
Journal of Cloud Computing:
Advances, Systems and Applications

Raza et al. Journal of Cloud Computing: Advances, Systems
and Applications (2020) 9:28
https://doi.org/10.1186/s13677-020-00175-w

RESEARCH Open Access

An efficient task offloading scheme in
vehicular edge computing
Salman Raza1, Wei Liu2*, Manzoor Ahmed3, Muhammad Rizwan Anwar1, Muhammad Ayzed Mirza4, Qibo
Sun1 and Shangguang Wang1

Abstract

Vehicular edge computing (VEC) is a promising paradigm to offload resource-intensive tasks at the network edge.
Owing to time-sensitive and computation-intensive vehicular applications and high mobility scenarios, cost-efficient
task offloading in the vehicular environment is still a challenging problem. In this paper, we study the partial task
offloading problem in vehicular edge computing in an urban scenario. Where the vehicle computes some part of a
task locally, and offload the remaining task to a nearby vehicle and to VEC server subject to the maximum tolerable
delay and vehicle’s stay time. To make it cost-efficient, including the cost of the required communication and
computing resources, we consider to fully exploit the vehicular available resources. We estimate the transmission
rates for the vehicle to vehicle and vehicle to infrastructure communication based on practical assumptions.
Moreover, we present a mobility-aware partial task offloading algorithm, taking into account the task allocation ratio
among the three parts given by the communication environment conditions. Simulation results validate the efficient
performance of the proposed scheme that not only enhances the exploitation of vehicular computation resources
but also minimizes the overall system cost in comparison to baseline schemes.

Keywords: Vehicular edge computing, Task offloading, Mobility, Mobile edge computing, Vehicular networks

Introduction
As an enabling technology for the Internet of Vehicles,
Vehicular edge computing (VEC) provides possible solu-
tions to share the computation capabilities between vehi-
cles. The continuous increase in mobile applications has
caused an exponential growth in demand for high com-
putational capability in wireless networks [1]. Vehicles are
equipped with computing and storage resources to sup-
port an intelligent transport system and a wide variety
of onboard infotainment services. It is predicted that by
2022, every self-driving car will have the computing capa-
bility to execute up to 106 dhrystone million instructions
per second [2], which is ten times that of the existing
laptops. However, vehicle’s data demands and computa-
tion requirements are also increasing day by day caused

*Correspondence: liuw@bupt.edu.cn
2Software Engineering, Beijing University of Posts and Telecommunications,
Beijing, China, 100876 Beijing, China
Full list of author information is available at the end of the article

by innovative safety and non-safety applications, i.e., aug-
mented reality, virtual reality, and immersive & real-time
interactive applications. To cope with all such evolving
communication and computation demands of vehicular
systems, mobile devices, and pedestrians, this is where
the VEC system came into existence [3, 4]. Vehicular and
infrastructural nodes, i.e., the roadside units (RSUs), can
make their communication and computational resources
available to the network.
In contrast to cloud infrastructure that may induce con-

siderable overhead in terms of delay between the cloud
and vehicles to offload the computation task [5, 6]. Since
cloud resources are usually deployed at the remote end [7].
VEC solves this problem, as it brings these computational
capabilities in close proximity and enables numerous vehi-
cles to process their required tasks at the network edge
[8]. The network latency can be minimized to a great
extent while accessing edge computing resources by the
proximity of mobile vehicles. This enables VEC to offer a

© The Author(s). 2020Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-020-00175-w&domain=pdf
mailto: liuw@bupt.edu.cn
http://creativecommons.org/licenses/by/4.0/

Raza et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:28 Page 2 of 14

prompt interactive response in the computation offload-
ing service by deploying computing nodes or servers, to
fulfill users’ demands for delay-sensitive tasks [9]. Com-
putation offloading is a promising way of transferring
some computation-intensive activities to nearby servers
[10, 11]. Moreover, VEC takes advantage of proximal vehi-
cles, to reduce the edge servers’ load. Hence, vehicles can
also perform computational tasks for VEC servers.
In addition, vehicles’ collaboration is enabled via infras-

tructure or infrastructure-independent communication
using dedicated short-range communication (DSRC) or
cellular vehicle to everything technology, i.e., vehicle to
vehicle (V2V) communication. V2V communication facil-
itates both safety and non-safety applications [12]. In V2V
communication, the vehicles share data that can define the
internal state and environment of the vehicle to widen the
perceptual horizon of the communication partner. Any
relevant information gathered from vehicular onboard
sensors can be forwarded to nearby vehicles [13]. Apart
from sharing information, nearby vehicles can help in pro-
cessing high computational tasks, which cannot be tackled
alone by a computational resource-limited vehicle. The
vehicles communicate directly with each other if they are
within their communication range. Among the various
scenarios, mobility and computation offloading that are
mainly followed within the bound of the network edge,
are based on the internet of vehicles [14]. However, still,
vehicles’ computation capability is limited to fully han-
dle the existing and emerging low latency applications’
computational demands.

Related work
VEC is becoming an eminent trend. Many researchers
have contributed to figure out the challenges that VEC
poses [15, 16]. For offloading the computation tasks to
the network edge, the VEC emerged as a new paradigm
to lighten the computation load of vehicles with lim-
ited resources and satisfies real-time responses to vehi-
cles’ task requests [17]. In [18], the authors presented a
contract-based mechanism for the allocation of resources
by exploiting mobile edge computing (MEC) servers’
resources and fulfilling the offloading requisites of the
tasks.
However, the computation and storage capacity of edge

computing is still inadequate. Therefore, some hybrid
schemes have been proposed, which integrate the advan-
tages of both edge computing and vehicular networks. For
instance, Hou et al. [16], analyzed the use of both moving
and parked vehicles as computation and communication
platforms to improve service quality. Ye et al. [19] pre-
sented a scheme to offload mobile devices and cloudlets
to fog enabled bused at low energy and transmission costs.
While Feng et al. [20] put forth a hybrid cloud com-
puting infrastructure in vehicular networks, where tasks

are offloaded to other vehicles in the vicinity or to the
RSUs. Similarly, the authors in [21] opted for a Stackelberg
game-theoretic scheme to develop a multilevel offload-
ing framework and presented a hierarchically organized
cloud-based VEC offloading scheme, in which a backup
computing neighborhood is there to support the com-
puting resources of MEC servers. Different from [16, 20],
and [21], Lai et al. [22], proposed a three-tier vehicu-
lar network that includes the cloud layer, the fog layer,
and the network layer. The authors developed coopera-
tion and scheduling schemes to manage the vehicle nodes.
Ren et al. [23], developed a partial compression offload-
ing framework, where a small part of the data is computed
locally on the vehicle while the remaining part of it is
computed on the MEC server. This allows the exploita-
tion of local and MEC computation resources efficiently.
With the integration of V2V and vehicle to infrastruc-
ture (V2I) communication, the authors in [24] came up
with a framework to offload a load of vehicles with a
low signal-to-noise-and-interference ratio to be served by
other vehicles with a greater quality link. The authors in
[25] and [26], presented a predictive combination-mode
and load-aware MEC offloading schemes, respectively, in
which tasks are offloaded via V2V relay transmission to
the MEC server or V2I uploading.
Bozorgchenani et al. [27], analyzed a partial offloading

