in this field [9, 10] and summarized the
shortcomings of these solutions. The problem of rout-
ing flows through a capacitated network simultaneously is
the multi-commodity flow(MCF) problem [11] which has
been extensively studied from both theoretical and prac-
tical aspects. The main solution deployed in DCNs today
is Equal-Cost Multi-Path (ECMP) [12]. ECMP employs a
static hashing mechanism and hashes flows to the equal-
cost paths. However, it is easy to cause congestion because
of the large-flow collisions in a DCN, and far from opti-
mal. Therefore, a variety of load-balancing approaches
were proposed to address the problems of ECMP, which
can be classified into the centralized solutions (e.g., Hed-
era [13], Mahout [14], Fastpass [15]), the switch-local
solutions (e.g., FLARE [16], Presto [17], DRILL [18]), and
the end-host solutions (e.g., MPTCP [19], FlowBender
[20]). But all of them have some critical drawbacks. The
centralized solutions are too slow for the traffic volatility
and face severe scalability problems in today’s DCNs. The
switch-local solutions have good scalability and do not
need to calculate per-path statistics, but lack the global
view of a DCN and cannot deal with asymmetry very well.
The host-based solutions such as MPTCP offer greater
parallelism but are difficult to be deployed and make an
already complex transport layer even more complicated
due to the requirements of low latency and burst toler-
ance. Most of the existing solutions do not split flows onto
multiple paths by making good use of the characteristic of
DCNs.

Motivated by the above observations, we define a novel
addressing and routing architecture for Fat-tree (also
applicable to other regular topologies, such as VL2 [21],
Portland [22], BCube [23], DCell [24]). Then, we pro-
pose a host-based dynamical load-balanced scheduling
approach to maximize the network throughput through
balancing the flows in DCNs. In this paper, aiming at the
Fat-tree topology, a port-based load-balancing scheduling
approach is proposed. It can solve the existing problems
of the current methods. For example, it can provide faster
response time for congestion comparing with the central-
ized methods, lower scheduling overhead comparing with
the end-host methods and a global view comparing with
the switch-local methods. Our main contributions can be
summarized as follows.

Firstly, we propose a new addressing scheme which
applies a port-based source-routing address (PA) as the
forwarding address. We use a shim layer to implement
the function below TCP/IP stack and the existing applica-
tions will not be affected. This addressing scheme renders
the table-lookup operation unnecessary and reduces the
complexity of the switches.

(2021) 10:13 Page 2 of 14

Secondly, we design an effective routing mechanism to
obtain multiple available paths which is implemented in
servers for load balancing. Each server has a global per-
spective of the whole network topology and only needs to
maintain routing information of its own flows.

Thirdly, we present a port forwarding load-balanced
scheduling (PFLBS) algorithm for Fat-tree based DCNSs. It
can select multiple paths for a flow and update them peri-
odically.Meanwhile, PFLBS can schedule the flow to a new
well-chosen path timely when the links along the old path
become congested.

we conduct experiments to verify the efficiency of the
load-balanced scheduling algorithm. The results show
that PFLBS approach has better performance compared
with the ECMP, Hedera and MPTCP approaches, which
decreases the flow completion time and improve the aver-
age throughput significantly.

The remainder of the paper is structured as follows. The
related work is given in “Related work” section. “Address
ing scheme and load-balancing algorithm” section is dedi-
cated to describe the port-based addressing scheme, rout-
ing mechanism, shim layer design and load-balancing
algorithm in Fat-tree. “Performance evaluation” section is
the performance evaluation. “Conclusion” section is the
conclusion.

Related work

We have proposed a forwarding address which applies the
port-based source routing [25]. In this paper, we aim to
find an effective load balancing method to improve net-
work utilization. Load balancing means that the resources
in DCNs are shared by all tasks equally. It can be described
mathematically by means of a performance criterion.
In general, the purpose of load balancing is to opti-
mize resource utilization, minimize transmission delay,
maximize throughput and avoid overload of any single
resource. Network load balancing aims at evenly schedul-
ing traffic among multiple links by using simple routing
protocols. The common method to balance load in DCNs
today is ECMP. ECMP can statically strip flows across
available paths using flow hashing and performs well for
most of small flows. However, the static mapping results
in congestion and network utilization degradtion because
it can cause flow hash collisions easily and does not take
current network utilization and flow size difference into
account.

Therefore, many researchers have proposed some novel
traffic scheduling mechanisms to balance finer-grained
units of traffic. These methods can be classified into three
categories: centralized solutions, switch-local solutions
and end-host solutions.

The centralized solutions typically run a scheduling
algorithm at a single server. In order to evenly balance
the flows according to traffic patterns and link utiliza-

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications

tion, it is essential for a load balancing approach to obtain
global network information. Combining with the cen-
tralized network architecture such as SDN [26], some
mechanisms can use controller to collect global network
information and assign flows to proper paths through the
Openflow protocols [27]. However, these solutions lack
scalability because the overhead of collecting informa-
tion, computing paths and deploying paths makes them
impractical to respond timely in large-scale networks.
Meanwhile coordinating decisions in the face of unpre-
dictability and traffic burstiness is also a serious prob-
lem. For example, although Hedera’s scheduler runs every
5 seconds and has the potential to run at subsecond
intervals, recent studies [28, 29] have shown that the
size and workloads of today’s datacenters require parallel
route to be setup on the order of milliseconds. It makes
a centralized solution infeasible even in small DCNs
[30].

The switch-local solutions select paths for flows at local
switches without a global view of the network. They do
not need to collect any global congestion information
and make much hardware or protocol modifications. So
the switch-local solutions always achieve high scalabil-
ity. But these scheduling algorithms do not consider the
realtime states of links for other switches so that they
cannot adapt to changing data flows. For example, Presto
proactively splits each flow into equal small sizes and
then distributes them evenly to the network using ECMP.
Compared with ECMP, Presto achieves higher throughput
and lower flow latency under different workloads. How-
ever, although flows are assigned evenly at each soft edge
switch respectively, the flows arriving at different soft edge
switches cannot ensure uniform. For another example,
inspired by the “power of two choices” paradigm which is
used in the supermarket queue model, DRILL implements
a random packet allocation scheme using the switch local
information. When a packet arrives at a switch in DRILL,
the switch will randomly pick two available ports and
compare their queue length with a recorded port, and then
the packet will be sent to the port with the lowest buffer
among the three. But in Fat-tree topology, DRILL can only
obtain the optimal port which has the minimum queue
length in the upstream switches. The collisions may occur
in the downstream switches and random packet allocation
scheme does not work because the downstream path are
deterministic.

The end-host solutions offer more parallelism and give
more provable guarantees. Clove [31], TeXCP [32] and
DARD [33] dynamically balance traffic through multiple
paths between pairs of ingress-egress routers established
by an underlying routing architecture and only require
modifications to end-host software. However, they have
very limited path condition information and thus can
only predict whether a path is congested or not based

(2021) 10:13 Page 3 of 14

on the common signals such as explicit congestion notifi-
cation (ECN) or round trip-time (RTT). These solutions
rely on the virtualization technology, and the correspond-
ing algorithms are implemented entirely in the virtual
switches of hypervisors. They are not really end-host-
based approaches. MPTCP splits a flow into multiple sub-
flows, leverages the multi-paths between end-hosts and
setups multiple sub-connections to make full use of the
link bandwidth. However, MPTCP needs to be deployed
on the multi-homed servers to transmit subflows sep-
arately and it cannot control the path of subflows, so
subflows are usually handled by ECMP according to the
source and destination addresses.

