
Journal of Cloud Computing:
Advances, Systems and Applications

Zeng et al. Journal of Cloud Computing: Advances, Systems
and Applications (2020) 9:38
https://doi.org/10.1186/s13677-020-00189-4

RESEARCH Open Access

Towards secure and network state
aware bitrate adaptation at IoT edge
Zeng Zeng1*, Hang Che2, Weiwei Miao1, Jin Huang1, Hao Tang1, Mingxuan Zhang1 and Shaqian Zhang1

Abstract

Video streaming is critical in IoT systems, enabling a variety of applications such as traffic monitoring and health
caring. Traditional adaptive bitrate streaming (ABR) algorithms mainly focus on improving Internet video streaming
quality where network conditions are relatively stable. These approaches, however, suffer from performance
degradation at IoT edge. In IoT systems, the wireless channels are prone to interference and malicious attacks, which
significantly impacts Quality-of-Experience (QoE) for video streaming applications. In this paper, we propose a secure
and network-state-aware solution, SASA, to address these challenges. We first study the buffer-level constraint when
increasing bitrate. We then analyze the impact of throughput overestimation in bitrate decisions. Based on these
results, SASA is designed to consist of both an offline and an online phase. In the offline phase, SASA precomputes the
best configurations of ABR algorithms under various network conditions. In the online phase, SASA adopts an online
Bayesian changepoint detection method to detect network changes and apply precomputed configurations to make
bitrate decisions. We implement SASA and evaluate its performance using 429 real network traces. We show that the
SASA outperforms state-of-the-art ABR algorithms such as RobustMPC and Oboe in the IoT environment through
extensive experiments.

Keywords: Adaptive bitrate algorithm, IoT

Introduction
With the rapid development of wireless communication
and sensing technology, IoT (Internet of Things) has
enabled a variety of applications such as environmen-
tal monitoring, smart manufacturing, and health caring
[1–7]. In these applications, video streaming is of great
importance. For example, cameras are deployed at opti-
cal lens factories to monitor the production process and
perform quality check [8]. And people also use cameras to
detect falls of the elderly [9] automatically. According to
recent studies [10–14], video analytics algorithms such as
detection and recognition are susceptible to video/image
quality distortions. Therefore, delivering steady and high-
quality videos is critical for IoT applications [15–18].

*Correspondence: zengzeng.nju@gmail.com
1Information and Telecommunication Branch, State Grid Jiangsu Electric
Power Company, Nanjing, China
Full list of author information is available at the end of the article

In recent years, many efforts have beenmade to improve
Internet video streaming quality with adaptive bitrate
(ABR) algorithms [19–23]. And state-of-the-art ABR algo-
rithms have been widely used in popular online video
services such as Netflix and Hulu. Generally speaking, the
goal of ABR algorithms is to play the video at the highest
possible bitrate whileminimizing rebuffering events. Typ-
ically, an ABR algorithm operates in the followingmanner.
The video file is first segmented into short chunks. And
then, chunks are encoded at multiple bitrates indepen-
dently. For each video chunk, the ABR algorithm adap-
tively chooses a proper bitrate to download in order to
optimize different QoEmetrics such as the average bitrate
of video playback, the time of rebuffering during playback,
and the smoothness of picture in video playback [24].
Existing approaches, however, are inadequate for pro-

viding high QoE at IoT edge since IoT systems pose addi-
tional challenges to video streaming. Firstly, most devices
at IoT edge adopt low power wireless communication to

© The Author(s). 2020Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-020-00189-4&domain=pdf
mailto: zengzeng.nju@gmail.com
http://creativecommons.org/licenses/by/4.0/

Zeng et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:38 Page 2 of 12

transfer data [25–27]. Secondly, these systems are often
deployed in harsh or remote environments such as fac-
tories, oilfields, etc. Thus, wireless link quality is volatile
and vulnerable to environmental interference [28, 29] and
malicious attacks [30, 31]. Existing algorithms suffer from
such link dynamics in IoT systems and may result in
misleading bitrate selection. Take Robust MPC algorithm
[19] for example. As shown in Fig. 1, when link through-
put decreases at t0, the Robust MPC algorithm cannot
capture this sudden change in time. The predicted net-
work throughput stays stable untile t1. As a result, the
buffer at the player side drains after t3, and the rebuffer-
ing process continues until t4, which significantlyb
impacts QoE.
In this paper, we study the adaptive bitrate streaming

problem at IoT edge. To overcome these challenge, we
propose a secure and network state aware bitrate adap-
tation algorithm SASA. Specifically, we model a video
session as a piecewise-stationary sequence of network
states.We then devise an algorithm to detect the change of
network state automatically. Once it changes, we search a
precomputed table for best parameter configurations and
apply them in realtime.
We validate SASA design using 429 throughput traces

collected by Akhtar et al. [21]. We use Mahamahi emula-
tion tool [32] to mimic IoT network behavior. And SASA
is implemented in a reference DASH client dash.js [33].
Through comparison with state-of-the-art ABR algorithm
RobustMPC [19] and Oboe [21], we show that the median
QoE improvement of SASA is 4.5% and 4.2% respectively.
The remainder of this paper is organized as follows. We

discuss related work in “Related work” section. Then, in
“Our approach: SASA” section, we present the motivation
of this work and the detailed system design. Further-
more, an evaluation is presented in “Evaluation” section.
Finally, we conclude this paper and discuss future work in
“Conclusion” section.

Related work
Existing ABR algorithms can be mainly divided into
three categories, according to their different focus, i.e.,
bandwidth-based algorithms, buffer-based algorithms,
and hybrid algorithms.