method. Where the amount of the task to be offloaded
is estimated for reducing the outage probability consider-
ing the vehicles’ mobility in an urban environment. The
entire process of task offloading must be less than the
stay time of the vehicles. However, we consider offload-
ing the amount of task to a nearby vehicle, which can
be transmitted within the stay time by meeting the max-
imum tolerable delay of a task. This will help to utilize
the available resources of the vehicles while dividing the
task accordingly and sharing the burden of VEC sever. In
[28], the authors focused on the federated offloading in
vehicular networks to reduce the total latency. The com-
putation task is divided into three parts, i.e., to compute
locally send to nearby vehicles, and on the VEC server.
The authors assign the computing ratios to ensure and
keep the whole task computed within the given latency
deadline. However, this scheme does not fully use the
vehicular resources as it prefers assigning most of the task
part on the VEC server. Whereas, we proposed to exploit
the vehicle resources as well as ease the load of the VEC
server.
In this paper, we focus on task offloading leverag-

ing V2V (among vehicles) and V2I (between vehicle and
VEC servers) communication. Since both the vehicles and
VEC servers, are equipped with computation resources,
therefore, considering such a hybrid network in a dense
urban scenario can further boost the network’s commu-
nication and computing capacity. As we have considered

Raza et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:28 Page 3 of 14

partial task offloading, therefore, part of the computation
is handled locally, while the remaining task is offloaded
to nearby vehicles and the VEC server. We proposed a
mobility-aware partial task offloading approach enabling
the cost-efficient system. In our proposed scheme, we
consider two types of vehicles, i.e., resource-hungry vehi-
cles (RHV) and resource-rich vehicles (RRVs). As their
name implies, RHV always tries to offload its task as hav-
ing limited computing resources, while RRV has abundant
resources and helps RHVs in computation. It is pertinent
to mention here that the task offloading decisions are
determined by each RHV. Multiple RRVs might be avail-
able to process each task of RHV. Thus, our proposed
scheme helps in offloading the VEC server burden by
exploiting the underutilized resources of RRVs. Consid-
ering the vehicular network dynamic nature, the wireless
channel condition and network topology change hastily
due to the incessant vehicles’ mobility [29]. Furthermore,
the computation workloads of available RRVs vary over
time. Thus, taking into account the above factors, we then
present a partial task offloading algorithm in which, apart
from local computation, RHVs’ assign priority to RRVs’
selection while making a decision; and RRVs are assigned
the maximum portion of a task as it comprises fewer
communication and computation costs. This scheme fully
utilizes the computation resources of RRVs and reduces
the overall burden of the VEC server. Hence, the overall
system’s cost will also be minimized.

Motivation and contributions
Many works have been done on task offloading. The
following schemes are limited in several aspects:

• In [19] the scheme is centralized where mobile users
first send their tasks to RSUs, then RSU decides to
compute according to its load or gives the task to
resourceful vehicles for computation.

• The works [18, 19, 21, 25, 26] considered binary
offloading, which do not guarantee the full utilization
of vehicles’ computational resources.

• The studies [25] and [26] are using vehicular
communication resources but eventually put the
computation load on the MEC server.

• In [27], the allocated portion of the task for the
nearby vehicle depends upon the stay time of the
vehicle to reduce the outage probability.

• In [28], the scheme does not fully utilize vehicular
resources as it prefers the MEC server.

Our proposed work aims to fill the above-mentioned
gaps. More specifically, the main contributions of this
paper are listed below:

1. We model a task offloading scheme to minimize the
overall offloading cost. This model is utilized to

create a realistic vehicular environment to study the
task offloading problem in a large-scale network.
Where the task is computed partially at the source
vehicle, and the maximum part of the remaining task
is offloaded and computed first at the proximity
vehicles and then at the relevant VEC server. This
enables not only the exploitation of abundant
vehicles’ resources and reduction in the
overburdened VEC server’s load but also slashes the
overall system cost.

2. We propose a mobility-aware partial task offloading
algorithm in the VEC scenario. This allows each
vehicle to select its nearby vehicles based on the best
available resources with minimum cost. Moreover,
we consider practical assumptions and estimate the
transmission rates for V2V and V2I communication.
Based on that the proportion of a task to be
computed locally, on a nearby vehicle, and at the
VEC, is calculated conditional to the maximum
tolerable delay and vehicle’s stay time.

3. We evaluate the influence of different parameters
and vehicular environments on our mobility-aware
partial task offloading scheme by comparing it with
different strategies. We use extensive simulations to
validate the effectiveness of our proposed solution.

The remaining parts of this paper are organized as
follows. The “System model” section holds the system
model and the problem’s formal definition is discussed in
the “Problem formulation” section. The proposed algo-
rithm is presented in the “Mobility-Aware partial (MAP)
task offloading algorithm” section. In “Results and dis
cussions” section the implementation and evaluation of
our MAP algorithm are presented. Finally, the “Conclu
sion” section concludes this paper.

Systemmodel
In this section, we first describe the network topology fol-
lowed by the communication model’s description. Then
we present the computation model. All the notations used
in the system model are listed in Table 1.

Network topology
Figure 1 shows our proposed mobility-aware partial task
offloading in VEC. A unidirectional road is considered,
where the RSUs are installed along the road like a typ-
ical case for vehicular networks. A VEC server is also
installed with each RSU. We refer the vertical distance
from the RSU to the road by e. Each RSU unit has a com-
munication range, i.e., a radius of 200 meters. The set
of vehicles having the task to be offloaded is defined as
N = {1, , n}. Considering the heterogeneity of vehicles,
each vehicle has a distinct set of computational resources.
Vehicles can offload their tasks to the RSUs. Additionally,

Raza et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:28 Page 4 of 14

Table 1 Frequently Used Notations

Term Description

α The portion of a task for local computation

β The portion of a task for V2V computation

γ The portion of a task for VEC computation

tV2In,stay The stay time of a vehicle RSU coverage

tV2Vn,stay The time of the Vn in the coverage of the Vi

TLocaln The total time of local computing

TV2Vn The total time of V2V computing

TVECn The total time of VEC computing

CLocaln The total cost of local computing

CV2Vn The total cost of V2V computing

CVECn The total cost of VEC computing

ψV2V V2V transmission cost

ψV2I V2I transmission cost

�local The cost for utilizing local computation.

�V2V The cost for utilizing V2V computation.

�VEC The cost for utilizing VEC computation.

if a complex computation task is handed over to RSU, then
it will be computed on the VEC server. A central controller
is installed in the network that monitors and manages the
RSUs [18]. Many vehicles traverse under the coverage of
each RSU, which we classify into two categories, i.e., RHV
and RRV. As its name implies, RHV represents the vehicle
that has a computation task to offload. Since the coverage
radius of RSU r and the vertical distance from the RSU to
road e is known, we can easily find the distance of vehicles
traveling within the RSU coverage as:

sn = 2
√
r2 − e2. (1)

Accordingly, the stay time of the vehicle within RSU cov-
erage is derived as:

tV2I
n,stay = sn

vn
, (2)

where the parameter vn denotes the speed of vehicle Vn.