In a word, although each of the three solutions has its
own advantages, there are also obvious drawbacks. The
problems of the centralized solutions are high cost and
slow response to congestion. The switch-local and end-
host solutions are based on distributed scheduling and
lack of global perspective.

In this paper, we propose a port-based source-routing
addressing and routing algorithm for Fat-tree based
DCNs. It advances the software-defined network con-
cept by pushing the control functionalities to servers and
reducing the computing and storage of switches. Then,
we design a simple shim layer to implement the func-
tionality for probing “good” paths and encapsulating pack-
ets. In this way, servers can monitor large flows, split
them into subflows and transmit them through multi-
ple “good” paths. Comparing to switch-local solutions,
PFLBS obtains more congestion information of all paths
from a source to a destination and makes better routing
decisions. Comparing to the centralized solutions, PFLBS
schedules paths for flows independently in their respec-
tive servers and avoids generating huge signaling overhead
in a centralized controller.

Addressing scheme and load-balancing algorithm
PFLBS is a flow splitting and routing algorithm designed
for Fat-tree network. In this section, we describe the port-
based address, introduce the simple routing mechanism,
design the shim layer protocol and present the PFLBS
approach.

Port-based addressing and forwarding

A general Fat-tree model is a k-port n-tree topology. We
use a special instance with n = 3, which is usually dis-
cussed in the DCN literature. Figure 1 shows the Fat-tree
topology with 4 ports. The labeling mechanism in [34] is
adopted to identify the locations of switches and servers
in this topology. In networking, we consider that the iden-
tification address is used in the control plane to identify
a node and the forwarding address is used in the data
plane to determine the output port to which a packet
will be sent. They should be separate addresses. Now-

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:13 Page 4 of 14
Level
(0,0,0) (0,1,0) (10,0 (11,0
0 0123 0123 0123 0123
[7 3]t 12 3 7 3 3 T 3h 73
11| (0,01) (0,1 | (1,01 (1,1,1) (20,1 (2,1 |n (301 (311 |!
Lo 0 iolo 1 0 0 1 0 1y Lo 0 1!
L2 3 2 3] 2 3 2 3 23] 3 EE 23] 3
1o (0,02 (012 |4 | (L02 (1,1,2) (20,2 (212 | | (302 (312 |1
i“lo 1 0 1] [o 0 0 1 0 Lo 0 :

Fig. 1 The 4-port Fat-tree topology

days, IP address and MPLS are widely used in networks
and represent two kinds of typical forwarding addresses.
IP is a node-based addressing which is coded by number-
ing nodes in a network, while MPLS is a label addressing
which is coded by numbering virtual switching labels in a
network. Both of them use lots of memory space to save
routing table or label mapping table on a switch.

To reduce the complexity of the switches, we define
a port-based source-routing address which is coded by
numbering the ports of each node along the path from
the source to the destination. As is show in Fig. 1, if the
source server (0,0,0) sends data to the destination server
(1,0,1) along the path with the bold lines, the PA can be
expressed as {0,2,2,1,0,1}, where the digits 0,2,2,1,0and 1
are the output ports of nodes (0,0,0), (0,0,2), (0,0,1), (0,0,0),
(1,0,1) and (1,0,2), respectively. Each output port in the PA
is called as a PA element.

When a source sends a packet to a destination, it
will encapsulate the PA in the packet. When receiving
a packet, a switch only needs to execute the following
actions as shown in Fig. 2: (1) extracting the first PA
element x from the packet and removing it; (2) forward-
ing the packet to the output port indicated by x. As we
can see, this addressing and forwarding scheme makes
the table-lookup operation unnecessary and the switch
can be simple and the scheme also can be used in other
DCN topologies. So far, we achieve a simple data plane for
DCNs.

A novel routing mechanism

Fat-tree is a regular DCN topology. By leveraging the reg-
ularity and the characteristics of the PA, a simple and
efficient routing mechanism becomes feasible. Therefore,
we push most of the routing function to the servers almost
without switch involvement. It offers many obvious
advantages in DCN networks. Firstly, this routing mecha-
nism places most of the control functionalities in servers

and keeps switches much simpler. Secondly, each server
only needs to maintain its own routing paths for local
flows and runs this mechanism independently. Thirdly,
because of the regular characteristic for the Fat-tree topol-
ogy, all the servers completely know the topology and do
not need to store other information except for the param-
eter k. The routing mechanism will enumerate all of the
shortest paths according to the source and the destina-
tion locations in the first step, then choose one or more
suitable paths among all the available ones. This routing
mechanism mainly focuses on the expression of the paths
rather than the routing mechanism. We will introduce the
detailed path selection method in the next subsection.
The routing algorithm is shown in Algorithm 1, which
lists all the paths from the source to the destination in
different conditions. If two servers are connected to the
same level-2 switch, the unique shortest PA is {0, d,}. For
example, the shortest PA from (0,1,0) to (0,1,1) is 0,1 in
Fig. 1. If two servers are connected to the same pod but
not same level-2 switch, the shortest PAs are 4-hop and
the total number of shortest paths is k/2. For example,
one of the shortest PAs from server (0,0,0) to (0,1,1) is
{0,2,1,1} in Fig. 1. If two servers are connected to differ-
ent pods, the shortest PAs are 6-hop and the total number

2
of shortest paths is X

- For example, one of the shortest
PAs from (0,0,0) to (1,1,1) is {0,2,3,1,1,1} in Fig. 1. In the
rest of the paper, we only consider the complex situation
of servers in different pods and focus on the 6-hops PAs.
As is shown in Algorithm 1, PAs have some characteris-
tics that the first PA element is always 0 and the last three
elements depend on the destination locator. The second
element x and the third element y are variable and values
range from k/2 to k-1 respectively. Therefore, the time and
space complexities are both O (kz).
The next step is to choose the most suitable paths. We
propose two different PA selection strategies: the non-
switch-assisted method and switch-assisted method. The

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:13 Page 5 of 14
> ‘
X|y'z data
X
—
/]
Forwarding /
I —
y z data
I —
l
Fig. 2 Port-based forwarding in switch

Algorithm 1 PA enumeration algorithm in Fat-tree

Input: Input the source (sg,s1,s2) and the destination
(do, d1, d>).
Output: Output all the PAs from source to the destina-
tion
1: if so = do then

