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Abstract

One of the goals of smart environments is to improve the quality of human life in terms of comfort and efficiency. The
Internet of Things (IoT) paradigm has recently evolved into a technology for building smart environments. Security
and privacy are considered key issues in any real-world smart environment based on the IoT model. The security
vulnerabilities in IoT-based systems create security threats that affect smart environment applications. Thus, there is a
crucial need for intrusion detection systems (IDSs) designed for IoT environments to mitigate IoT-related security
attacks that exploit some of these security vulnerabilities. Due to the limited computing and storage capabilities of IoT
devices and the specific protocols used, conventional IDSs may not be an option for IoT environments. This article
presents a comprehensive survey of the latest IDSs designed for the IoT model, with a focus on the corresponding
methods, features, and mechanisms. This article also provides deep insight into the IoT architecture, emerging
security vulnerabilities, and their relation to the layers of the IoT architecture. This work demonstrates that despite
previous studies regarding the design and implementation of IDSs for the IoT paradigm, developing efficient, reliable
and robust IDSs for IoT-based smart environments is still a crucial task. Key considerations for the development of such
IDSs are introduced as a future outlook at the end of this survey.
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Introduction
Incredible developments in the routine use of electronic
services and applications have led to massive advances
in telecommunications networks and the emergence of
the concept of the Internet of Things (IoT). The IoT is
an emerging communications paradigm in which devices
serve as objects or “things” that have the ability to sense
their environment, connect with each other, and exchange
data over the Internet [1, 2]. By 2022, one trillion IP
addresses or objects will be connected to the Internet
through IoT networks [3].
The IoT paradigm has recently been used in creat-

ing smart environments, such as smart cities and smart
homes, with various application domains and related ser-
vices. The goal of developing such smart environments
is to make human life more productive and comfortable
by solving challenges related to the living environment,
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energy consumption, and industrial needs [4]. This goal
is directly reflected in the substantial growth in the avail-
able IoT-based services and applications across different
networks. For example, the Padova Smart City in Italy
is a successful example of a smart city based on an IoT
system [5].
Smart environments consist of sensors that work

together to execute operations. Wireless sensors, wire-
less communication techniques, and IPv6 assist in the
expansion of smart environments. Such environments are
wide ranging, from smart cities and smart homes to smart
healthcare and smart services. The integration of IoT sys-
tems and smart environments makes smart objects more
effective. However, IoT systems are susceptible to various
security attacks, such as denial-of-service (DoS) attacks
and distributed denial-of-service (DDoS) attacks. Such
attacks can cause considerable damage to the IoT services
and smart environment applications in an IoT network.
Consequently, securing IoT systems has become a major
concern [1]. For example, on Friday, October 21, 2016, a
series of DDoS attacks were launched across the US that
exploited the security vulnerabilities in IoT systems [6].
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These attacks affected IoT devices, websites and online
services such as Twitter, Netflix, and PayPal.
An intrusion detection system (IDS) is a security mech-

anism that works mainly in the network layer of an IoT
system. An IDS deployed for an IoT system should be
able to analyze packets of data and generate responses
in real time, analyze data packets in different layers of
the IoT network with different protocol stacks, and adapt
to different technologies in the IoT environment [3]. An
IDS that is designed for IoT-based smart environments
should operate under stringent conditions of low pro-
cessing capability, fast response, and high-volume data
processing. Therefore, conventional IDSs may not be fully
suitable for IoT environments. IoT security is a continu-
ous and serious issue; thus, an up-to-date understanding
of the security vulnerabilities of IoT systems and the
development of corresponding mitigation approaches are
required.
This article offers a comprehensive review of IDSs as a

security solution for IoT-based smart environments. The
primary goal of this study is to present the most recent
designs and approaches for IDSs operating in IoT-based
environments. Although related surveys have been pub-
lished in the literature [3, 7], this article focuses on the
important factors that affect IDS performance in smart
environments, such as the detection accuracy, false posi-
tive rate, energy consumption, processing time, and per-
formance overhead. In addition, this article introduces a
solid foundation for the development of IDSs for IoT-
based smart environments.
This study offers multiple key contributions. First, a full