Bandwidth-based algorithms
Themain idea of bandwidth-basedmethods is first to esti-
mate link bandwidth and then adjust bitrate accordingly.
FESTIV [34] estimates bandwidth to be the harmonic
mean of observed throughput over recent chunks. It then
designs a delayed update approach to achieve a tradeoff
between fairness, stability, and efficiency. Sun et al. [35]
systematically quantify throughput predictability using a
large-scale dataset and propose a Hidden-Markov-Model
based throughput predictor to enhance bitrate selection.
Bandwidth-based algorithms rely on accurate and stable

throughput prediction. In practice, however, throughput
estimations are usually biased, and accurate bandwidth
prediction in wireless networks is still challenging [36, 37].

Buffer-based algorithms
Buffer-based algorithms argue that link bandwidth esti-
mation is usually unreliable. Thus they rely on buffer
level information to adapt bitrate. BBA-0 [38] chooses
video bitrate simply based on current buffer occupancy.
It shows that such a method can reduce the rebuffer-
ing rate by 10-20% compared to Netflix’s then-default
ABR algorithm. Spiteri et al. [39] formulate bitrate adap-
tation as a utility maximization problem. They propose an
online control algorithm BOLA which adopts Lyapunov
optimization techniques to maximize video quality and
minimize rebuffering.
The advantage of buffer-based algorithms is they only

need to keep the buffer at a pre-defined level. But
the drawback is, throughput information during video
streaming is discarded.

Fig. 1 Throughput overestimation of RobustMPC

Zeng et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:38 Page 3 of 12

Hybrid algorithms
Li et al. [40] observes that when multiple video stream-
ing clients compete at a network bottleneck, the TCP
throughput observed by a client cannot indicate its fair-
sharing bandwidth. Thus they employ a probe-and-adapt
method at the application layer and propose a four-step
algorithm PANDA to reduce the instability of video bitrate
selection. Yin et al. [19] develop a formal control-theoretic
model of the bitrate adaptation problem and propose
a model predictive control algorithm by solving a non-
trivial discrete optimization problem at each time step.
Pensieve [41] models a reinforcement learning problem
and selects bitrates for future chunks solely based on the
performance of past decisions. Oboe [42] focuses on auto-
tune parameters of ABR algorithms to different network
conditions in realtime. It significantly improves the per-
formance of algorithms such as RobustMPC and BOLA.
As illustrated in Fig. 1, these algorithms suffer from per-
formance degradation in unstable network conditions.
SASA differs from existing studies in the following

aspects. First, we study both the buffer-level constraint
and impact of throughput overestimation in bitrate deci-
sions and apply the results in the design of SASA. Second,
SASA consists of an offline phase in which the best config-
urations are precomputed under various network condi-
tions. Third, SASA adopts an online Bayesian changepoint
detection algorithm to detect network changes and apply
precomputed configurations to make bitrate decisions.

Our approach: SASA
Systemmodel
We define QoE as a linear combination of the average
bitrate of video playback, the time of rebuffering during
playback, and the smoothness of picture in video playback
following [19, 24]:

QoElin =
N∑

i=1
qi − λ

N−1∑

i=1
|qi+1 − qi| − μ

N∑

i=1
ti (1)

N is the number of video blocks, and qi is the bitrate of the
block i. Thus |qi+1 − qi| is the bitrate difference between
block i and block i + 1, and λ denotes the penalty coef-
ficient of bitrate switching. Similarly, ti is the rebuffering
time when downloading the block i, and μ is the penalty
coefficient of rebuffering.
Following recent studies on wireless channels and net-

work performance [43–45], we assume that wireless links
are quasi-static. That means, we can model the network
state as a stable process in phases. Specifically, in each
phase, the link throughput follows a normal distribution
denoted as N (μi, σi). Thus, the network state change can
be expressed as

N (μi, σi) → N (μi+1, σi+1), (2)

where N (μi, σi) and N (μi+1, σi+1) represent the link
throughput distributions in phase i and i + 1 respectively.

Motivation
In this section, we study the performance of a state-of-
the-art ABR algorithm RobustMPC and illustrate two key
observations that motivate our system design.

Observation 1: buffer-level constraint
The first observation is that, when the network state
is stable, existing algorithms such as RobustMPC use
throughput prediction results to adjust bitrate, which may
lead to unstable QoE. In this paper, however, we find
that we should adjust bitrate not only based on network
throughput but also buffer level.
Without loss of generality, assume that in a stable net-

work state, the network throughput is always constant C.
The available bitrates of video blocks are {q0, q1, ..., qn},
where q0 < q1 < ... < qn. The length of each video block
is T, and the penalty coefficient of bitrate change QoElin
is 1. Suppose the bitrate of current video block is qd(t),
network throughput prediction is Cp(t), and buffer level is
B(t).

Corollary 1 If the bitrate is to be increased from qd(t)
to qd(t + 1), the following equation must hold to avoid
rebuffering events:

qd(t + 1) ≤ (B(t) + 4T) ∗ Cp(t)
5T

(3)

Proof Accoding to B(t)’s definition, we have

B(t + i) = B(t + i − 1) − T ∗ qd(t + i)
Cp(t)

+ T (4)

If we want no rebuffering events during downloading the
following 5 consecutive blocks, we have

B(t + i − 1) ≥ T ∗ qd(t + i)
Cp(t)

(5)

Combining (4) and (5), we get

B(t) ≥ 5T ∗ qd(t + 1)
Cp(t)

− 4T (6)

Therefore, the following equation holds

qd(t + 1) ≤ (B(t) + 4T) ∗ Cp(t)
5T

. (7)

From the above analysis, we can see that if we want
to switch to a higher bitrate, a higher level of a buffer
is needed. In other words, it means we can reduce the
bitrate switching by appropriately reducing the predicted
throughput with a discount factor d.