2 if s; = d; then

3 PA ={0,d>}

4 else

5 PA ={0,x,d,ds},x €[k/2,k — 1]

6: end if

7: else

8 PA ={0,x,y,do,d1,da}, %,y €[k/2,k — 1]
9. end if

non-switch-assisted method chooses a fixed path accord-
ing to some specific traffic patterns. It does not need
to encapsulate the signaling packets in servers and add
control functionality to switches. For example, a server
will choose a path with PA {O, dy + g,dl + %,do,dl,dz}
which is called destination-based policy under one-to-all
traffic pattern. Here the second and the third PA elements
are chosen depending on the destination locator, so it can
be named as the destination-based policy. This policy can
make sure that the selected paths distributed evenly in the
DCN under one-to-all traffic pattern. Similarly, there is
also source-based policy that can make sure that selected
paths distributed evenly in the DCN under all-to-one
traffic pattern. Although each server can change its PA-
selection policy in terms of different traffic patterns and
contribute to balancing the traffic load, it cannot ensure
the selected paths to be distributed evenly in the net-
work under all traffic patterns. The adaptive PA-selection
method takes advantage of the fact that each PA-selection
policy has its own superiorities under some specific traf-
fic patterns. For instance, when an arbitrary server in pod

p1 sends packets to all the servers in pod p», the selected
paths will be evenly distributed over all the upward links
of the level-2 switch connected with the source server, all
the level-1 switches and their upward links in the source
pod pi, all the level-0 switches and their downward links
to the destination pod p», and all the switches and links in
pod p». Similarly, the source-based policy can ensure the
selected paths distributed evenly in the DCN under all-to-
one traffic pattern. Therefore, in the adaptive PA-selection
method, each server can independently adjust its PA-
selection policy in terms of different traffic patterns. The
adaptive PA-selection method is conducive to balancing
the traffic load, yet it cannot cope with bursty traffic and
dynamically adjust the routing policy. The switch-assisted
method achieves bandwidth utilization of the available
paths by sending signaling messages periodically. It adds
some control signaling overheads to servers and a little
control functionality to switches, but improves the per-
formance of load balancing significantly. We focus on the
implement of the approach in the following subsection.

Shim layer for multipath detection

In order to implement the port-based addressing and
switch-assisted approach, we design a shim layer below
TCP/IP including the shim headers and address tables,
which is shown in Fig. 3. There are two types of shim
headers: data header (“Type”=0) and signaling header
(“Type”=1). Data header is used for packet transmission if
the PA has existed in the address table. Signaling header
is used for probing available PAs and obtaining port infor-
mation of passing switches when a server connects to a
new destination. Therefore, each switch needs to add a
little control functionality to parse the signaling message
and obtain port information by which the signaling mes-
sage is forwarded. Meanwhile, the shim layer maintains an
address table (AT) and an alternative address table (AAT)
indexed by the destinations (through the “Des” field). The
AT stores the primary PA which is currently in use for

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:13 Page 6 of 14
TCP IP Shim Layer MAC
Alternate

Address Table Address Table

dia Type (=0) PA Des| PA] Count Des| PA

signal | Type(=1) [PA_index |port_cnt |cur_port |LU|QL | ProbePA

1B 1B 1B 1B 6B 6B 128
Fig. 3 The design of the shim layer

the destination and the AAT stores other alternative PAs,
which are used for switching path if the primary PA fails
to meet the condition.

When the source sends data to the destination, the shim
layer will firstly search the AT for the primary PA accord-
ing to the destination. If this entry exists, a data header
will be created. The “Type” field of the shim header is
set to 0 and the “PA” field is loaded with the primary
PA, which means that this packet is a data packet and
is sent out along the path indicated by the primary PA.
If the entry does not exist, the shim layer will gener-
ate a signaling message with the “Type” field be 1 to
probe port information of passing switches along each
available shortest path. All the shortest PAs can be cal-
culated by Algorithm 1. Then, we explain the specific
meaning of each filed. The “PA_index” field represents
the index of PA. When a signaling message returns to
the source, this field is used to identiy which PA has
been detected. The fields “port_cnt” and “cur_port” rep-
resent that how many ports of information need to be
collected in total and how many have been collected,
respectively. The fields “LU” and “QL” are used to record
the link utilization ratio and queue length of each for-
warding port that the signaling has passed through. The
“ProbePA” field is used to store address for the signaling
message. ProbePA is designed as a loopback PA which
enables a server sends a signaling message to itself with-
out other servers involved. In Algorithm 1, PA is expressed
as {O,x,y, do, dl,dz} (line 8) when a source and a des-
tination are in different pods. ProbePA is expressed as
{O, x,,do, d1, %, y, so,sl,sz} which sends a message along
the PA and let it return along the reversed path. Note
that ProbePA does not use the dy port to send a mes-
sage to the destination at the edgeswitch of downstream.
As a result, each server can implement paths detection by
itself.

Load balancing measure metric

In this section, we will present how to measure the load
imbalance degree of a path and the scheduling trigger
threshold. When a signaling message returns, the link uti-
lization ratio and queue length of each forwarding port
can be obtained through the field “LU” and “QL” The link
utilization ratio is used to depict the load state of a link,
which is defined as

bised (t)

, (1)
Bu,v

Yuy(t) =

where y, ,(t) is the link utilization ratio of the link /,,
between switches u and v. beﬁd (¢t) refers to the occupied
bandwidth of the link /,,,, while B, , is the capacity of the
link /,,,. Each switch periodically computes the link uti-
lization ratio of all its links. The queue length A, (¢) is
used to describe the delay state of a link. The queuing
delay of packets will increase with the growing of queue
length. In DCNs, flows can be classified into small flows
and large flows according to their size. Small flows are sen-
sitive to delay which require the queue length is as short as
possible and large flows are sensitive to throughput which
require the link utilization ratio is as low as possible.

We define three metrics to depict the state of a path:
the path bandwidth utilization ratio yp4(£), the variance
of utilization ratio §pa(¢) and the average queue length
Apa(t). The path bandwidth utilization ratio yp4 (¢) is the
maximum link utilization ratio of all the links along the
path represented by PA, which is defined as

vea(t) = max {y,(6)}. @)
Vi, €PA
The average bandwidth utilization ratio of a path is
defined as

— Zlu,vePA Vi (L)

y () N (3)

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications

where N is the number of links along PA. Next, the vari-
ance of utilization ratio §p4 (¢) is used to evaluate the load
fluctuation along the path, which is defined as

ZIWGPA [V @) — Vu,v(t)]z

N (4)

dpa(t) =

Finally, Apa(¢) is used to evaluate the queuing delay for
the path, which is defined as

Zlu,VEPA)\u,v (t)

N (5)

Apa(t) =
The three metrics are important parameters in our work
to evaluate the “good” paths. yp4 (£) and dp4 () are used to
estimate bandwidth capacity and stability of a path. Large
flows depend on the metrics to choose the suitable PAs.
Apa () is used to choose the optimal PA with the mini-
mum delay for a small flow. When the path selection is
finished, each server will detect the unbalance degree of
the paths periodically. In order to determine the time to
switch or reselect PAs, we define the thresholds to trigger
the dynamical flow scheduling. y* and §* are thresholds
for yp4 (£) and 8pa (¢) respectively, which directly represent
the scheduling frequency. The lower y* and §* are, the
more evenly flows are distributed but the more frequently
flows will be scheduled once the threshold conditions are
not satisfied. There is no threshold for Ap4(¢) because
small flows are short-lived and do not need to schedule
frequently. Like the small flows in ECMP, once the opti-
mal path is selected by Ap4 (¢), it will be used until the flow
finishes.