preliminary analysis of IoT systems, smart environments,
and IDSs is presented. Second, the study confirms that
traditional IDSs cannot satisfy IoT security requirements
due to the large diversity of IoT networks and proto-
cols. For instance, IPv6 over low-power wireless personal
area networks (6LoWPAN) is not a protocol that is used
in traditional telecommunications networks. Third, the
common features that can be ported from traditional IDSs
to IoT-based IDSs are emphasized. This third contribution
emerges from the integration of the previous surveys [3, 7]
to summarize the features, advantages and disadvantages
of all IDSs designed for IoT-based systems. Fourth, this
work introduces a future outlook on IDSs for IoT environ-
ments with a focus on the strengths and weaknesses of the
current IDSs. Additionally, this study presents new rec-
ommendations for designing IDSs that satisfy the security
requirements of IoT-based smart environments.
This survey focuses on IDSs for the IoT paradigm, inde-

pendent of any specific technology or protocol; however,
readers who are interested in learning more about IoT
enabling technologies and protocols such as low-power
wide-area network (LPWAN) technologies, long range
(LoRa) technology, the low power WAN protocol for

Internet of Things (LoRaWAN), the 6LoWPAN protocol,
or the constrained application protocol (CoAP) may refer
to [8–11] for further details.
The remainder of this paper is organized as follows.

“The IoT paradigm” section discusses various definitions
and architectures relevant to the IoT context. This section
also highlights the importance of cloud computing sys-
tems for IoT-based smart environments and the chal-
lenges of applying this combination of systems in the real
world. Definitions, goals and challenges related to smart
environments, with a focus on smart cities, are discussed
in “IoT and smart environments” section. “Security chal-
lenges in IoT-based smart environments” section reviews
the security challenges in IoT-based smart environments
in relation to the various layers of the IoT architecture
and highlights some practical open challenges facing real-
world IoT networks. “Intrusion detection systems (IDSs)”
section provides preliminary information about the defi-
nitions relevant to IDSs, the different types of IDSs and
the detection techniques used in these systems. A sur-
vey of IoT-oriented IDSs that either can be applied in
or are specifically designed for smart environments is
presented in “IDSs designed for IoT systems” section.
“Discussion and future outlook” section discusses recom-
mendations concerning IDSs implemented for IoT-based
smart environments. Finally, conclusions and plans for
future work are reported in “Concluding remarks” section.
The organization of this paper is presented visually in
Fig. 1.

The IoT paradigm
The IoT concept has been established since the found-
ing of the Auto-ID Center at the Massachusetts Institute
of Technology (MIT) in 1999. The Auto-ID Center cre-
ated the electronic product code (EPC) number, which
depends on radio frequency identification (RFID), in 2003.
This idea is the crucial technology of the IoT [12].
However, the IoT is a well-established paradigm, and

it is defined in several ways from various perspectives.
Thiesse et al. [13] defined the IoT as consisting of hard-
ware items and digital information flows based on RFID
tags. The IoT definitions and architectures provided by
various standards and industrial organizations will be
described in the following.
The Institute of Electrical and Electronics Engineers

(IEEE) defines the IoT as a collection of items with
sensors that form a network connected to the Inter-
net [12, 14]. The International Telecommunication Union
(ITU) defines the IoT through three dimensions, as a
network that is available anywhere, anytime, and by any-
thing and anyone [15]. The European Telecommunica-
tions Standards Institute (ETSI), rather than using the
expression “Internet of Things (IoT)”, defines machine-
to-machine (M2M) communications as an automated
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Fig. 1 The flow of this article, separated into two levels; level 1 describes the main topics, and level 2 describes the detailed points

communications systemthatmakesdecisions and processes
data operations without direct human intervention [16].
The Coordination and Support Action for Global RFID-

related Activities and Standardisation (CASAGRAS)
project has created a new concept of the IoT that encom-
passes two viewpoints: the connection of physical objects
with virtual objects over a global network without any
human intervention to the greatest extent possible [17]
and the incredible increase in IoT applications within
traditional networksdue to the extent of IoTmarketing [17].
Moreover, Cisco, an industrial organization, works on

IoT technology under the title of the Internet of Every-
thing (IoE). Cisco has summarized the IoE concept as a
network that consists of people, data, things, and pro-
cesses. Thus, information and actions are created in and
moved through this network [18].