Zeng et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:38 Page 4 of 12

In order to verify Corollary 1, we study a real trace gen-
erated from [21] with constant network throughput. In the
study, we replace the original network throughput Cp(t)
with Cp(t)′ = Cp(t)/(1 + d), where d is ranging from
{0, 0.05, 0.10, . . . , 0.95, 1}. When d is zero, it means Cp(t)′
is exactly Cp(t). When d is 1, it means Cp(t)′ is only half of
the original predicted value Cp(t).
We record the decisions of the RobustMPC algorithm,

and illustrate an example in Fig. 2 with a constant network
throughput of C = 1750bps. It depicts that, when d is set
to 0, the bitrate is adjusted frequently, which may cause
users to receive different quality video blocks. On the con-
trary, when d is set to 0.4, bitrate selection tends to be
stable. The reason is, at d = 0.4, the network throughput
estimation is lower than its true value. Thus MPC algo-
rithms will not increase bitrate until enough content is
accumulated in the buffer. Moreover, after it switches to
a higher bitrate since there are enough buffer contents, it
can also stay at the higher bitrate for a longer period.

Observation 2: throughput overestimation
The second observation is that, when the network condi-
tion is unstable, throughput decreasemay lead to rebuffer-
ing events. The reason is, most ABR algorithms rely on
moving average methods such as EWMA (Exponentially
Weighted Moving Average) to predict network through-
put [19], and an essential characteristic of moving aver-
age methods is that they lag the input data. In unstable
network environments, such lags will result in through-
put overestimation when network throughput decreases.
And the overestimation is a cause of rebuffering
events.
Figure 1 illustrates an example from a dataset consisting

of 500 video sessions. From the left subfigure, we can see
that at time t1, the network throughput quickly decreases.
But throughput prediction result does not drop until time
t2. There is a about 5-second gap between t1 and t2. As
a result, as shown in the right subfigure, the buffer at

Fig. 2 Observation 1: Bitrate selection results when d is 0 and 0.4

the player side drains after t3, and the rebuffering process
continues until t4, which significantly impacts QoE.
Similar results can also be found in the Oboe algo-

rithm [21]. Oboe dynamically adjusts the parameters
of RobustMPC to reduce rebuffering events. However,
through trace study, we find that throughput overestima-
tion still exists.
For example, as shown in Fig. 3, there is a sudden net-

work throughput at time t0. Since Oboe adjusts network
prediction results based on the previous five blocks, it
cannot capture this sudden change. Consequently, the
network throughput is overestimated, leading to rebuffer-
ing events.

SASA design
Based on previous observations, in this paper, we propose
a two-stage approach called SASA to dynamically adjust
ABR algorithms at IoT edge.
The system architecture is shown in Fig. 4. First, live

video streams from multiple cameras are forwarded to
the edge server. In order to keep the data secure, the
edge server adopts RC4 [46] as the stream cipher to
encrypt/decrypt video streams. And in the offline phase,
an analytical client generates offline network through-
put traces and mimics the behavior of network condition
changes. Then the virtual player invokes ABR algorithms
to iterate all cases to find the optimal discount factor d
that maximizes QoE. The results are saved in the con-
figuration table. In the online phase, when the analytical
client receives encrypted live video streams, it first records
realtime network throughput traces. Afterward, a change
point detection algorithm is performed to detect net-
work throughput changes. If a change point is detected,
bitrate decisions are made based on pre-computed results
according to precomputed results in the configuration
table.

Offline phase

Algorithm 1Offline Phase
1: for each μ ∈ {50, 100, 150, ..., 10000}kbps do
2: for each σ ∈ {0, 0.05μ, 0.1μ, ..., 0.95μ,μ} do
3: dopt = 0,QoEopt = −∞
4: for each d ∈ {0, 0.05, ..., 1.00} do
5: Configure Virtual Player with 〈(μ, σ) , d〉
6: Record current QoE as QoEcurr
7: if QoEcurr ≥ QoEopt then
8: dopt = d,QoEopt = QoEcurr
9: end if

10: end for
11: ConfigTable.save(μ, dbest)
12: end for
13: end for

Zeng et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:38 Page 5 of 12

Fig. 3 Observation 2: Throughput overestimation of Oboe

Offline phase
As illustrated in Algorithm 1, in order the iterate all
the possible network conditions, we enumerate μ from
0.05Mbps to 10Mbps with an interval of 0.05Mbps in
Line 1. For each μ, we set the standard deviation σ

to be [0, 0.05μ, 0.1μ, . . . , 0.95μ,μ] and get 2200 traces
(Line 2). In Line 4, for each trace, we search the optimal
discount factor dopt for QoElin within range [0, 1]. The
searching process is as follows (Line 5-9): we first config-
ure the virtual player with network throughput N (μ, σ)

and discount factor d; then we record the resulting QoE
as QoEcurr ; if QoEcurr is larger than QoEopt , QoEopt is
replaced with QoEcurr , and d is recorded as dopt .
In practice, we find that in about 94% cases, when μ is

fixed, different σ s share a common optiaml dopt . And in
the rest 6% cases, for the same μ, the differences between
dopt are with 0.1.

Online phase
Algorithm 2 illustrates the online phase of SASA. Dur-
ing the downloading process, SASA records network
throughput values every 100ms. In Line 2-4, if current
video chunk is not downloaded, we simply record the
throughput value in queue. After current video chunk is
downloaded, SASA detects the change point of network
throughput trace usning an online Bayesian change point
detection algorithm (Line 6). If a change point is detected,
the configuration engine starts to work (Line 7-10). It first
finds an optimal value of discount factor d in the configu-
ration table and then reconfigures this parameter for ABR
algorithms. In addition, if the current change point is a
sudden decreasing point, we calculate predicted through-
put of predt in Line 12-13. And if predt is larger than
μ, we set the throughput prediction value to μ (Line 14-
16). Afterward, based on equation (7), we choose a set

Fig. 4 The architecture of SASA

Zeng et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:38 Page 6 of 12

Algorithm 2Online Phase
1: for each network throughput value nt at time t do
2: if current video chunk is not downloaded then
3: queue = queue ∪ (t, nt)
4: continue
5: end if
6: detect change point in queue
7: if a change point p is detected then
8: μ = ChangePointDetector.getAverage()
9: d = ConfigTable.getDiscount(μ)

10: end if
11: if p is a decreasing point then
12: avg = 5/

∑4
i=0

downloadTime[t−i]
CHUNK_SIZE

13: predt = avg
1+d

14: if predt > μ then
15: predt = μ

16: end if
17: end if
18: choose [bt+1, bt+2, ..., bt+5] s.t.