Port forwarding load-Balancing scheduling algorithm

The important purpose of our PFLBS algorithm is to
ensure that the traffic load of each server be evenly dis-
tributed among the available links. It uses a local schedul-
ing method in servers to implement global load balance in
the whole network. The algorithm consists of two steps:
multi-path selection and flow scheduling. In the step of
multi-path selection, when a new flow needs to be trans-
mitted, the shim layer will generate signaling messages to
probe all the available paths. After all the messages return,
the utilization ratio and queue length of all the links along
each path have been collected in the fields “LU” and “QL”
Then, the values of Ap4 (£), ypa (t) and 8p4 (¢) for each path
can be calculated easily by “LU” and “QL” Next we pro-
pose a multipath routing selection algorithm to select the
“good” paths according to the metrics. Firstly, we sort all
the PAs based on the average queue length lp4(f) and
choose the PA with the minimal Apq(f) as the optimal
path. The PA will be stored in the Address Table(AT) and
used for a new flow transmission. This is because that
more than 80% of flows are small flows in DCNs. There-
fore, when a new flow appears in the network, it should

(2021) 10:13 Page 7 of 14

be regarded as a small flow with latency-sensitive char-
acteristic and uses the above PA to transmit data. The
field “count” in AT is used to record the number of pack-
ets that a flow has sent. We define L* as a threshold to
identify whether it is a small flow or not. If the “count”
does not exceed the threshold, it is a small flow. Other-
wise, it is treated as a large flow. Secondly, we select some
alternate paths according to yp4(¢) and pa(¢) and store
them in the Alternate Address Table(AAT). The remain-
ing PAs are sorted in the ascending order of yp4 (¢) first.
If there are multi PAs with the same yp4 (£), we sort these
PAs in the ascending order of §p4 (). Then we choose the
first “n” PAs from the sorted results and store them in the
AAT. The selection of value “n” will vary with the param-
eter k-port in Fat-tree. In this paper, the value of “n” is
set to 2. The ypy (¢) represents whether a path has enough
remaining bandwidth to accommodate a large flow, and
the 8pa (¢) reflects whether there are potential hot-spot
links in a path or not. The alternate paths are mainly used
to migrate a flow to the optimal path once the flow is clas-
sified as a large flow. The lower the values of yp4(¢) and
3pa () are, the better a path is. So far, one best path and
two alternate paths are obtained through the multi-path
routing selection algorithm as is shown in Algorithm 2.

Algorithm 2 Multi-path Routing selection algorithm in
Fat-tree
Input: Input a source (sg,s1,s2) and a destination
(d(), dl’ dZ)
Output: optimal PA in the AT and alternative PAs in the
AAT
1: the source enumerate all the available PAs using Alg.1
and calulate ProbePAs
2: for ProbePA; € ProbePAs do
generate a signaling message and send it out to
collect the link utilization ratio and queue length
calculate yp4 (¢), pa () and Apy (¢) for the path
end for
sort all the PAs in the ascending order of Ap4 (¢)
choose the path with the minimal Ap4 () as the opti-
mal path and store it in the AT
8: sort the remaining paths in the ascending order of
vpa(t)
9: if there are multiple paths with the same yp4 (£) then
10: sort these paths in the ascending order of dp4 (¢)
based on the previous sort result
11: end if
12: choose the first two paths as the alternate paths and
store them in the AAT

w

N ok

In the next stage, the server will monitor the PAs in
the AT and AAT periodically to keep load balanced in
the network during local data flow transmission. When

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications

a detection cycle comes, our PFLBS algorithm will first
check the “count” of the PA in AT. If the value is less than
the threshold L*, the flow is regarded as a small flow and
the current path will continue to be used. Otherwise, it is
identified as a large flow which needs to be scheduled. We
firstly update yp4 (£) and 8p4 (¢) of the PAs in AT and AAT
by sending signaling messages. If the current PA in AT is
satisfied with dp4 (£) < 8™ and ypa () < y*, the large flow
can continue using this path to transmit data. Otherwise
we choose an optimal PA in AAT to replace the previous
PA in AT. Then, the paths which do not meet the metrics
will be updated based on yp4 (t) and 8p4 () using the mul-
tipath routing selection algorithm. The detailed process
of the algorithm is shown in Algorithm3. Note that each
server uses the scheduling algorithm to monitor only the
PAsin AT and AAT by itself, and does not need to update
the PAs unless they cannot meet the threshold condi-
tions. It reduces the overhead of signaling messages sig-
nificantly, and does not affect the network performance.
Although we do not choose the optimal PA all the time,
the network load can be distributed evenly among all the
links.

Algorithm 3 Port-based forwarding load-balancing
scheduling algorithm
Input: Input the paths in AT and AAT, §* and y*
Output: Output load-balanced scheduling

1: periodically update 8py; () and ypy,(¢) of the paths in
the AT and AAT by sending signaling messages
if if the field “count” < L* then

for PA in ATT do
if 8pa; (t) = 8% or ypa,(t) > y* then
select the optimal path to replace it using

Alg.2
end if

end for
else if §ps,(t) > 8* or ypa,(t) > y* in AT then

select the optimal path in AAT to replace the
current path
10: use line 3-7 to update the path in AAT
11: else
12: use line 3-7 to update the path in AAT
13: end if

R

Handing asymmetry

Until now, the design of load-balanced scheduling algo-
rithm has assumed that it is symmetric in Fat-tree. But
the symmetric network may experience failure that causes
asymmetry if a link between two switches fails (we do
not consider link failure between a server and an edge
switch in this paper). Although our scheduling algorithm
can choose an alternate path from AAT quickly when

(2021) 10:13 Page 8 of 14

the current path fails, the failed link cannot be localized.
Therefore, a fault tolerance mechanism is needed to deal
with this issue. An end-to-end approach is proposed with
the same design philosophy by taking advantage of PA and
the regularity of the Fat-tree topology. It should be noted
that because a node failure can be considered as multiple
link failures for all its links, and a link congestion has the
same consequence as a link failure, we only describe how
to deal with the link failures in the rest of this paper.

The motivation of the end-to-end approach is to con-
tinue placing all the fault-tolerance functionalities in
servers, and keep switches simple. The process to deal
with link failures are as follows. Generally, the Fat-tree
topology has some regularity and does not need to be
stored, but it is broken by the failures. Thus the servers
need to store the dynamic topology information. We store
the information with the form of unavailable prefix tables
rather than the entire topology. In this way the storage
space will be decreased, because the ratio of the number
of faulty links and the number of normal ones is usually
small. In addition, taking advantage of the characteristic
of PA, the unavailable prefix table entry is in the form of
{ro,p1, .-~ pi}, which is helpful for the servers to simplify
the operations when dealing with link failures. The design
includes probing the path(s) with link failures, locating
the faulty link along the path, converting the failure infor-
mation to the form of the unavailable prefix table entry,
and distributing the information to the other servers. The
detailed procedure to handle the link failures is designed
as follows.