Communication model
The communication model comprises of V2V communi-
cation and V2I communication, which are discussed as
follows.

V2V communication
In V2V communication, the vehicles interact with each
other according to the standard of DSRC [30]. The maxi-
mum communication range of V2V is expressed as Climit .
We choose an identically and independent distribution

channel among vehicles. The path loss of V2V communi-
cation is determined as [24]:

LV2V
n = 10− 63.3+17.7log10(dn,i)

10 , (3)

where the dn,i defines the distance between Vn and Vi. It
must satisfy the condition 0 ≤ dn,i ≤ Climit .
In our scenario, the vehicles’ speedmay not be the same.

Therefore, vehicles have a relative speed between them.
We denote the speed between the Vn and Vi as vn,i. The
vehicle’s bandwidth is specified as BV2V and orthogo-
nal frequency is usually chosen for V2V communication.
Accordingly, the transmission rate between vehicleVn and
Vi is computed as:

Rn,i
V2V = BV2V log2

(
1 + PtLV2V

n |h2|
N0

)
. (4)

Moreover, we need to evaluate the duration of time for
which the vehicle Vn stays within the coverage of the vehi-
cle Vi to avoid offloading failure when the vehicle Vi is not
within the coverage area. The rest of the distance before
leaving the coverage of the vehicle Vi at time t, can be
expressed as follow [27].

dn,i(t) =
√
r2i − (xi(t) − xn(t))2 ± (yi(t) − yn(t)), (5)

where {xn(t), yn(t)} and {(xi(t), (yi(t)} are the position of
the vehicle Vn and vehicle Vi, respectively, at time t. While
ri is the radius of the vehicleVi coverage area. Accordingly,
the time that the vehicle Vn remains in the coverage area
of the vehicle Vi can be defined as:

tV2V
n,stay = dn,i(t)

|−→υ n − −→υ i| , (6)

where |−→υ n − −→υ i| is the vector speeds of the vehicles
Vn and Vi in view of their relative direction. Thus, the
uplink rate Rn,i

V2V changes with time that can be defined
as Rn,i

V2V (t). Therefore, the average uplink rate between
vehicle Vn and Vi is given as:

Rn,i
V2V =

∫ tV2V
n,stay

0 Rn,i
V2V (t)dt

tV2V
n,stay

. (7)

V2I communication
Unlike the V2V communication that uses DSRC technol-
ogy, we leverage LTE-A for V2I communication between
vehicles and RSU [30]. The parameter dn,rsu is the dis-
tance between vehicle Vn and the center of coverage of
the RSU. The path loss of the vehicle Vn and its proximal
RSU can be represented as d−σ

n,rsu and the white Gaussian
noise power as N0. The factor σ is the path loss expo-
nent [31]. Furthermore, the uplink channel is modeled as
the Rayleigh fading channel denoted as h [28]. Hence, the

Raza et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:28 Page 5 of 14

Fig. 1 Task offloading scenario in Vehicular Edge Computing

uplink data rate is defined as:

RV2I = BV2I log2

(

1 + Ptd−σ
n,rsu|h2|
N0

)

, (8)

where the parameter BV2I represents the uplink channel
bandwidth, and Pt denotes the transmission power of the
vehicle’s onboard device.
In our scenario, vehicles travel at a constant speed.

Therefore, the distance dn,rsu varies with time, which is
given by

dn,rsu(t) =
√

e2 +
(sn
2

− vabsn t
)2
, (9)

where vabsn is the speed of the vehicle Vn. Accordingly the
uplink rate RV2I varies with time as well that can be define
as RV2I(t). The V2I average uplink rate is defined as:

RV2I =
∫ tV2I

n,stay
0 RV2I(t)dt

tV2I
n,stay

. (10)

RV2I is the V2I average uplink rate represented as the
uplink rate of Vn offloading a task to the VEC server.

Computation model
We have assumed that the vehicle Vn has a computing
task, described as Rn = {

Bn,Dn, tmax
n

}
. Here Bn indicates

the total number of required CPU cycles to carry out the
task,Dn shows the task data size, which includes the input
parameters and program code and the tmax

n indicates the
maximum tolerable delay of the task Rn, which implies the
time to complete the task should not exceed tmax

n . The

task is divided into three parts: computed at the vehicleVn
locally, offloading the remaining task to nearby vehicles
Vi by V2V communication, and the final remaining task
is offloaded to the nearest VEC server for computation.
The ratio of data to total task data Dn is denoted as αn,βn,
and γn, respectively. The different ratio will influence the
total latency and cost to finish the task. Since computation
units are installed in vehicles, the tasks could be computed
on the nearby RRV. The computation ability might change
from vehicle to vehicle. Therefore, we specify the com-
putation capacity of Vi as fVi . In order to improve the
utilization of computing resources, we present the V2V
offloading method. In other words, the task of vehicle Vn
might be offloaded to its nearby qualified vehicle. More-
over, the priority of each vehicle is to offload the part of
the task to its nearby qualified vehicle as much as possible,
according to available computing capacity, and the final
remaining part to the VEC server.
To further elaborate on the computationmodel in detail.

We introduce the local computing followed by nearby
vehicle computing. and finally, the VEC computing is
presented.

Local computing
When the source vehicle Vn chooses to perform task Rn
locally, TLocal

n is defined as the local execution delay of the
vehicle Vn, includes the local CPU processing delays. The
fVn is described as the computation capacity (i.e., CPU
cycles per second) of Vn. Considering the heterogeneity of
the vehicles, different vehicles might have different capac-
ities for computation. The local execution delay of task Rn

Raza et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:28 Page 6 of 14

is given as:

tln = Bn
fVn

, (11)

where αn is the portion of the task Dn, which is computed
locally as:

TLocal
n = αn ∗ tln. (12)

The �local is the cost for local computation. Taking into
account the above mentioned time consumption, the total
cost for local computing can be specified as:

CLocal
n = �local ∗ TLocal

n . (13)

Nearby vehicle computing
The selected RRV vehicle Vi processes the task and gen-
erates the output after fetching the input data from the
Vehicle Vn. The computation intensity of the task mainly
relies on the nature of applications. The V2V offload-
ing latency consists of task execution and transmission
time. The transmission time from Vn to the vehicle Vi is
represented as tVi

up, which can be defined as:

tVi
n,up = Dn

Rn,i
V2V

, (14)

where the computation capacity of the nearby vehicle is
defined as fVi. The execution time of vehicle Vi can be
defined as:

tVi
n,ex = Bn

fVi
. (15)

We represent the total offloading latency (i.e., execution
and transmission time) from Vn to Vi as TV2V

n , which can
be expressed as:

TV2V
n = βn ∗ tVi

n,up + βn ∗ tVi
n,ex, (16)

where βn is the portion of the task Dn. We need to check
all the vehicles computation resources then we select the
qualified vehicle and its detail will follow in “Results and
discussions” section. Each of the task has a unique mem-
ory and processing power besides has a specified cost of
using per unit of time [32]. Therefore, by considering the
aforementioned time consumption, the total cost of V2V
computing can be defined as:

CV2V
n =

{
ψV2V ∗ (βn ∗ tVi

n,up)
}

+
{
�V2V ∗ (βn ∗ tVi

n,ex)
}
, (17)

where ψV2V is the transmission cost and �V2V is the V2V
computation cost.