QoElin is maximized for the next 5 chunks
19: set bitrate to bt+1
20: queue = ∅
21: end for

of optimal bitrates [bt+1, bt+2, ..., bt+5] such that QoElin is
maximized for the next 5 chunks (Line 18). Finally, bt+1 is
selected as the new bitrate (Line 19).
Change Point Detection In order to detect network

throughput changes in realtime, we adopt an online
Bayesian changepoint detection algorithm [47] here.
When a video chunk is being downloaded, we first mea-
sure network throughputs every ts seconds, and get
[c1, c2, . . .]. For each data point ci in the queue, it could be
either a change point or a growth point. We use ri to rep-
resent how long ci has been living. If ci is a change point,
ri = 0, and if ci is a growth point, ri = ri−1 + 1. Given the
sampling point ci, we calculate the distribution of ri using:

P(ri|c1:i) = P(ri, c1:i)/P(c1:i) (8)

Finally, we calculate the expectation E(ri|c1:i), and if
E(ri|c1:i) is approximately 0, we judge that a change point
is detected. In practice, when ci is a change point, ri is
not necessarily 0, thus we use a thrshold rthreshold instead.
We then get the network state (μi, σi) by calculating the
average value and standard deviation of recent points and
search the configuration table for optimal d.
Throughput Overestimation Detection After

a change point is detected, we also have to detect
throughput overestimation. We compare the network
throughput prediction Cp(i)′ = Cp(i)/(1 + d) with μi.
If μi < Cp(i)/(1 + d), we can judge that a throughput
overestimation is detected. We then reset Cp(i)′ to be μi.

Implementation
We implement a virtual player to mimic the behavior of
a client. In the online phase, the virtual player can simu-
late the process of buffering and playing process of video
chunks, as well as network throughput changes. During
the playing process, it calls ABR algorithms to obtain the
bit rate decision, simulates the playing process of video,
and finally output the user experience index of playing
(average bit rate, rebuffering time, bitrate switching sit-
uation, and QoElin) to measure the performance. In the
offline phase, the virtual player simulates the video playing
process with no actual block buffering and video play-
ing. Thus it can quickly find the optimal d in the whole
search space. In our experiment, it simulates playing a
193-second video only in less than 1s.
The main functions in Fig. 4 are achieved by rewrit-

ing Dash.js [33]. The advantage of rewriting Dash.js is, it
is purely on the client side. Thus the server settings can
remain unchanged. The rewriting is mainly related to the
following three modules: ABRRulesCollection, ABRCon-
troller, ThroughputHistory. In Dash.js, the client obtains
a video block by sending an XMLHttpRequest. It records
the throughput trace in the downloading process of the
video block by setting the onprogress callback function.
When the block is downloaded, the throughput traces at
the time of downloading are transferred to the Through-
putHistory module, Nevertheless, these traces are not
saved and processed in the existing dash.js. We rewrite
the ThroughputHistory module, save the traces in the
video block download process, and provides an interface
for other modules to obtain these traces. ABRccontroller
module is the main interface of the ABR algorithm in
dash.js. It invokes the getmaxquality interface of the ABR-
RulesCollection module to get the bit rate decision of
the next block. ABRRulesCollection calls a variety of ABR
algorithms, obtains their decisions respectively, and then
selects one of them as the final decision. In this paper, we
implement SASA in dash.js and add it to the ABRRule-
sCollectionmodule.

Evaluation
In this section, we compare the performance of SASAwith
state-of-the-art algorithms Oboe and RobustMPC.

Experiment setup
Dataset The data used in our experiment is extracted
from Oboe dataset [48]. These traces are collected over
three months under various network conditions such as
WiFi and 3G/4G. And the video clips downloaded by
clients are between 4-6 minutes.
Experimental Metrics Following Oboe [21] and MPC

[19], we focus on the average bit rate of video playback,
rebuffering time as well as the change of bitrate, and
measure the overall performance through QoElin which

Zeng et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:38 Page 7 of 12

is a linear combination of above metrics. For rebuffering
penalty coefficient ρ and the bit rate switching penalty
coefficient λ in the QoElin, we set ρ = 4300 and λ = 1
following [21].
Hardware Settings We deploy video chunks as static

files on an Nginx server. The available bitrates are {300,
700,1200,1850,2850,4300} Kbps. The server is with a 4-
core, 1.2Ghz, Intel i7 CPU, and the operating system is
Ubuntu 16.04.
Software Settings To mimic network behaviors in

the IoT environment, we adopt the Mahimahi mm-
link tool [32] to simulate network throughputs. And
we use selenium (version 3.141.0) to control the
Chrome browser (version 73.0) to play the video,
and then collect the browser log to get the video
playback index. The client’s video buffer size is 20
seconds.

System performance
QoE In Fig. 5a, the CDF curves represent SASA’s
improvement over RobustMPC and Oboe respectively.
The median improvement of SASA over RobustMPC is
4.5%. And the median improvement of SASA over Oboe
is 4.2%.