When a signaling message is sent to collect the links
information for a flow, the server will set a timeout inter-
val for the message. If timeout event and retransmission
happen three times in a row, the fault tolerance mecha-
nism will start to search link failures. The server will sends
3 locating packets along the path to the relevant nodes and
let them return to locate the link failure (line2-16).Similar
to a signaling message, these packets does not involve the
destination nodes and are controlled completely by the
source server using loop PAs. It should be noted that the
algorithm only can detect a single link failure along a path.
For multiple link failures on a path, more probing mes-
sages must be sent to traverse the network more than
once. When a server locates a link failure, it will trans-
lates the link failure to an unreachable prefix table entry
and store it in the server according to Algorithm 4. The
information stored in a server depends on not only the
location of the link failure, but also the location of the
server. The server locating the failure will distribute the
failure information to all the other servers in the DCN.
Next, they will update their unavailable prefix tables. To
decrease the overhead, we design a recursive distribution
policy, leveraging the property of Fat-tree. The informa-
tion is firstly sent to one server in each pod, and then these

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:13 Page 9 of 14

600

500

400

300

Throughput(Mbps)

100 —

Fig. 4 Relationship between throughput and threshold /8%

0.0 25 50 7.5 10.0 12.5 150 17.5 200 225 250

servers send the information to other servers in their own
pods using the same recursive policy. If a server wants
to send a packet, it will choose a path which does not
involve any link failures by selecting a ProbePA not match-
ing the unavailable prefix entries in the table. Therefore,
a server only needs to execute simple address match-
ing operations to avoid using faulty links when sending
messages.

Performance evaluation

In this section, we evaluate the performance of PFLBS
through simulation system. We compare PFLBS with
ECMP, Hedera and MPTCP [35], the state-of-the-art mul-
tipath transport protocol. ECMP can uniformly random-

ize the outgoing flows across a set of ports and work
well for small flows. Hedera uses 500ms as the schedul-
ing period. Note that 500ms is an optimistic interval
for Hedera from the afforded overhead point of view,
because it uses periodic polling to pull the per-flow
statistics from all the edge switches for large flow detec-
tion. It takes a lot of time to assign paths for the
large flows and install paths to the related switches.
For MPTCP, we use 8 sub-flows for each TCP con-
nection as [35] recommendation. The results show that
PFLBS achieves higher throughput and lower mean
FCT comparing with other scheduling approaches under
heavy loads in Fat-tree. Details of the evaluations are as
follows.

1000 - P9 ECMP

g =3 MPTCP
900 I Hedera
4 PFLBS -
800 —
@
‘S- 700]
=]
=
a 600 —
,go 4
=) 500
s}
= B
=
= 400
= J
[S)
— 300
oo i
-
<t 200
100
0]

Random

Fig. 5 Large flow throughput for ECMP, MPTCP, Hedera and PFLBS in random, stride and random bijection workloads

Stride Bijection
Workloads

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:13 Page 10 of 14
10 1o 10
0.8 08 084
06+ 06 06+
29 =3
5 8 g
044 04+ 044
—%— MPTCP —#— MPTCP) [——MmPTCH
024 —e— ECMP 02 —e— ECMP 02 —e— ECMP
—a— Hedera —a— Hedera —4— Hedera
—=— PFLBS —=— PELBS —=— PFLBS
00 T T T T T T 00 T T T T T T

00 T T T T T T T
0

1 2 3 4 5 6 7 8 0 1 2 3

Flow Completion Time (milliseconds)

()

Flow Completion Time (milliseconds)

4 5 6 7 8 0 1 2 3 4 5 6 7 8

Flow Completion Time (milliseconds)

(b) (c)

Fig. 6 Small flow FCT of MPTCP, ECMP, Hedera and PFLBS in a stride, b random bijection and € random workloads

Algorithm 4 Failure probing and prefix table-updating
algorithm

Input: Input the source (sg,s1,s2) and the destination
(do, d1,d>).
Output: Output the unavailable prefix table entries in the
server
1: the source sends signaling messages when a new flow
need to be transmitted
if the signaling message with
ProbePA:{O, x,, do, d1, %, ¥, S0, 1, 52} does not return
in a pre-set time then
sends a loopback message with PA={0, x, s1, 52}
if the message does not return then
the link (sg, s1,2) to (sg,x — k/2,1) fails
add {0,x} to unavailable prefix table
else
sends a
PA={0,x,y, 50,51, 52}

® N ook W

loopback message with

9: if the message does not return then
10: the link (sg, x—k/2,1) to (x—k/2,y—k/2,0)
fails
11: add {0,x,y} to unavailable prefix table
12: else
13: sends a loopback message with

PA={0, x, , do, ¥, 50, $1, 52}

14: if the message does not return then

15: the link (x — k/2,y — k/2,0) to (do,x —
k/2,1) fails

16: add {0,x,y,dp} to unavailable prefix
table

17: else

18: the link (do, x—k/2,1) to (dy, d1, 2) fails

19: add {0,x, w,do,d1}(k/2 < w < k—1)
to unavailable prefix table

20: end if

21: end if

22: end if

23: end if

System setting

PFLBS is evaluated by using OMNET ++ simulator in a 16-
port Fat-tree topology with 1024 servers and 320 switches.
Each server has 1 Gbps NIC and each link has 1 Gbps
capacity. The propagation delay of each link is setted to
be 0.05 us, which means that the link is approximately 10
m. The fixed data size for a packet is 1024 Bytes. Each
experiment is executed for 60 s over 10 runs. We measure
flow completion times (FCT) and the average throughput
as the performance metrics. FCT shows the average queu-
ing time in the switches, while the average throughput
indicates the network congestion situation which reflects
the rationality of path allocation in the load balancing
scheduling algorithm.

Overheads analysis

In this subsection, we analyze the expected signaling over-
head and probing delay for PFLBS comparing with Hedera
and ECMP. Note that ECMP belong to the congestion-
unaware distributed mechanisms. Although ECMP does
not generate extra signaling overhead, it is a static scheme
which does not collect the congestion information from
network and leverage these information to balance load.
MPTCP is similar to ECMP because MPTCP relies on
ECMP or other routing schemes to select paths for sub-
flows. In Hedera, the controller pulls the per-flow statis-
tics periodically from each switch. In order to obtain the
true rate of a flow for large flow detection, the statistics
of each flow must be collected in Fat-tree. Hedera uses
OpenFlow to pull statistics for all flows and needs to set
up a flow table entry for each flow. So each flow must be
sent to the controller before it starts to transmit data. In
the 16-port Fat-tree topology, the total number of edge
switches is 128 and each edge switch connects to 8 servers.
We assume that each server generates 20 new flows per
second and the average duration of a flow is 60 seconds.
Therefore, the number of flow table entries needed at each
edge switch is 8*20*60 = 9600. It is hard for a general

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications

switch with OpenFlow to support so many entries in the
flow table because of the limited TCAM. The Hedera con-
troller needs to handle 128*8*20*60 ~ 1.2 million requests
per second because it monitors flows at all edge switches.
A single controller can only handle 20-30 K requests per
second and multiple controllers are needed to handle the
flow setup load. However, it does not seem to be a simple
task to implement distribution. Then, we set each statis-
tics packet to 24 Bytes according to [14] and the size of
control messages which the controller needs to process is
24*128*8*20*60 =~ 28.1 MB per second.