VEC computing
The VEC offloading latency comprises of three-parts: the
latency to transmit the data to its nearest VEC server,
ready time of task on the VEC server, and the execution

time on the VEC server. Regarding the delay in trans-
mitting the result back, we tend to neglect it following
the footsteps of given references [31, 33]. The latency for
transmitting the data to the VEC server can be given by,

tVECn,up = Dn

RV2I
. (18)

Vehicle Vn offloads the remaining part of the task to the
nearest VEC server via the wireless link. During transmis-
sion, the vehicle Vn must be within the coverage area of
connected RSU. Specifically, the transmission time from
vehicleVn to the VEC server tVECn,up must be shorter than the
time that vehicle Vn is in coverage of its connected RSU. It
can be defined as:

tVECn,up ≤ tV2I
n,stay. (19)

The computation capacity of the VEC server is denoted as
fm (i.e., CPU cycles per second). Therefore, the execution
time tVECn,ex on the VEC server can be calculated as follow:

tVECn,ex = Bn
fm

. (20)

Further, we define the ready time of a task according to
[34].
Definition 1 (Ready Time). The ready time of a task can

be expressed as the time at which all the predecessors of the
task finished their execution. Therefore, the ready time of
task Rn of Vehicle Vn in VEC computing is represented by
RTVEC

n,Rn .

RTVEC
n,Rn = max

k∈pred(Rn)
tVECn,ex,k , (21)

where pred(Rn) refers to a set of predecessors for task
Rn. Therefore, maxk∈pred(Rn) tVECn,ex,k is the time when the
predecessors of task Rn that were offloaded to the VEC
have completely performed their execution on the VEC
server. Moreover, we can identify that the VEC can begin
the execution of task Rn only after the task has been fully
offloaded to VEC and all the predecessors of task Rn have
completed their execution on the VEC.
The total latency for VEC offloading TVEC

n is the sum
of the uplink transmission time from vehicle Vn to VEC
server tVECn,up , ready time RTVEC

n,Rn and execution time tVECn,ex .
Hence, the total latency for VEC offloading TVEC

n can be
defined as:

TVEC
n = γn ∗ tVECn,up + RTVEC

n,R + γn ∗ tVECn,ex , (22)

as mentioned above, many conditions and constraints will
affect the latency TVEC

n , for instance, the vehicle speed and
the ratio γn. When the VEC server finishes the comput-
ing, the output results will be sent back to the vehicle Vn.
We neglect the transmission time from the VEC server to
Vn, since the amount of data as compared to input is very
little [33].

Raza et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:28 Page 7 of 14

The cost is evaluated by the utilization of the processor.
The longer the utilization time is, the higher the cost is
[35]. By considering the above time consumption, the total
cost of VEC computing can be computed as:

CVEC
n =

{
ψV2I ∗

(
γn ∗ tVECn,up

)}
+

{
�VEC ∗

(
RTVEC

n,Rn + (γn ∗ tVECn,ex)
)}

, (23)

where γn is the portion of the task Dn, the ψV2I is the
transmission cost, and the �VEC is the cost of both ready
time and execution time on the VEC server. Thus, the total
cost to complete a task is denoted as Cn:

Cn =
{
CLocal
n + CV2V

n + CVEC
n

}
. (24)

Moreover, the total cost of whole system can be derived
as:

CTotal =
N∑

n=1

{
CLocal
n + CV2V

n + CVEC
n

}
. (25)

Problem formulation
In this section, we formulate the partial task offloading
as an optimization problem. The aim is to minimize the
total offloading cost satisfying constraints like the limits
of maximum tolerable delay and computational capacity.
The optimization problem is written as follows:

P1 : min
(αn,βn,γn)

CTotal

s.t. αn + βn + γn = 1 (26a)

max{TLocal
n ,TV2V

n ,TVEC
n } ≤ tmax

n , (26b)
0 ≤ fVi ≤ FVi

n , 0 ≤ fm ≤ FVEC
n ,∀n ∈ N (26c)

tVECn,up ≤ tV2I
n,stay, (26d)

tVi
n,up ≤ tV2V

n,stay. (26e)

It is reiterated that our optimization goal is to minimize
the total cost. Here, the constraint (26a) is the relation-
ship among αn, βn, and γn. (26b) indicates that the time
of local, nearby, and VEC server offloading should not
exceed the maximum tolerable delay. (26c) shows that the
computing resource assigned for the vehicle Vn cannot
surpass the total resource FVi

n of the nearby vehicle as well
as VEC server, respectively. (26d) specifies that the task
for the V2I part should be transmitted completely to the
VEC server before the vehicle Vn runs out of the commu-
nication range. (26d) indicates that the task for the V2V
part should be transmitted completely before the vehicle
Vn runs out of the communication range of Vi.

Mobility-Aware partial (MAP) task offloading
algorithm
In the V2V network, the global information of vehi-
cles may not be available or cost too much. Besides, it

is tough to obtain multi-hop information by a vehicle
because of the maximum communication limit constraint
as it also increases the complexity. Furthermore, the con-
nection information among vehicles may change over
time [36]. The Vn identifies the RHVs and RRVs through
the beacons. Since beacons are the packets sent peri-
odically in a broadcast by vehicles to notify about their
type, speed, computation capacity, and state [37–39]. To
obtain beacon messages from multi-hop vehicles in a
dynamic environment is time-consuming. Since a vehicle
can access multi-hop vehicle in a relay fashion, thus, the
time it takes to receive the multi-hop vehicles’ informa-
tion might not be reliable over time. Moreover, frequent
updates of beacon messages might overload the wire-
less channel, with a potential impact on communication
reliability. Hence, with multi-hop, the appropriate qual-
ity of service would not be guaranteed [37]. Therefore, in
our algorithm, each vehicle must keep the computation
capacity of vehicles present in its one-hop communica-
tion range. The one-hop information is symbolized as
	vn = (fV1 , fV2 , fV3 , ..., fVj), which represents the computa-
tion capacity of all the vehicles available in the communi-
cation range of vehicle Vn. We further denote the 	vn as
a set of vehicles present in the communication range of
Vn. As the one-hop information is kept locally, we follow
the greedy algorithm to choose the best vehicle among all
vehicles present in the communication range.
We calculate all the possible available resources of vehi-

cles for offloading a task from the RHV Vn to the vehicles
Vi(Vi ∈ 	vn). Then, we select the vehicle with the least
cost as the qualified vehicle among entire candidate vehi-
cles present in its vicinity, where CVi