Average Bitrate Figure 5b depicts the average bitrates
of the three algorithms. The average bitrates are relatively
close. For example, the median value of average bitrates
is 2455.2 Kbps for SASA, 2467.7kbps for RobustMPC,
2458.9 Kbps for Oboe. We can also see that bitrate
switches in SASA and Oboe are relatively stable, com-
pared with RobustMPC.In terms of median value, the
bitrate changes of SASA and Oboe are 153.2 Kbps, while
that of RobustMPC is 172.4 Kbps.
Rebuffering Time From Figure 5, it can be seen that

SASA has the shortest rebuffering time and the best per-
formance, followed by Oboe, and RobustMPC has the
longest rebuffering time. For 22.9% of the sessions, SASA
experienced a rebuffering phenomenon, with an average
rebuffering time of 1.49 s. For 26.2% of the sessions, Oboe
experienced a rebuffering phenomenon, with an aver-
age rebuffering time of 1.96 s. For 50.9% of the sessions,
RobustMPC experienced a rebuffering phenomenon, with
an average rebuffering time of 1.37 s. Compared with
RobustMPC, SASA decreases the rebuffering time in
42.1% of sessions, with an average reduction of 0.99s. In
5.6% of sessions, SASA increases the rebuffering time,
with an average increment of 0.73s. Compared with Oboe,
in 8.0% sessions, SASA reduces the rebuffering time, with

Fig. 5 Comparision with RobustMPC and Oboe

Zeng et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:38 Page 8 of 12

Fig. 6 An example of reducing rebuffering time by changepoint detection

an average reduction of 2.24s. And in 1.0% sessions, SASA
increases the rebuffering time, with an average increment
of 0.67s.
From previous data, we can see that compared with

Oboe and RobustMPC, the rebuffering time is reduced
in SASA. The reduction is attributed to changepoint
detection since the network throughput overestima-
tion. We illustrate an example in Fig. 6. Oboe detects
the change of network state at time t1, but the net-
work throughput prediction is not lowered, result-
ing in rebuffering at time t2. On the contrary, after
detecting the sudden drop of throughput at t1, SASA
adjusts the predicted value of throughput by decreas-
ing d, thus avoiding rebuffering events. However, even
with changepoint detection, rebuffering events still
occur. And in a few sessions, the rebuffering time
increases. We will discuss the reasons in the following
sections.
To evaluate the impact of network throughput pre-

diction, we modify the parameter k in prediction. We
estimate network throughput based on the most recent
chunk, while the default way is based on the recent five
chunks (kdefault = 5). As shown in Fig. 7, we can eas-
ily find that when k = 1, the variation of the network is
more significant than that default. In specific, the bitrate
decision tends to be less stable. In specific, we find that
the median of average bitrate when k = 1 is 0.7% higher
than that when k = 5. But the corrsponding QoElin is
1.4% less.

Analysis of rebuffering
As presented above, SASA avoids the overestimation of
network throughput, thus reducing the rebuffering fre-
quency and rebuffering time. However, rebuffering events
still occur in SASA, and the rebuffering time in some ses-
sions is longer than that in RobustMPC and Oboe. We
perform experiments and find that the main reasons are
as follows:

Rebuffering at the beginning. According to the imple-
mentation mechanism of dash.js, after the second video
chunk, it needs to maintain a minimum buffer size. That
is, when the content in the buffer is less than a certain
threshold, it will stop playing and cause a rebuffering
event. Such a rule makes rebuffering events frequently
happen between the second and third chunk. And the
corresponding rebuffering time accounts for 51.8% of the

Fig. 7 Impact of network throughput prediction results. In (a),
network throughput is estimated based on the most recent chunk. In
(b), network throughput is estimated using the recent five chunks

Zeng et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:38 Page 9 of 12

Fig. 8 Rebuffering events for SASA and Oboe

total rebuffering time Since this is due to the implementa-
tion of dash.js, the rebuffering time of SASA, RobustMPC,
and Oboe are similar at the beginning.
Rebuffering caused by throughput reduction. During

the process of downloading a chunk, a sudden drop in
network throughput will raise a rebuffering event. Even if
SASA detects such a changepoint in realtime, the recon-
figuration of ABR algorithms takes effect only when the
current chunk is finished downloading. Therefore, there is
a delay between the detection and rebuffering event.

Besides, we also find some cases when SASA encounters
rebuffering events while Oboe does not. Figure 8 illus-
trates an example in our experiment. At time t0, SASA
makes bitrate decisions for the next chunk. Since the cur-
rent network throughput is stable, it chooses a larger
bitrate. However, as soon as it starts downloading the next
chunk, network throughput decreases at time t1. Even if
SASA detects such a change in realtime, it cannot adjust
bitrate until the current chunk is finished downloading.
As a result, a rebuffering event happens at time t3. On the

Fig. 9 Impact of rthreshold in changepoint detection

Zeng et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:38 Page 10 of 12

other side, since Oboe detects the network change at t2,
which is later than SASA, it lowers network throughput
estimation and avoids rebuffering.
In our experiment, the rebuffering time caused by

throughput reduction accounts for 21.4% of the total
value. In the absence of a reliable and precise through-
put prediction algorithm, it is difficult to find an optimal
mechanism that can be applied in every scenario.
The network throughput is lower than the minimum

bitrate.When network throughput keeps at a lower value
than minimum bitrate for a long time, even if ABR algo-
rithms always select the lowest bit rate, rebuffering events
will frequently occur. In our experiment, we find such a
situation is rare, and only 0.7% of the total traces are in this
case. However, once it appears, it is likely to cause a long
time of rebuffering, and the rebuffering time accounts for
about 24.5% of the total value. Rebuffering events caused
by low network throughput are hard to avoid because the
only way to solve this is to accumulate the contents of the
buffer until exceeding a certain threshold.
Impact of changepoint detection
We also evaluate the impact of changepoint detection
results. By varying the parameter rthreshold in changepoint
detection, we can get different changepoint detection
results. As illustrated in Fig. 9, we find that for dif-
ferent rthreshold in {100ms, 200ms, 300ms, 400ms}, QoElin,
average bitrate, and average bitrate change are not
affected. But with a smaller rthreshold , the average rebuffer-
ing time is smaller and more stable. So we choose
rthreshold = 200ms.
System cost analysis
We also evaluate the computation cost for both offline
and online phases. In the offline phase, for each network
state (μ, σ), it needs 8 seconds to find the optimal d. Since
there are 200*20 network states, it needs 8.9 hours in
total. In the online phase, we find that for each chunk, it
needs 100ms for changepoint detection and 20ms for ABR
reconfiguration.