In our PFLBS, each server only needs to maintain the
flows which are generated by itself and allocate three opti-
mal paths for every flow. The number of flow table entries

1.6 4
1.4 A
1.2 4
g 1.0 A
[}
m
S o84
£
o
Z 06
Pt —— MPTCP
= ol —e— ECMP
—&— Hedera
. —=— PFLBS
0.2+
00 T T T T T T T T T
0 10 20 30 40 50 60 70 80 90
Load (%)
(a) Small Flows (< 100KB)
2.0 4
1.8
16 4
=
(&)
=3}
S 1.2 A
g 1.0 A
Z
5 038+
£
% 064 —— MPTCP|
2 —e— ECMP
= 044 —&— Hedera
—=— PFLBS
0.2 o
00 T T T T T T T T T
0 10 20 30 40 50 60 70 80 90
Load (%)
(b) Large Flows (> 1MB)
Fig. 7 FCT and throughput statistics for the enterprise workload in
Fat-tree (k=16) topology. Note that a and b are nornalized to the
value achieved by ECMP

(2021) 10:13 Page 11 of 14

is merely 3600. The maximum length of a signaling mes-
sage is set to be 28 Bytes when the path is 6-hop according
to the design of shim layer and its per-hop delay is 0.3 us,
constituted by the propagation, transmission and process-
ing delay. Then we calculate the size of signaling messages
and delay for the best case and the worse case. When the
PA of each flow does not satisfy with the threshold con-
ditions, the server needs to enumerate all the available
PAs and select the optimal PA for every flow. The maxi-
mum size of signaling messages is 28*64*20*60 ~ 2.05 MB
and the delay is about 16ms. When all the PAs in AT and
ATT do not exceed the threshold conditions, the server
only probes and updates the PAs in AT and ATT. The
minimum size of signaling messages is 28*3*20*60 ~ 98.4
KB and the delay is about 0.76ms. Therefore, the detec-
tion interval for each flow in our PFLBS is an order of
magnitude lower comparing with Hedera.

Workloads

In our simulations, we use synthetic traffic workloads
and realistic workloads based on empirically observed
traffic models in DCNs respectively to cover most trans-
mission patterns. In the synthetic traffic workloads, the
flow size is distributed from 1 KB to 100 MB. We define
flows between 1 KB and 100 KB as small flows which are
latency-sensitive and the rest as large flows which are
throughput-sensitive. The proportion of the number for
small flows is 80% but more than 80% of the data bytes
belong to large flows. A group of traffic patterns similar
to [36] are applied according to the following categories.
(1) Stride: each server (s, s1,s2) sends data to the des-
tination ((so + 1)mod(k_port), s1,s2); (2) Random: each
server sends data to a random destination not in the same
pod with uniform probability. Multiple senders can send
to the same receiver; (3) Random bijection: each server
sends data to an unique destination which is not in the
same pod. Different from the random traffic pattern, each
server only receives data from one sender. In the realistic
workloads, we consider two types of workloads from pro-
duction DCNs: an enterprise workload [37] and a data-
mining workload [21]. Note that both of the dis-
tributions are heavy-tailed which means that a
small fraction of the flows contribute most of the
data.

Results and evaluation

We firstly discuss the value of the triggers y*, §* and L*
in the simulations. The statistics show that the link uti-
lization in the DCNs is between 10% and 90%, and we set
y*=50% as the scheduling threshold for a path. The value
of §* is determined by the simulation experiments. We test
the average network throughput under different values of
8* for 50% traffic load. Figure 4 illustrates the relationship
between the throughput and §*. We use the square root

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications

/8% instead of 8* for the convenience of data plotting.
Under this simulation configuration, we can see that when
/8% approximates to 16, the throughput reaches a max-
imal value. Therefore, we set §* to be 256. Lastly, we set
L*=100 K, which is the maximum size of the small flows
in the experiments. The detection period for PFLBS is set
to be 50ms in our experiments.

Figure 5 shows the average throughput of large flows
in random, stride and random bijection workloads in
synthetic workloads under heavy loads (the sending rate
is 1Gbps). As expected, PFLBS achieves the maximum
throughput for large flows under all workloads. PFLBS
improves upon ECMP by 21-72%, improves upon MPTCP
by 17-35% and improves upon Hedera by 12-18%. For

0.8

0.6 4
—x— MPTCP)|

—e— ECMP
—&— Hedera
—=— PFLBS

FCT (Norm. to ECMP)

0.4

0.2

0.0 T T T T T T T T T
0 10 20 30 40 50 60 70 80 90

Load (%)

(a) Small Flows (< 100KB)

0.8

—¥— MPTCP)|
—e— ECMP
—&— Hedera
—=— PFLBS

0.6

Throughput (Norm. to ECMP)

0.4 o

0.2

0.0

T T T T T T T T T
0 10 20 30 40 50 60 70 80 90

Load (%)

(b) Large Flows (> 1MB)

Fig. 8 FCT and throughput statistics for the data-mining workload in
Fat-tree

(2021) 10:13 Page 12 of 14

the random workload, the throughput of all the schemes
decreases because this pattern cannot ensure the traffic
is evenly distributed in the network and hotspots may
emerge. Figure 6 shows the CDF of the mice flow com-
pletion time (FCT) under each workload. The latency of
PFLBS is near-optimal for the stride and random bijection
workloads because these workloads are non-blocking.
PFLBS always chooses a path with the shortest average
queue length for a small flow and the 99.9th percentile
FCT for PFLBS is within 1.5ms for these workloads. It
results in 1.4x, 2.3x and 3.2x lower FCT compared to
Hedera, ECMP and MPTCP, respectively. Hedera only
schedules large flows when congestion occurs and can-
not handle small flows well. MPTCP and ECMP suffer
from congestion under heavy loads. MPTCP is worse than
ECMP because MPTCP with multiple subflows experi-
ences reordering and timeout in MPTCP. In the random
workload, large flows may collide in the downstream links
or on the last-hop output port. Therefore the FCT of small
flows has a degradation for all the schemes.

We also evaluate PFLBS under the following two realis-
tic workloads: an enterprise workload and a data-mining
workload. Note that both distributions are heavy-tailed. A
small fraction of the flows contribute most of the data in
DCNs. Particularly, the data-mining workload has fewer
small flows than the enterprise workload but a very heavy
tail with 95% of all data belonging to 5% of flows that are
larger than 10 MB. In the experiments, small flows are
defined as flows that are less than 100 KB in size and large
flows are defined as flows that are greater than 1 MB. The
FCT of small flows and throughput of large flows are nor-
malized to ECMP. Figures 7 and 8 show the results under
the two workloads in Fat-tree. Part (a) of the two figures
shows the FCT of each scheme for small flows and part (b)
shows the throughput of each scheme for large flows.