n is the cost of all

Table 2 Simulation Parameters

Parameter Value

No. of VEC servers (RSUs) 5

ψV2V 1 unit

ψV2I 1 unit

�V2V 2.5 unit/s

�VEC 10 units/s

Communication Range of vehicles Climit 150m

Computation capacity of each vehicle [106, 2 × 108]c/s

Computation capacity of VEC server [8 × 108]c/s

Radius of RSU is r 200m

Task’s size [1,50] MB

Vertical distance from RSU to road is e 100m

Relative speed between vehicles [10,20]m/s

The speed of vehicle Vn is vabsn 60km/h

V2I and V2V bandwidth BV2I and BV2V 1 MHz

White Guassian Noise power N0 3 × 10−13

Raza et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:28 Page 8 of 14

candidate vehicles. As can be seen in Fig. 1, that the qual-
ified vehicle is represented by the yellow line while the
yellow dotted line represents the vehicle(s) present within
Vn’s communication range. The task will transmit fromVn
to a qualified nearby vehicle. Thus, the qualified vehicle
obtained by our algorithm is as follow:

Vn,i = min{CVi
n ,Vi ∈ 	vn}. (27)

The vehicle Vn offload the βn part to the qualified vehi-
cle Vn,i. While in the transmission process, the vehicle Vn
must stay in the coverage area of the vehicle Vi. Specifi-
cally, the transmission time tVi

n,up of vehicleVn to its nearby
vehicle must be less than the stay time of the vehicle Vn
in its communication range. We should examine whether
the portion of the task βn can be completely delivered
before the vehicle runs out of the communication range.
Therefore, the following constraints in Eq. (26e) must be
satisfied.
After the task has been computed by the vehicle Vn,i,

the result will be forwarded to both the vehicle Vn and
the nearest VEC server. Thus in case, the result can-
not be received by Vn due to the communication range
limitations and mobility, the VEC server with its wider
coverage area will transfer the result back to the request-
ing vehicle. However, If there is no vehicle found having
enough resources to bear the Vehicle Vn task then Vn
will also offload the V2V part, i.e., βn to a VEC server.
The algorithm to choose the qualified nearby vehicle is as
follow:

Ratio estimation for partial task offloading
The time to transmit the portion of a task of vehicle Vn
must satisfy the constraint of the stay time of a selected
vehicle. We consider to offload the portion of the task
by estimating the offloading time and the velocity of the
vehicles as well as meeting the maximum tolerable delay.
Therefore, by exploiting the Eqs. (6) and (16), we can

Algorithm 1: Choosing Qualified Nearby Vehicle
1 INPUT: one-hop computation information

(fV1 , fV2 , fV3 , ..., fVj)

2 OUTPUT:Qualified vehicle Vn,i
3 for n = 1; n <= N ; n + + do
4 for i = 1; i <= j; i + + do
5 	vn = (fV1 , fV2 , fV3 , ..., fVj)

6 From Eq. (27) we can get.
7 Vn,i ← min{CVi

n ,Vi ∈ 	vn}
8 end
9 return Vn,i

10 end

formulate as:

β1n ∗ Dn

Rn,i
V2V

+ β1n ∗ Bn
fVi

≤ tmax
n ,

β1n ≤ tmax
n

{ Dn

Rn,iV2V
+ Bn

fVi
} , (28)

that allows to find the value of β1n parameter according
to maximum tolerable delay tmax

n . In addition, the ratio of
β2n according to stay time can be calculated as:

β2n ∗ Dn

Rn,i
V2V

≤ dn,i(t)
|−→υ n − −→υ i| ,

β2n ≤ dn,i(t)
|−→υ n − −→υ i| ∗ { Dn

Rn,iV2V
} , (29)

the above equations set an upper limit on the portion of
task to be offloaded. Moreover, Algorithm 2 estimates the
values of αn, βn, and γn for all vehicles.
The entire process of mobility-aware partial task

offloading algorithm is described in Algorithm 3.

Fig. 2 The total offloading cost in terms of varying RHVs, when RRVs=10

Raza et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:28 Page 9 of 14

Algorithm 2: To estimate the offloading ratios
1 INPUT: Rn, Vn,i
2 OUTPUT: αn,βn, γn
3 for n = 1; n <= N ; n + + do
4

α1n ≤ tmax
n

{ Bn
fVn

} (30)

5 αn ← α1n
Dn

6 βn ← min{β1n
Dn

, β2n
Dn

}
7 γn ← 1 − (αn + βn)

8 end
9 return αn,βn, γn

In Algorithm 3, each RHV offloads its task locally, to the
qualified vehicle, and VEC server according to the portion
of αn, βn, and γn, respectively. This process may continue
until the maximum tolerable delay is reached. Here, Lines
5-8 are used to compute the αn locally while computing
the cost. Lines 9–20 are used to compute the βn offloaded
to the qualified vehicle Vn,i that is having a minimum cost.
If the vehicle remains in the coverage area before the job is
done, then it returns the output directly to the RHV, oth-
erwise, it handovers the output to the nearest VEC server.
Lines 21–30 are used to compute the γn portion on the
nearest VEC server. If the computation is finished within
the stay time then the VEC server immediately transmits
the output to Vn. However, if it is not the case then it for-
wards the output to the VEC server where the vehicle is
currently present. Line 33 is used to represent the total
offloading cost of the whole system.

Results and discussions
In this section, we analyze our proposed mobility-aware
partial task offloading scheme. We consider five RSUs,
each having a VEC server located alongside a unidirec-
tional road in an urban mobility road traffic scenario.
We also assume that vehicles follow random distribution
on the road. In our simulation, we consider the com-
puting speed of each vehicle in the range [106, 2 × 108]
cycles/s. We set the computational speed of VEC server
as FVEC

n = 8 × 108cycles/s [40]. The vehicle speed Vn is
vabsn = 60km/hour [41]. The relative speed among vehicles
is set in the range of [10, 20]m/s. The vertical distance
from RSU to the road is set as e = 100m. The communica-
tion radius of the RSU coverage area is taken as r = 200m.
In addition, the radius of V2V communication Climit is set
to 150m [28]. Similarly, the White Gaussian noise power
N0 = 3×10−13, V2I and V2V communication bandwidth
BV2I = BV2V = 1MHz, the V2I path loss exponent σ = 2,
and the transmit power of onboard unit Pt = 1.3W [33].
As the qualified vehicle (RRV) acts as a mini server for the
requested vehicle (RHV). Therefore, we set the communi-
cation and computation cost for the vehicle, according to
the ratio of the total computational capacity of the VEC
server. The detailed setting of simulation parameters is
listed in Table 2.
In order to show the efficiency of our proposed

approach (designated as MAP), we compared its perfor-
mance with conventional partial offloading (represented
as conventional) and MEC partial offloading techniques
(i.e., MEC Partial) [27]. In the conventional partial offload-
ing scheme, the task is computed locally and on the
VEC server without the support of other vehicles. While
the MEC Partial gets offloading support from both VEC
server and nearby vehicles along with local computing.
However, this approach determines the vehicle according
to the stay time to minimize the outage probability.