Conclusion
In this paper, we study network state aware transmis-
sion in IoT systems. Our solution is motivated by two
examples in real traces. We find that existing ABR algo-
rithms are not suitable for IoT systems because they are
not aware of network dynamics in IoT. We propose SASA,
which can automatically detect network state changes and
adjust bitrate decisions. Through extensive experiments,
we demonstrate the median QoE improvement of SASA is
4.5% and 4.2% respectively compared with state-of-the-art
methods.

Author information
Zeng Zeng is a senior researcher with Information and Telecommunication
Branch, State Grid Jiangsu Electric Power Company. His research interests are
Internet of Things and smart grid.

Hang Che is currently a research assistant at Tsinghua Wuxi Research Institute
of Applied Technologies. His research interests are edge computing and
wireless networks.
Weiwei Miao is a principal researcher with Information and
Telecommunication Branch, State Grid Jiangsu Electric Power Company. His
research interests includes power communication systems, wireless access
networks, and communication network management.
Jin Huang is a principle engineer with Information and Telecommunication
Branch, State Grid Jiangsu Electric Power Company. His research interests are
power communication systems and wireless communication.
Hao Tang is an assistant researcher with Information and Telecommunication
Branch, State Grid Jiangsu Electric Power Company. His research interests
includes software process improvement and practical software engineering.
Mingxuan Zhang is currently a senior researcher with Information and
Telecommunication Branch, State Grid Jiangsu Electric Power Company. His
research interests is wireless communication and wireless power network.
Shaqian Zhang is a senior engineer with Information and Telecommunication
Branch, State Grid Jiangsu Electric Power Company. His research interests
include communication networks and network security.

Abbreviations
ABR: Adaptive Bitrate; QoE: Quality-of-Experience; IoT: Internet of Things;
EWMA: Exponentially Weighted Moving Average

Acknowledgements
The authors would like to thank the Information and Telecommunication
Branch, State Grid Jiangsu Electric Power Company for supporting this work.

Authors’ contributions
Zeng Zeng and Hang Che proposed the idea and mainly wrote the
manuscript. Weiwei Miao, Jin Huang and Hao Tang collaborated in the
conception, research and algorithm design. Mingxuan Zhang and Shaqian
Zhang contributed part of the writing and the evaluations. All authors read
and approved the final manuscript.

Funding
This work was funded by State Grid Jiangsu Electric Power Company.

Availability of data andmaterials
Not Applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Information and Telecommunication Branch, State Grid Jiangsu Electric
Power Company, Nanjing, China. 2Tsinghua Wuxi Research Institute of Applied
Technologies, Wuxi, China.

Received: 2 April 2020 Accepted: 3 July 2020

References
1. Gao H, Duan Y, Shao L, Sun X (2019) Transformation-based processing of

typed resources for multimedia sources in the IoT environment. Wirel
Netw. https://doi.org/10.1007/s11276-019-02200-6

2. Kuang L, Yan X, Tan X, Li S, Yang X (2019) Predicting taxi demand based
on 3d convolutional neural network and multi-task learning. Remote Sens
11(11):1265

3. Deng S, Xiang Z, Zhao P, Taheri J, Gao H, Yin J, Zomaya AY (2020)
Dynamical resource allocation in edge for trustable iot systems: a
reinforcement learning method. IEEE Trans Ind Inform 16(9):6103–6113.
https://doi.org/10.1109/tii.2020.2974875

4. Gao H, Liu C, Li Y, Yang X (2020) V2vr: Reliable hybrid-network-oriented
v2v data transmission and routing considering rsus and connectivity
probability. IEEE Trans Intell Transp Syst : 1–14. https://doi.org/10.1109/
tits.2020.2983835

5. Gao H, Xu Y, Yin Y, Zhang W, Li R, Wang X (2019) Context-aware qos
prediction with neural collaborative filtering for internet-of-things
services. IEEE Internet Things J 7(5):4532–4542

https://doi.org/10.1007/s11276-019-02200-6
https://doi.org/10.1109/tii.2020.2974875
https://doi.org/10.1109/tits.2020.2983835
https://doi.org/10.1109/tits.2020.2983835

Zeng et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:38 Page 11 of 12

6. Mao X, Miao X, He Y, Li X-Y, Liu Y (2012) Citysee: Urban co2 monitoring
with sensors. In: 2012 Proceedings IEEE INFOCOM. IEEE. https://doi.org/
10.1109/infcom.2012.6195530

7. Chen B, Wan J, Shu L, Li P, Mukherjee M, Yin B (2017) Smart factory of
industry 4.0: Key technologies, application case, and challenges. IEEE
Access 6:6505–19

8. Using Artificial Intelligence to Improve Quality Control. http://alturl.com/
y5x8d. Access 20 Mar 2020

9. de Miguel K, Brunete A, Hernando M, Gambao E (2017) Home
camera-based fall detection system for the elderly. Sensors 17(12):2864

10. Korshunov P, Ooi WT (2011) Video quality for face detection, recognition,
and tracking. ACM Trans Multimed Comput Commun Appl 7(3):14

11. Dodge S, Karam L (2016) Understanding how image quality affects deep
neural networks. In: 2016 Eighth International Conference on Quality of
Multimedia Experience (QoMEX). IEEE. https://doi.org/10.1109/qomex.
2016.7498955

12. Marciniak T, Chmielewska A, Weychan R, Parzych M, Dabrowski A (2015)
Influence of low resolution of images on reliability of face detection and
recognition. Multimed Tools Appl 74(12):4329–49

13. Yu J, Tan M, Zhang H, Tao D, Rui Y (2019) Hierarchical deep click feature
prediction for fine-grained image recognition. IEEE Trans Pattern Anal
Mach Intell:1. https://doi.org/10.1109/tpami.2019.2932058