Under the enterprise workload, we find that MPTCP
is noticeably worse than the other schemes for the small
flows FCT. It is up to 50% worse than ECMP. The reason
is that MPTCP with 8 subflows per connection increases
congestion at the edge links because the multiple subflows
may cause more burstiness. Meanwhile, the small sub-
flows easily suffer packet reordering and the small window
sizes for subflows increases the chance of timeout. Hedera
and PFLBS achieve up to 13% better and 32% better than
ECMP respectively for small flows. Although Hedera only
detects large flows and assigns them to the proper paths,
it can balance traffic at high load level and improve FCT
for small flows indirectly. PFLBS chooses paths with the
shortest queue length for small flows and obtains the best
performance. For the throughput of large flows, ECMP
is the worst among all the schemes. MPTCP achieves up
to 22% better than ECMP and has the best performance
under light load due to multiple subflows. Hedera achieves
up to 40% better than ECMP but the control overhead

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications

and scheduling interval impact the throughput as the load
increases. Moreover, it cannot guarantee that all large
flows are accommodated when the load is heavy. PFLBS
handles large flows well with limited signaling overhead
and the throughput is up to 58% better than ECMP. In the
data-mining workload, MPTCP still has the worst FCT
for small flows comparing with other schemes. Hedera
and PFLBS are 11% better and 20% better than ECMP
respectively. For large flows, PFLBS is up to 71% better
than ECMP and obtains the best performance. There are
some difference between the enterprise and data-mining
workloads. Under the enterprise workload, the load is
less “heavy” because it has fewer large flows and more
small flows. But in the data-mining work load, large flows
greater than 35 MB contribute 95% of all bytes. Hence, the
data-mining workload is more challenging to handle from
a load balancing perspective.

Conclusion

In this paper, we define a port-based source-routing
address and propose a port forwarding load-balanced
scheduling algorithm for Fat-tree based DCNs. Leverag-
ing the characteristics of PA and the regularity of the
Fat-tree topology, an extremely simple routing mecha-
nism is designed. With the multipath selection strategy
and large flow scheduling approach, PFLBS can handle
small and large flows effectively with low overhead and
decrease the switch complexity. The simulation results
show that PFLBS reduces the average flow completion
time, improves the throughput of large flows and makes
full use of available capacity in the network.

Acknowledgments

This work was supported in part by the Joint Project of the National Nature
Science Foundation of China under Grant No. U1636109 and the National 863
Program(No.2007AA01Z203).

Authors’ contributions

The research presented in this paper is part of the Ph.D. dissertation of the first
author under the supervision of the second author. Both authors read and
approved the final manuscript.

Authors’ information

Zhiyu Liu is currently a PhD candidate of information and communication
engineering at Beijing Jiaotong University, Beijing, China. He received his BE
degree in optical information science and technology from Jilin University,
Changchun, China in 2010 and MS degree in information and communication
engineering from Beijing Jiaotong University, Beijing, China in 2014. His area of
specialization is computer networks and communication systems, and his
current research interests include datacenter networking, network addressing
and routing, and complex networks.

Aqun Zhao is currently an associate professor of computer science at Beijing
Jiaotong University, Beijing, China, and a visiting professor at Lancaster
University, Lancaster, UK. He received his BE and PhD degrees in computer
science from Southeast University, Nanjing, China, in 1997 and 2004,
respectively. He was a visiting scholar at the University of Victoria, Victoria,
Canada between 2016 and 2017. His area of specialization is computer
networks and cloud computing, and his current research interests include
datacenter networking, network architecture and protocols, and network
addressing and routing.

(2021) 10:13 Page 13 of 14

Mangui Liang is currently a professor of information and communication
engineering at Beijing Jiaotong University, Beijing, China. He received his BE
degree in communication engineering from North China Electric Power
University, Baoding, China in 1982. He received his MS and PhD degrees in
information and communication engineering from Beijing Jiaotong University,
Beijing, China, in 1984 and 1988, respectively. He was a senior visiting scholar
at Columbia University, New York, USA in 2008. His area of specialization is
computer networks and speech processing, and his current research interests
include network architecture and protocols, datacenter networking, and
speech processing.

Funding
The Joint Project of the National Nature Science Foundation of China under
Grant No. U1636109 and the National 863 Program(No.2007AA01Z203).

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 21 May 2020 Accepted: 6 January 2021
Published online: 08 February 2021

References

1. Cao Z Kodialam M, Lakshman TV (2016) Joint Static and Dynamic Traffic
Scheduling in Data Center Networks. In: IEEE/ACM Transactions on
Networking, vol. 24, no. 3. pp 1908-1918. https://doi.org/10.1109/TNET.
2015.2434879

2. Quttoum AN (2018) Interconnection Structures, Management and
Routing Challenges in Cloud-Service Data Center Networks: A Survey. Int
J Interact Mob Technol 12(1):36-60

3. Imran M, Haleem S (2018) Optical Interconnects for Cloud Computing
Data Centers: Recent Advances and Future Challenges. In: International
Symposium on Grids and Clouds (hold at Academia Sinica in Taipei,
Taiwan from 16-23 March 2018)

4. Emara TZ, Huang J (2019) A distributed data management system to
support large-scale data analysis. J Syst Softw 148:105-115

5. Bonawitz K, Eichner H, Grieskamp W, Huba D, Ingerman A, vanov V, Kiddon
C, Konecny J, Mazzocchi S, McMahan H, Van Overveldt T (2019) Towards
Federated Learning at Scale: System Design. arXiv preprint arXiv:01046

6. MaX Gao H, Xu H, Bian M (2019) An loT-based task scheduling
optimization scheme considering the deadline and cost-aware scientific
workflow for cloud computing. EURASIP J Wirel Commun Netw 249:2019.
https://doi.org/10.1186/513638-019-1557-3

7. ZhuY, Zhang W, Chen 'Y, Gao H (2019) A novel approach to workload
prediction using attention-based LSTM encoder-decoder network in
cloud environment. EURASIP J Wirel Commun Netw 247:2019. https://doi.
0rg/10.1186/513638-019-1605-7

8. GaoH,Zhang K, Yang J, Wu F, Liu H (2018) Applying improved particle
swarm optimization for dynamic service composition focusing on quality
of service evaluations under hybrid networks. Int J Distrib Sens
Netw(IJDSN) 14(2):1-14

9. DengS§, Xiang Z, Zhao P, Taheri J, Gao H, Yin J, Zomaya A (2020)
Dynamical resource allocation in edge for trustable iot systems: a
reinforcement learning method. IEEE Trans Ind Inform:974875. https://doi.
org/10.1109/T11.2020.2X00000

10. Kuang L, Gong T, OuYang S, Gao H, Deng S (2020) Offloading Decision
Methods for Multiple Users with Structured Tasks in Edge Computing for
Smart Cities. Futur Gener Comput Syst (FGCS). https://doi.org/10.1016/j.
future.2019.12.039

11. SenS, Shue D, Ihm S, Freedman MJ (2013) Scalable, Optimal Flow Routing
in Datacenters via Local Link Balancing. In: Proc ACM CoNEXT. pp 151-162

12. Hopps C (2000) Analysis of an Equal-Cost Multi-Path Algorithm. RFC2992,
Internet Engineering Task Force

13. Al-Fares M, Radhakrishnan S, Raghavan B, Huang N, Vahdat A (2010)
Hedera: Dynamic How scheduling for data center networks. Symposium
on Networked Systems Design and Implementation (hold at San Jose,
US.A). USENIX

14. Curtis AR, Kim W, Yalagandula P (2011) Mahout: Low-overhead
datacenter traffic management using end-host-based elephant

https://doi.org/10.1109/TNET.2015.2434879
https://doi.org/10.1109/TNET.2015.2434879
https://doi.org/10.1186/s13638-019-1557-3
https://doi.org/10.1186/s13638-019-1605-z
https://doi.org/10.1186/s13638-019-1605-z
https://doi.org/10.1109/TII.2020.2X00000
https://doi.org/10.1109/TII.2020.2X00000
https://doi.org/10.1016/j.future.2019.12.039
https://doi.org/10.1016/j.future.2019.12.039

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications

20.