Fig. 3 The total offloading cost versus varying RHVs with fixed No. of RRVs

Raza et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:28 Page 10 of 14

Fig. 4 The total offloading cost with fixed values of αn and βn , when RRVs=10

Figure 2 represents the total computation offloading
costs regarding vehicle density on the road. We make
a comparison of our proposed MAP scheme with two
benchmark schemes, i.e., Conventional and MEC par-
tial offloading schemes, respectively. From Fig. 2, it is
observed that the performance of the MAP is best in
terms of saving the total offloading cost than the com-
pared schemes, especially when the vehicle’s density is
high. Nevertheless, in the low density of vehicles scenario,
the difference between the costs of all three schemes are
minor. Additionally, a load of computation on each VEC
server is low. A great percentage of the offloaded tasks on
the VEC servers could be computed within the required
time while the vehicles accessing the RSUs. Since the

queue size is small, which affects the stay time of the
task on the VEC server, hence, lowers the cost. On the
other hand, in the case of high density, the burden on
the VEC server increases, which may also increase the
stay time of the task on the VEC server as well as the
cost. Due to communication and computation, the over-
all costs of the conventional offloading scheme rises fast
as the density of the vehicles grows. Moreover, in MEC
partial offloading, part of the transmission is offloaded to
the vehicle, which has the least cost as compared to the
other vehicles in the vicinity at that time. Also, the por-
tion of the task must be uploaded and executed within
the stay time of that vehicle. Whereas in our scheme, the
portion of the V2V task βn must be uploaded within the

Fig. 5 The total offloading cost versus maximum tolerable delay tmax , when RHVs=10 & RRVs=10

Raza et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:28 Page 11 of 14

Algorithm 3:MAP Task Offloading Algorithm
1 INPUT: Vn,i, αn,βn, γn
2 OUTPUT: CTotal
3 for n = 1; n <= N ; n + + do
4 while tmax

n do
5 goto Algorithm 2 to fetch αn
6 By exploiting Eqs. (11-13)
7 We can get and denote the local computing

cost as: CLocal
n

8 goto Algorithm 1 to fetch Vn,i
9 while tVi

n,up ≤ tV2V
n,stay do

10 By using Eq. (14)
11 goto Algorithm 2 to fetch βn
12 Transmit the βn on Vn,i
13 end
14 By using Eqs. (15-17)
15 We can get and denote the V2V computing

cost as: CV2V
n

16 if TV2V
n ≤ tV2V

n,stay then
17 Give output directly to Vn
18 else
19 Put the output on nearest VEC server.
20 end
21 while tVECn,up ≤ tV2I

n,stay do
22 goto Algorithm 2 to fetch γn
23 By applying Eqs. (18,20-23)
24 We can get and denote the VEC computing

cost as: CVEC
n

25 end
26 if TVEC

n ≤ tV2I
n,stay then

27 Give output directly to Vn
28 else
29 Give output to VEC server where the Vn is

currently present.
30 end
31 end
32 Cn ← CLocal

n + CV2V
n + CVEC

n
33 CTotal ← CTotal + Cn
34 end

stay time to other vehicles and the duration it takes from
uploading to execution must be within the maximum tol-
erable delay. Therefore, the value of βn will be greater, thus
reduces more cost and utilizes vehicles’ resources. Our
proposed scheme notably reduces the computation and
communication cost of the system by fully exploiting the
underutilized vehicular resources up to their full capacity.
Figure 3 indicates a decrease in the total offloading cost

of the system with an increase in the number of RRVs.
From Fig. 3, we observe that when the number of RRVs
is considered fixed such as 10, 20, 30, 40, and 50, and

keep varying RHVs, the total offloading cost starts declin-
ing with the increase in RRVs. This is mainly due to the
fact that RHVs may have more opportunities in select-
ing the best nearby vehicle, which incurs less cost and
more benefit. Thus, these result comparisons reveal that
in partial task offloading the increase in RRVs significantly
influences the overall system performance.
Figure 4 illustrates the total offloading cost with an

increase in the number of RRVs. We evaluate our scheme
by examining the impact of both αn and βn in the total
offloading cost of the system. From Fig. 4, we observe
that as much as the αn contributes to the offloading pro-
cess, the cost decreases accordingly. Similarly, with the
increase in βn, the vehicles’ computational resources can
be exploited more effectively. Since the remaining portion
for the VEC server remains less as the values of αn and
βn increases, thus it becomes cost-effective. Our scheme
results further corroborate the numerical analysis.
Figure 5 shows the total offloading cost versus the max-

imum tolerable delay. Here the task data size is fixed to 25
MB while the RHVs and RRVs are set to 10, respectively.
To observe the role of tolerable delay, we take different
values of maximum tolerable delay. Considering practi-
cal assumption, at any given time the VEC servers are
at the heterogeneous level of computation load. If the
vehicles choose a conventional scheme, the complex com-
putational tasks may take a longer time as well as the
higher cost to complete their job. Thus, a larger part of
the task will be shifted to nearby RSU, eventually leading
to increased system cost. Moreover, if the vehicles adopt
MEC partial offloading scheme, the vehicle still consumes
the VEC computation resources by putting more load.
Besides, the tasks that require prompt response would
be offloaded, if the vehicle is still in the communication
range of the other vehicle until the job is fully completed.
Among all the other schemes, we note that the MAP
always gets the best performance since more portion of
a task can be distributed to nearby vehicles. In Fig. 5, at
maximum tolerable delay= 12, compared to the conven-
tional and MEC partial schemes, the total offloading cost
is saved by 19% and 15%, respectively. Moreover, our pro-
posed scheme becomes more efficient when the density of
vehicles increases. From Fig. 5, it can easily be observed
that the MAP scheme is cost-effective under any given
tolerable delay.
Figure 6 indicates the relationship between the task data

sizeDn and the total offloading cost, where the total num-
ber of RHV and RRV are set to 10, respectively. From
Fig. 6, we observe that as the size of the task increases on
the x-axis, the curves of all three schemes give an upward
trend, which proves that the size of the task has a direct
impact on the total offloading cost. Our proposed scheme
achieves the best results as it shows the slowest growth
trend. The slope of the conventional curve is greater than

Raza et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:28 Page 12 of 14

Fig. 6 The total offloading cost to data size Dn , when RHVs=10 & RRVs=10

that of the other two schemes, showing that the total
offloading cost of the system grows rapidly. This indicates
that the larger the data volume of the computing task,
the major portion will be allotted to the VEC server, thus
increasing the total system cost. While in our proposed
MAP task offloading scheme, the transmission and com-
putation load on the VEC server will be released as well as
avoids network congestion.
Figure 7 represents a comparison between the total

offloading cost with varying RHVs velocity while fixing
the speed of RRVS to 60 km/h. In terms of the impact of
speed, we note from Fig. 7 that low offloading cost incurs
when the RHVs speed is close to the RRVs speed. Since
RHVs have stable and longer stay time, consequently, a
greater portion of the task is transmitted to RRVs. On the

other hand, when the speed of RHVs is less or greater than
60 km/h, it affects the V2V connection time as the RHVs
quickly move out of the communication range of RRVs. In
that case, a larger part of the task is shifted to the VEC
server, which increases offloading cost. We can observe
that the proposed scheme outperforms other benchmark
schemes.