14. Yu J, Li J, Yu Z, Huang Q (2019) Multimodal transformer with multi-view
visual representation for image captioning. IEEE Trans Circ Syst Video
Technol:1. https://doi.org/10.1109/tcsvt.2019.2947482

15. Xiao X, Wang W, Chen T, Cao Y, Jiang T, Zhang Q (2019)
Sensor-augmented neural adaptive bitrate video streaming on UAVs. IEEE
Trans Multimed 22(6):1567–1576

16. Sakaushi A, Kanai K, Katto J, Tsuda T (2018) Edge-centric video
surveillance system based on event-driven rate adaptation for 24-hour
monitoring. In: 2018 IEEE International Conference on Pervasive
Computing and Communications Workshops (PerComWorkshops). IEEE.
https://doi.org/10.1109/percomw.2018.8480272

17. Xu X, Liu J, Tao X (2017) Mobile edge computing enhanced adaptive
bitrate video delivery with joint cache and radio resource allocation. IEEE
Access 5:16406–16415

18. Guo J, Gong X, Wang W, Que X, Liu J (2019) Sasrt: semantic-aware
super-resolution transmission for adaptive video streaming over wireless
multimedia sensor networks. Sensors 19(14):3121

19. Yin X, Jindal A, Sekar V, Sinopoli B (2015) A control-theoretic approach for
dynamic adaptive video streaming over http. In: Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication -
SIGCOMM ’15. ACM. https://doi.org/10.1145/2785956.2787486

20. Huang T-Y, Johari R, McKeown N, Trunnell M, Watson M (2014) A
buffer-based approach to rate adaptation: Evidence from a large video
streaming service. In: roceedings of the 2014 ACM Conference on Special
Interest Group on Data Communication - SIGCOMM ’14. ACM Vol. 44.
pp 187–198. https://doi.org/10.1145/2619239.2626296

21. Akhtar Z, Nam YS, Govindan R, Rao S, Chen J, Katz-Bassett E, Ribeiro B,
Zhan J, Zhang H (2018) Oboe: auto-tuning video abr algorithms to
network conditions. In: Proceedings of the 2018 ACM Conference on
Special Interest Group on Data Communication - SIGCOMM ’18. ACM.
pp 44–58. https://doi.org/10.1145/3230543.3230558

22. Juluri P, Tamarapalli V, Medhi D (2015) Sara: Segment aware rate
adaptation algorithm for dynamic adaptive streaming over http. In: 2015
IEEE International Conference on Communication Workshop (ICCW). IEEE.
https://doi.org/10.1109/iccw.2015.7247436

23. Spiteri K, Urgaonkar R, Sitaraman RK (2016) Bola: Near-optimal bitrate
adaptation for online videos. In: IEEE INFOCOM 2016 - The 35th Annual
IEEE International Conference on Computer Communications. IEEE.
https://doi.org/10.1109/infocom.2016.7524428

24. Dobrian F, Sekar V, Awan A, Stoica I, Joseph D, Ganjam A, Zhan J, Zhang H
(2011) Understanding the impact of video quality on user engagement.
In: Proceedings of the ACM SIGCOMM 2011 conference on SIGCOMM -
SIGCOMM ’11. ACM Vol. 41. https://doi.org/10.1145/2018436.2018478

25. Kirichek R, Pham V-D, Kolechkin A, Al-Bahri M, Paramonov A (2017)
Transfer of multimedia data via lora. In: Internet of Things, Smart Spaces,
and Next Generation Networks and Systems. Springer. pp 708–720.
https://doi.org/10.1007/978-3-319-67380-6_67

26. Rosário D, Zhao Z, Santos A, Braun T, Cerqueira E (2014) A beaconless
opportunistic routing based on a cross-layer approach for efficient video
dissemination in mobile multimedia iot applications. Comput Commun
45:21–31

27. Floris A, Atzori L (2015) Quality of experience in the multimedia internet
of things: Definition and practical use-cases. In: 2015 IEEE International
Conference on Communication Workshop (ICCW). IEEE. https://doi.org/
10.1109/iccw.2015.7247433

28. Dong W, Liu Y, He Y, Zhu T, Chen C (2014) Measurement and analysis on
the packet delivery performance in a large-scale sensor network.
IEEE/ACM Trans Netw (TON) 22(6):1952–1963

29. Liu Y, Mao X, He Y, Liu K, Gong W, Wang J (2013) Citysee: Not only a
wireless sensor network. IEEE Netw 27(5):42–47

30. Grieco LA, Boggia G, Sicari S, Colombo P (2009) Secure wireless
multimedia sensor networks: a survey. In: 2009 Third International
Conference on Mobile Ubiquitous Computing, Systems, Services and
Technologies. IEEE. pp 194–201. https://doi.org/10.1109/UBICOMM.2009.
27

31. Venčkauskas A, Morkevicius N, Bagdonas K, Damaševičius R, Maskeliūnas
R (2018) A lightweight protocol for secure video streaming. Sensors
18(5):1554

32. Netravali R, Sivaraman A, Das S, Goyal A, Winstein K, Mickens J,
Balakrishnan H (2015) Mahimahi: Accurate record-and-replay for {HTTP}.
In: roceedings of the 2015 USENIX Annual Technical Conference, USENIX
ATC ’15. USENIX Association. pp 417–429. https://dl.acm.org/doi/10.5555/
2813767.2813798

33. Dash.js. https://github.com/Dash-Industry-Forum/dash.js/ Access 20 Mar
2020

34. Jiang J, Sekar V, Zhang H (2014) Improving fairness, efficiency, and
stability in http-based adaptive video streaming with festive. IEEE/ACM
Trans Netw (ToN) 22(1):326–340