IoT system architectures
Regarding IoT design, IEEE is working on a project (IEEE
P2413) to determine the IoT architectural framework. The

scope of this project is to describe the IoT domains and the
various applications in these domains [19]. This IoT archi-
tecture is divided into three layers: the application layer,
the networking and data communications layer, and the
sensing layer.
According to [20–22], the general architecture of the

IoT is divided into five layers that span three domains,
namely, the application domain, the network domain, and
the physical domain; thus, the IoT can be customized to
fit the needs of different smart environments. The appli-
cation domain encompasses management and utilization.
The network domain is responsible for data transmis-
sion. The physical domain is responsible for information
collection. The layers of the general IoT architecture are
shown in Fig. 2. The functionality of the different layers is
discussed in the following.
The perception layer is a hardware layer that con-

sists of sensors and physical objects in different forms.
These hardware elements provide identification, infor-
mation storage, information collection, and information

Fig. 2 The general architecture for the IoT. The general architecture for the IoT, which consists of five layers according to [22]
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processing. The information output from this layer is sent
to the next layer (the network layer) to be transmitted to
the processing system [22].
The network layer is a transmission layer that trans-

fers the information from physical objects or sensors to
the processing system over secure lines using a com-
munication system. This communication system can be
either wired or wireless and can be based on different
technologies, depending on the physical object or sensor
components. The information output from this layer is
sent to the next layer (the middleware layer) [22].
The middleware layer is responsible for service man-

agement over IoT devices to create connections between
IoT devices that provide the same service. Moreover,
the middleware layer stores the information coming
from the network layer in a database to facilitate
decision-making on the basis of information processing
operations [22].
The application layer is responsible for the global

management of IoT applications. The application layer
depends on the information processed in the middle-
ware layer. Moreover, the application layer depends on
the specifics of the different implemented IoT applica-
tions, such as smart industry, building, city, and health
applications [22].
The business layer is also responsible for the global

management of IoT applications as well as service man-
agement over IoT devices. The business layer creates a
business model that depends on the information pro-
cessed in the application layer and on the analysis of the
results of these information processing operations [22].

Cloud computing and the IoT
IoT systems connect an enormous number of devices and
sensors exchanging an enormous amount of data and sup-
porting a massive number of services. The management
and analysis of these data pose certain special require-
ments, such as powerful processing, massive storage and
high-speed networking capabilities [23].
Cloud computing offers high computational power,

a massive storage capacity, and configurable resources
with virtualization capabilities for manipulating the large
amounts of data collected from IoT-based smart environ-
ments. With the integration of cloud computing systems
and IoT-based smart environments, smart things can be
easily accessed and managed at any time and place, and
better services can be provided through the IoT model
[23, 24].
According to [25], one of the important challenges in

employing a cloud computing system for the IoT is the
synchronization between different cloud vendors. A sec-
ond challenge is achieving compatibility between general
cloud service environments and IoT requirements. Secu-
rity challenges are the main factor hindering the adoption

of cloud computing by businesses and government orga-
nizations [26]. Thus, the ability to respect the necessary
security constraints to fulfill the needs of the IoT in a
cloud computing platform is a vital requirement. A robust
and efficient security solution such as an IDS is one possi-
ble option. Moreover, standardization, enhancement, and
management for the deployment of IoT systems and their
connection to the cloud are additional challenges that
should be taken into consideration.