Conclusion
In this paper, we proposed a mobility-aware partial task
offloading algorithm tominimize the total offloading cost.
To make it cost-efficient, the vehicle’s available resources
are exploited. In this scheme, the task is divided into
three parts. We further determined the allocation ratio
among these parts according to the vehicles’ mobility.

Fig. 7 The total offloading cost versus varying RHVs velocity, when velocity of the RRVs=60km/h

Raza et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:28 Page 13 of 14

Moreover, we estimate the transmission rates for V2V
and V2I communication in the light of practical assump-
tions. Simulation results demonstrate that nearby vehi-
cle communication and computation resources not only
reduced the cost but also offload the burden of the VEC
servers, especially which are deployed in a dense urban
environment. Extensive simulation results demonstrated
our proposed scheme’s effectiveness against the compared
schemes. Although the results provided in this work sig-
nificantly contribute to the state-of-the-art, yet they can
be improved in many ways. One of the major challenges
in partial task offloading for vehicles is mobility, which
greatly affects the V2V and V2I communication. In this
regard, our work would be extended to highway scenarios,
and also the task offloading can be improved by incorpo-
rating mmWave communications or considering 5G New
Radio. These challenging yet interesting extensions are left
for our future work.

Acknowledgements
Not applicable.

Authors’ contributions
Conceptualization, Salman Raza; Methodology, Salman Raza and Manzoor
Ahmed; Resources, Salman Raza; Validation, Muhammad Rizwan Anwar and
Muhammad Ayzed Mirza; Visualization, Muhammad Rizwan Anwar and
Muhammad Ayzed Mirza; Writing – original draft, Salman Raza and Manzoor
Ahmed; Writing – review & editing, Wei Liu, Qibo Sun and Shangguang Wang.
The author(s) read and approved the final manuscript.

Funding
This work was supported by the National Key R&D Program of China
(2018YFB1402801), and Funds for Creative Research Groups of China
(61921003).

Availability of data andmaterials
The random numbers are generated to check validity. Therefore, no
supporting dataset is available.

Competing interests
The authors declare that they have no competing interests.

Author details
1State Key Laboratory of Networking and Switching Technology, Beijing
University of Posts and Telecommunications, Beijing, China, 100876 Beijing,
China. 2Software Engineering, Beijing University of Posts and
Telecommunications, Beijing, China, 100876 Beijing, China. 3College of
Computer Science and Technology, Qingdao University, Qingdao, China,
266071 Qingdao, China. 4School of Electronic Engineering, Beijing University
of Posts and Telecommunications, Beijing, China, 100876 Beijing, China.

Received: 7 January 2020 Accepted: 13 May 2020

References
1. Abolfazli S, Sanaei Z, Ahmed E, Gani A, Buyya R (2013) Cloud-based

augmentation for mobile devices: motivation, taxonomies, and open
challenges. IEEE Commun Surv Tutor 16(1):337–368

2. Technology and Computing Requirements for Self-Driving Cars. https://
www.intel.com/content/dam/www/public/us/en/documents/white-
papers/automotive-autonomous-driving-vision-paper.pdf

3. Bitam S, Mellouk A, Zeadally S (2015) Vanet-cloud: a generic cloud
computing model for vehicular ad hoc networks. IEEE Wirel Commun
22(1):96–102

4. Jang I, Choo S, KimM, Pack S, Dan G (2017) The software-defined vehicular
cloud: A new level of sharing the road. IEEE Veh Technol Mag 12(2):78–88

5. Taleb T, Dutta S, Ksentini A, Iqbal M, Flinck H (2017) Mobile edge
computing potential in making cities smarter. IEEE Commun Mag 55(3)

6. You C, Huang K, Chae H, Kim B-H (2016) Energy-efficient resource
allocation for mobile-edge computation offloading. IEEE Trans Wirel
Commun 16(3):1397–1411

7. Lin B, Zhu F, Zhang J, Chen J, Chen X, Xiong NN, Mauri JL (2019) a time-
driven data placement strategy for a scientific workflow combining edge
computing and cloud computing. IEEE Trans Ind Inform 15(7):4254–4265

8. Huang X, Yu R, Kang J, Zhang Y (2017) Distributed reputation
management for secure and efficient vehicular edge computing and
networks. IEEE Access 5:25408–25420

9. Wang S, Zhang X, Zhang Y, Wang L, Yang J, Wang W (2017) A survey on
mobile edge networks: Convergence of computing, caching and
communications. IEEE Access 5:6757–6779

10. Chen X, Chen J, Liu B, Ma Y, Zhang Y, Zhong H (2019) androidoff:
Offloading android application based on cost estimation. J Syst Softw
158:110418

11. Chen X, Chen S, Ma Y, Liu B, Zhang Y, Huang G (2019) an adaptive
offloading framework for android applications in mobile edge
computing. Sci China Inf Sci 62(8):82102

12. Ahmed M, Li Y, Waqas M, Sheraz M, Jin D, Han Z (2018) A survey on
socially aware device-to-device communications. IEEE Commun Surv
Tutor 20(3):2169–2197

13. Waqas M, Niu Y, Li Y, Ahmed M, Jin D, Chen S, Han Z (2019) Mobility-aware
device-to-device communications: Principles, practice and challenges.
IEEE Commun Surv Tutor. https://doi.org/10.1109/comst.2019.2923708

14. Oteafy SM, Hassanein HS (2018) Iot in the fog: A roadmap for data-centric
iot development. IEEE Commun Mag 56(3):157–163

15. Anawar MR, Wang S, Azam Zia M, Jadoon AK, Akram U, Raza S (2018) Fog
computing: An overview of big iot data analytics. Wirel Commun Mob
Comput 2018

16. Hou X, Li Y, Chen M, Wu D, Jin D, Chen S (2016) Vehicular fog computing:
A viewpoint of vehicles as the infrastructures. IEEE Trans Veh Technol
65(6):3860–3873

17. Raza S, Wang S, Ahmed M, Anwar MR (2019) A survey on vehicular edge
computing: Architecture, applications, technical issues, and future
directions. Wirel Commun Mob Comput 2019. https://doi.org/10.1155/
2019/3159762

18. Zhang K, Mao Y, Leng S, Vinel A, Zhang Y (2016) Delay constrained
offloading for mobile edge computing in cloud-enabled vehicular
networks. In: Proceeding of the 8th International Workshop on Resilient
Networks Design and Modeling. IEEE. pp 288–294. https://doi.org/10.
1109/rndm.2016.7608300

19. Ye D, Wu M, Tang S, Yu R (2016) Scalable fog computing with service
offloading in bus networks. In: 2016 IEEE 3rd International Conference on
Cyber Security and Cloud Computing (CSCloud). IEEE. pp 247–251.
https://doi.org/10.1109/cscloud.2016.34