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33

34.

detection. In: 2011 Proceedings IEEE INFOCOM, Shanghai. pp 1629-1637.
https://doi.org/10.1109/INFCOM.2011.5934956

Perry J, Ousterhout A, Balakrishnan H, Shah D, Fugal H (2014) Fastpass: A
Centralized Zero-queue Datacenter Network, SIGCOMM 14 held in
Chicago, lllinois. In: Proceedings of the 2014 ACM conference on
SIGCOMM. pp 307-318. https://doi.org/10.1145/2619239.2626309
Kandula S, Katabi D, Sinha S, Berger A (2007) Dynamic load balancing
without packet reordering. SIGCOMM Comp Comm Rev:37

He K, Rozner E, Agarwal K, Felter W, Carter J, Akella A (2015) Presto:
Edge-based Load Balancing for Fast Datacenter Networks. In: ACM
SIGCOMM Computer Communication Review. pp 465-478. https://doi.
org/10.1145/2829988.2787507

Ghorbani S, Godfrey B, Ganjali Y, Firoozshahian A (2015) Micro Load
Balancing in Data Centers with DRILL, HotNets-XIV (hold in Philadelphia,
PA). In: Proceedings of the 14th ACM Workshop on Hot Topics in
Networks, Article No.: 17. pp 1-7. https://doi.org/10.1145/2834050.
2834107

Wischik D, Raiciu C, Greenhalgh A, Handley M (2011) Design,
implementation and evaluation of congestion control for multipath TCP.
Symposium on Networked Systems Design and Implementation (hold at
Boston, MA, USA). USENIX

Kabbani A, Vamanan B, Hasan J, Duchene F (2014) Flowbender: Flow-level
Adaptive Routing for Improved Latency and Throughput in Datacenter
Networks. CONEXT "14 (hold in University of Technology Sydney in
Sydney, Australia). In: Proceedings of the 10th ACM International on
Conference on emerging Networking Experiments and Technologies.
pp 149-160. https://doi.org/10.1145/2674005.2674985

Greenberg A, Hamilton JR, Jain N, Kandula S, Kim C, Lahiri P, Maltz DA,
Patel P, Sengupta S (2009) VL2: a scalable and flexible data center
network. ACM SIGCOMM CCR 39(4):51-62

Niranjan Mysore R, Pamboris A, Farrington N, Huang N, Miri P,
Radhakrishnan S, Subramanya V, Vahdat A (2009) Portland: a scalable
fault-tolerant layer 2 data center network fabric. ACM SIGCOMM CCR
39(4):39-50

Guo C, Lu G, Li D, Wu H, Zhang X, Shi Y, Tian C, Zhang Y, Lu S (2009)
BCube: a high performance, server-centric network architecture for
modular data centers. ACM SIGCOMM CCR 39(4):63-74

Guo C,Wu H, Tan K, Shi L, Zhang Y, Lu S (2008) DCell: a scalable and
fault-tolerant network structure for data centers. ACM SIGCOMM CCR
38(4):75-86

Liang M (2006) A method for vector address coding. Chinese patent
McKeown N (2009) Software-defined Networking. IEEE INFOCOM
Keynote Talk 17(2):30-32

Bianco A, Krishnamoorthi V, Li N, Giraudo L (2014) OpenFlow driven
ethernet traffic analysis. In: 2014 IEEE International Conference on
Communications (ICC), Sydney. pp 3001-3006. https://doi.org/10.1109/
ICC.2014.6883781

Benson T, Akella A, Maltz DA (2010) Network traffic characteristics of data
centers in the wild. In: IMC. Association for Computing Machinery New
York NY United States (ACM), Melbourne

Kandula S, Sengupta S, Greenberg AG, Patel P, Chaiken R (2009) The
nature of data center traffic: Measurements analysis. In: IMC. Association
for Computing Machinery, New York, NY, United States (ACM), Chicago
Curtis AR, Mogul JC, Tourrilhes J, Yalagandula P, Sharma P, Banerjee S
(2011) Devoflow: Scaling flow management for high-performance
networks. In: SIGCOMM. Association for Computing Machinery, New York,
NY, United States (ACM), Toronto

Katta N, Ghag A, Hira M, Keslassy |, Bergman A, Kim C, Rexford J (2017)
Clove: Congestion-Aware Load Balancing at the Virtual Edge. In: CONEXT.
Association for Computing Machinery, New York, NY, United States
(ACM), Incheon

Kandula S, Katabi D, Davie BS, Charny A (2005) Walking the Tightrope:
Responsive yet stable traffic engineering. In: SIGCOMM. Association for
Computing Machinery, New York, NY, United States (ACM), Philadelphia
Wu X, Yang X (2012) DARD: Distributed adaptive routing for datacenter
networks. In: ICDCS. IEEE, Macau

Lin X-Y, Chung Y-C, Huang T-Y (2004) 18th International Parallel and
Distributed Processing Symposium, 2004. Proceedings., Santa Fe. https://
doi.org/10.1109/IPDPS.2004.1302913

35.

36.

37.

(2021) 10:13 Page 14 of 14

Raiciu C, et al (2011) Improving datacenter performance and robustness
with multipath tcp. In: SIGCOMM. Association for Computing Machinery,
New York, NY, United States (ACM), Toronto

AL-FARES M, LOUKISSAS A, VAHDAT A (2008) A Scalable,Commodity Data
Center Network Architecture. In: Proceedings of ACM SIGCOMM.
Association for Computing Machinery, New York, NY, United States
(ACM), Seattle

Alizadeh M, Greenberg A, Maltz DA, Padhye J, Patel P, Prabhakar B,
Sengupta S, Sridharan M (2010) Data center tcp (dctcp). ACM SIGCOMM
Comput Commun Rev 40(4):63-74

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

https://doi.org/10.1109/INFCOM.2011.5934956
https://doi.org/10.1145/2619239.2626309
https://doi.org/10.1145/2829988.2787507
https://doi.org/10.1145/2829988.2787507
https://doi.org/10.1145/2834050.2834107
https://doi.org/10.1145/2834050.2834107
https://doi.org/10.1145/2674005.2674985
https://doi.org/10.1109/ICC.2014.6883781
https://doi.org/10.1109/ICC.2014.6883781
https://doi.org/10.1109/IPDPS.2004.1302913
https://doi.org/10.1109/IPDPS.2004.1302913

	Abstract
	Keywords

	Introduction
	Related work
	Addressing scheme and load-balancing algorithm
	Port-based addressing and forwarding
	A novel routing mechanism
	Shim layer for multipath detection
	Load balancing measure metric
	Port forwarding load-Balancing scheduling algorithm
	Handing asymmetry

	Performance evaluation
	System setting
	Overheads analysis
	Workloads
	Results and evaluation

	Conclusion
	Acknowledgments
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher's Note