IoT and smart environments
The objective of smart environments is to make human
life more comfortable and more efficient by using sen-
sors. IoT-based smart environments enable the effective
realization of smart objects. By means of an IoT net-
work, sensors can be monitored and controlled remotely.
According to Navigant Research, the global smart city
services market is expected to increase from 93.5 bil-
lion US dollars in 2017 to 225.5 billion US dollars
by 2026 [27].
Ahmed et al. [28] state that “The term smart refers to the

ability to autonomously obtain and apply knowledge, and
the term environment refers to the surroundings”. A smart
city is one type of smart environment. The core element of
a smart city is an integrated information center operated
by the IoT service provider, which provides information
on services such as electricity, water, and gas.
Smart health, smart industry, smart buildings and smart

homes are other types of smart environments. The objec-
tive of such smart environments is to provide services via
smart methods based on the information collected by IoT-
enabled sensors. The architecture of such IoT-based smart
environments is shown in Fig. 3.
Smart environments based on the IoT paradigm have

certain special characteristics, and hence, special needs
arise in the deployment of such environments. For
instance, remote monitoring and remote control capabili-
ties are required to allow smart objects to collect and pro-
cess data and to execute operations remotely. Moreover,
the ability to make decisions is an important characteristic
in such a system. A smart object should be able to make
intelligent decisions without human intervention by using
data mining and other techniques for extracting useful
data.
By virtue of these characteristics, smart environments

offer certain features that can be used to enhance the
quality of service (QoS) of user applications. Real-time
information is one of these features. Smart objects can
collect and analyze data and make intelligent decisions
in real time. Moreover, the cost-effectiveness of cloud
applications can be used to increase the QoS of smart
environment applications. The integration of smart and
IoT environments offers new opportunities with respect
to the QoS of services and applications.
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Fig. 3 IoT-based smart environments. The architecture of the IoT and the extent of the IoT market according to [14]

IoT technology for developing smart cities
Many national governments are working on the informa-
tion and communication technology (ICT) infrastructure
to solve the problems arising in traditional public man-
agement affairs. One of the most modern and effective
solutions is to establish a smart city [5]. The smart city
concept is one facet of the idea of smart environments.
There are many benefits of converting traditional public

services and resources into a form that takes advantage of
the smart city concept, including increasing the quality of
public services and reducing the operating costs of public
administration [29]. However, the management and exe-
cution of public services in a smart city require a powerful
network, such as an IoT network.
Additionally, there are many barriers to the establish-

ment of an IoT-based smart city. The novelty, complex-
ity and technical challenges of IoT systems present the
greatest difficulty. Furthermore, in the absence of widely
accepted definitions for smart city operations, political
and financial barriers prevent the smart city concept from
being effectively applied.
The Padova Smart City in Italy is a successful exam-

ple of a smart city that has overcome these barriers. The
main goal of establishing the Padova Smart City is to
develop ICT solutions for public administration systems
using different types of data and technology [5].
The implementation of the IoT paradigm for creat-

ing smart environments, particularly smart cities, faces

several technical challenges. Among these, precision,
latency and available bandwidth have important effects in
many smart environments, such as industrial and health-
care environments. Because of the need to support an
increasing number of users and smart objects in IoT
networks and the corresponding generation of increas-
ingly large amounts of data, scalable computing platforms,
such as cloud computing, are necessary. Such platforms
can improve the performance of data management ser-
vices in IoT systems and the QoS of smart environment
applications [30].