20. Feng J, Liu Z, Wu C, Ji Y (2019) Mobile edge computing for the internet of
vehicles: Offloading framework and job scheduling. IEEE Veh Technol
Mag 14(1):28–36

21. Zhang K, Mao Y, Leng S, Maharjan S, Zhang Y (2017) Optimal delay
constrained offloading for vehicular edge computing networks. In:
Proceeding of the International Conference on Communications. IEEE.
pp 1–6. https://doi.org/10.1109/icc.2017.7997360

22. Lai Y, Yang F, Zhang L, Lin Z (2018) Distributed public vehicle system
based on fog nodes and vehicular sensing. IEEE Access 6:22011–22024

23. Ren J, Yu G, Cai Y, He Y, Qu F (2017) Partial offloading for latency
minimization in mobile-edge computing. In: Proceeding of the Global
Communications Conference. IEEE. pp 1–6. https://doi.org/10.1109/
glocom.2017.8254550

24. Luoto P, Bennis M, Pirinen P, Samarakoon S, Horneman K, Latva-Aho M
(2017) Vehicle clustering for improving enhanced lte-v2x network
performance. In: Proceeding of the European Conference on Networks
and Communications. IEEE. pp 1–5. https://doi.org/10.1109/eucnc.2017.
7980735

25. Zhang K, Mao Y, Leng S, He Y, Zhang Y (2017) Mobile-edge computing for
vehicular networks: A promising network paradigm with predictive
off-loading. IEEE Veh Technol Mag 12(2):36–44

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/automotive-autonomous-driving-vision-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/automotive-autonomous-driving-vision-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/automotive-autonomous-driving-vision-paper.pdf
https://doi.org/10.1109/comst.2019.2923708
https://doi.org/10.1155/2019/3159762
https://doi.org/10.1155/2019/3159762
https://doi.org/10.1109/rndm.2016.7608300
https://doi.org/10.1109/rndm.2016.7608300
https://doi.org/10.1109/cscloud.2016.34
https://doi.org/10.1109/icc.2017.7997360
https://doi.org/10.1109/glocom.2017.8254550
https://doi.org/10.1109/glocom.2017.8254550
https://doi.org/10.1109/eucnc.2017.7980735
https://doi.org/10.1109/eucnc.2017.7980735

Raza et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:28 Page 14 of 14

26. Li L, Zhou H, Xiong SX, Yang J, Mao Y (2019) Compound model of task
arrivals and load-aware offloading for vehicular mobile edge computing
networks. IEEE Access 7:26631–26640

27. Bozorgchenani A, Tarchi D, Corazza GE (2018) Mobile edge computing
partial offloading techniques for mobile urban scenarios. In: Proceeding
of the Global Communications Conference. IEEE. pp 1–6. https://doi.org/
10.1109/glocom.2018.8647240

28. Wang H, Li X, Ji H, Zhang H (2018) Federated offloading scheme to
minimize latency in mec-enabled vehicular networks. In: Proceeding of
the GlobecomWorkshops. IEEE. pp 1–6. https://doi.org/10.1109/
glocomw.2018.8644315

29. Cheng X, Wang C-X, Ai B, Aggoune H (2013) Envelope level crossing rate
and average fade duration of nonisotropic vehicle-to-vehicle ricean
fading channels. IEEE Trans Intell Transp Syst 15(1):62–72

30. Zheng K, Liu F, Zheng Q, Xiang W, Wang W (2013) A graph-based
cooperative scheduling scheme for vehicular networks. IEEE Trans Veh
Technol 62(4):1450–1458

31. Wang Y, Sheng M, Wang X, Wang L, Li J (2016) Mobile-edge computing:
Partial computation offloading using dynamic voltage scaling. IEEE Trans
Commun 64(10):4268–4282

32. Aminizadeh L, Yousefi S (2014) Cost minimization scheduling for deadline
constrained applications on vehicular cloud infrastructure. In: Proceeding
of the International Conference on Computer and Knowledge
Engineering. IEEE. pp 358–363. https://doi.org/10.1109/iccke.2014.
6993446

33. Mazza D, Tarchi D, Corazza GE (2014) A partial offloading technique for
wireless mobile cloud computing in smart cities. In: Proceeding of the
European Conference on Networks and Communications. IEEE. pp 1–5.
https://doi.org/10.1109/eucnc.2014.6882623

34. Guo S, Liu J, Yang Y, Xiao B, Li Z (2018) Energy-efficient dynamic
computation offloading and cooperative task scheduling in mobile cloud
computing. IEEE Trans Mob Comput 18(2):319–333

35. Fan Y, Zhai L, Wang H (2019) Cost-efficient dependent task offloading for
multiusers. IEEE Access 7:115843–115856

36. Lu Z, Sun X, La Porta T (2016) Cooperative data offloading in
opportunistic mobile networks. In: Proceeding of the Annual INFOCOM
Conference on Computer Communications. IEEE. pp 1–9. https://doi.org/
10.1109/infocom.2016.7524494

37. Bazzi A, Masini BM, Zanella A, Thibault I (2017) on the performance of ieee
802.11 p and lte-v2v for the cooperative awareness of connected
vehicles. IEEE Trans Veh Technol 66(11):10419–10432

38. Feng J, Liu Z, Wu C, Ji Y (2018) mobile edge computing for the internet of
vehicles: Offloading framework and job scheduling. IEEE Veh Technol
Mag 14(1):28–36

39. Shah SS, Ali M, Malik AW, Khan MA, Ravana SD (2019) vfog: A
vehicle-assisted computing framework for delay-sensitive applications in
smart cities. IEEE Access 7:34900–34909

40. Munoz O, Pascual-Iserte A, Vidal J (2014) Optimization of radio and
computational resources for energy efficiency in latency-constrained
application offloading. IEEE Trans Veh Technol 64(10):4738–4755

41. Chen S, Hu J, Shi Y, Peng Y, Fang J, Zhao R, Zhao L (2017)
Vehicle-to-everything (v2x) services supported by lte-based systems and
5g. IEEE Commun Stand Mag 1(2):70–76

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1109/glocom.2018.8647240
https://doi.org/10.1109/glocom.2018.8647240
https://doi.org/10.1109/glocomw.2018.8644315
https://doi.org/10.1109/glocomw.2018.8644315
https://doi.org/10.1109/iccke.2014.6993446
https://doi.org/10.1109/iccke.2014.6993446
https://doi.org/10.1109/eucnc.2014.6882623
https://doi.org/10.1109/infocom.2016.7524494
https://doi.org/10.1109/infocom.2016.7524494

	Abstract
	Keywords

	Introduction
	Related work
	Motivation and contributions

	System model
	Network topology
	Communication model
	V2V communication
	V2I communication

	Computation model
	Local computing
	Nearby vehicle computing
	VEC computing

	Problem formulation
	Mobility-Aware partial (MAP) task offloading algorithm
	Ratio estimation for partial task offloading

	Results and discussions
	Conclusion
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