35. Sun Y, Yin X, Jiang J, Sekar V, Lin F, Wang N, Liu T, Sinopoli B (2016) Cs2p:
Improving video bitrate selection and adaptation with data-driven
throughput prediction. In: Proceedings of the 2016 ACM Conference on
Special Interest Group on Data Communication - SIGCOMM ’16. ACM.
pp 272–285. https://doi.org/10.1145/2934872.2934898

36. Liu Y, Lee JY (2015) An empirical study of throughput prediction in
mobile data networks. In: 2015 IEEE Global Communications Conference
(GLOBECOM). IEEE. https://doi.org/10.1109/glocom.2015.7417858

37. Zou XK, Erman J, Gopalakrishnan V, Halepovic E, Jana R, Jin X, Rexford J,
Sinha RK (2015) Can accurate predictions improve video streaming in
cellular networks?. In: Proceedings of the 16th International Workshop on
Mobile Computing Systems and Applications - HotMobile ’15. ACM.
https://doi.org/10.1145/2699343.2699359

38. Huang T-Y, Johari R, McKeown N, Trunnell M, Watson M (2014) A
buffer-based approach to rate adaptation: Evidence from a large video
streaming service. In: ACM SIGCOMM Computer Communication Review.
ACM Vol. 44. pp 187–198. https://doi.org/10.1145/2619239.2626296

39. Spiteri K, Urgaonkar R, Sitaraman RK (2016) Bola: Near-optimal bitrate
adaptation for online videos. In: IEEE INFOCOM 2016 - The 35th Annual
IEEE International Conference on Computer Communications. IEEE.
https://doi.org/10.1109/infocom.2016.7524428

40. Li Z, Zhu X, Gahm J, Pan R, Hu H, Begen AC, Oran D (2014) Probe and
adapt: Rate adaptation for http video streaming at scale. IEEE J Sel Areas
Commun 32(4):719–733

41. Mao H, Netravali R, Alizadeh M (2017) Neural adaptive video streaming
with pensieve. In: Proceedings of the Conference of the ACM Special
Interest Group on Data Communication. ACM. pp 197–210. https://doi.
org/10.1145/3098822.3098843

42. Akhtar Z, Nam YS, Govindan R, Rao S, Chen J, Katz-Bassett E, Ribeiro B,
Zhan J, Zhang H (2018) Oboe: auto-tuning video abr algorithms to
network conditions. In: Proceedings of the 2018 ACM Conference on
Special Interest Group on Data Communication - SIGCOMM ’18. ACM.
pp 44–58. https://doi.org/10.1145/3230543.3230558

43. Yang W, Durisi G, Koch T, Polyanskiy Y (2014) Quasi-static
multiple-antenna fading channels at finite blocklength. IEEE Trans Inf
Theory 60(7):4232–4265

44. Ghrayeb A, Duman TM (2003) Performance analysis of mimo systems
with antenna selection over quasi-static fading channels. IEEE Trans Veh
Technol 52(2):281–288

https://doi.org/10.1109/infcom.2012.6195530
https://doi.org/10.1109/infcom.2012.6195530
http://alturl.com/y5x8d
http://alturl.com/y5x8d
https://doi.org/10.1109/qomex.2016.7498955
https://doi.org/10.1109/qomex.2016.7498955
https://doi.org/10.1109/tpami.2019.2932058
https://doi.org/10.1109/tcsvt.2019.2947482
https://doi.org/10.1109/percomw.2018.8480272
https://doi.org/10.1145/2785956.2787486
https://doi.org/10.1145/2619239.2626296
https://doi.org/10.1145/3230543.3230558
https://doi.org/10.1109/iccw.2015.7247436
https://doi.org/10.1109/infocom.2016.7524428
https://doi.org/10.1145/2018436.2018478
https://doi.org/10.1007/978-3-319-67380-6_67
https://doi.org/10.1109/iccw.2015.7247433
https://doi.org/10.1109/iccw.2015.7247433
https://doi.org/10.1109/UBICOMM.2009.27
https://doi.org/10.1109/UBICOMM.2009.27
https://dl.acm.org/doi/10.5555/2813767.2813798
https://dl.acm.org/doi/10.5555/2813767.2813798
https://github.com/Dash-Industry-Forum/dash.js/
https://doi.org/10.1145/2934872.2934898
https://doi.org/10.1109/glocom.2015.7417858
https://doi.org/10.1145/2699343.2699359
https://doi.org/10.1145/2619239.2626296
https://doi.org/10.1109/infocom.2016.7524428
https://doi.org/10.1145/3098822.3098843
https://doi.org/10.1145/3098822.3098843
https://doi.org/10.1145/3230543.3230558

Zeng et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:38 Page 12 of 12

45. Balachandran A, Voelker GM, Bahl P, Rangan PV (2002) Characterizing user
behavior and network performance in a public wireless lan. ACM
SIGMETRICS Perform Eval Rev 30:195–205

46. Fluhrer S, Mantin I, Shamir A (2001) Weaknesses in the key scheduling
algorithm of rc4. In: International Workshop on Selected Areas in
Cryptography. Springer. pp 1–24. https://doi.org/10.1007/3-540-45537-
x_1

47. Adams RP, MacKay DJ (2007) Bayesian online changepoint detection.
arXiv preprint arXiv:0710.3742

48. Oboe traces. https://github.com/USC-NSL/Oboe/Access 20 Mar 2020

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1007/3-540-45537-x_1
https://doi.org/10.1007/3-540-45537-x_1
https://github.com/USC-NSL/Oboe/

	Abstract
	Keywords

	Introduction
	Related work
	Bandwidth-based algorithms
	Buffer-based algorithms
	Hybrid algorithms

	Our approach: SASA
	System model
	Motivation
	Observation 1: buffer-level constraint
	Observation 2: throughput overestimation

	SASA design
	Offline phase
	Offline phase
	Online phase
	Implementation

	Evaluation
	Experiment setup
	System performance
	Analysis of rebuffering
	Impact of changepoint detection
	System cost analysis

	Conclusion
	Author information
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