Security challenges in IoT-based smart
environments
The security of IoT systems is a serious issue due to
the increasing numbers of services and users in IoT
networks. The integration of IoT systems and smart
environments makes smart objects more effective. How-
ever, the impacts of IoT security vulnerabilities are very
dangerous in critical smart environments used in fields
such as medicine and industry. In IoT-based smart envi-
ronments without robust security systems, applications
and services will be at risk. Confidentiality, integrity,
and availability are three important security concepts
of applications and services in IoT-based smart envi-
ronments; thus, to address these concerns, information
security in IoT systems requires greater research focus
[2]. For example, IoT-based smart homes face security



Elrawy et al. Journal of Cloud Computing: Advances, Systems and Applications            (2018) 7:21 Page 6 of 20

and privacy challenges that span all layers of the IoT
architecture [31].
The creation of smart environments in the real world

faces two notable barriers: the security of IoT systems and
the complexity and compatibility of IoT environments.
Attacks such as DoS or DDoS attacks on IoT networks
affect IoT services and thus affect the services provided by
smart environments.
Researchers study the security challenges of the IoT

from many different points of view, one of which is the
security vulnerability of IoT communication protocols
[32]. This survey focuses on IDSs for the IoT paradigm,
independent of any specific protocol; thus, this study
focuses on the security challenges facing IoT systems
on the basis of the IEEE definition and the general IoT
architecture.
The security challenges in IoT systems are related to

security issues arising in the different IoT layers. Physical
damage, hardware failure, and power limitations are chal-
lenges faced in the physical layer. DoS attacks, sniffing,
gateway attacks, and unauthorized access are challenges
relevant to the network layer. Malicious code attacks,
application vulnerabilities, and software bugs are chal-
lenges faced in the application layer [33].
According to [34], the security-related problems of

any IoT system can be categorized into four types:
authentication and physical threats, confidentiality risks,
data integrity issues and privacy problems. The relations
between these groups are shown in Fig. 4. The security
problems arising in the different IoT layers are concisely
discussed below.

• The authentication-related problem and physical
threats are the first challenges that affect an IoT sys-
tem. The perception layer includes many IoT devices,
such as sensors, that depend on their own security
systems; thus, they are susceptible to physical attacks.

• Confidentiality-related risks arise between IoT devices
and the gateways in the network layer. The resource-
constrained nature of the low-level devices in IoT
systems poses an indirect challenge with regard to the
confidentiality of data transmission in IoT networks
[35].

• The third class of security challenges concerns the
data integrity between services and applications. Data
integrity problems emerge when spoofing attacks or
noise affect an IoT system. DoS, DDoS, and probe
attacks are arbitrary attacks that can harm IoT appli-
cations and services.

• The challenges of the fourth type are related to pri-
vacy. Information privacy is an important aspect of
security in IoT systems [36]. Different IoT compo-
nents use different types of object identification tech-
nologies; thus, every object has its own identification

Fig. 4 The security challenges in the different IoT layers. The four
types of security problems arising in the IoT model are associated
with the different layers of the IoT architecture

tag, which carries personal, location and movement
information. Managing and monitoring the applica-
tions and services in an IoT system mean placing
information privacy at risk; for example, using a sys-
tem based on a deep packet inspection technique for
trusted operations within an IoT system is consid-
ered to be a violation of information privacy [37]. Any
intrusive accesses to the management system with-
out permission threaten the information privacy of the
IoT users [34].

Real-world applications of IoT systems face many open
challenges. The open security challenges affecting IDS
operations identified by [20, 22, 33, 38] are discussed
below.
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• A smart environment that integrates IoT technol-
ogy is considered to be a complex system because
it consists of different products from different com-
panies based on different technologies that do not
share a universal language. Therefore, standardization
is another important aspect of security in IoT systems.
Creating a standard IoT architecture based on one
standard technology for all vendors and manufactur-
ers would enhance the interoperability of the security
functionalities of all objects and sensors in an IoT sys-
tem. The success of this integration will depend on
collaboration among companies to create a universal
standard. Such standardization will greatly facilitate
IoT network security.

• A single successful penetration of one or more end
devices can threaten the security of an entire IoT sys-
tem and cause harm to its applications and services,
especially from an industrial point of view [39]. Thus,
the implementation of a strong security mechanism in
an IoT system depends on the strength of the secu-
rity for individual IoT devices, which in turn depends
on power and memory factors. Consequently, power
and memory limitations are considered to pose indi-
rect security challenges in IoT systems. To address
these challenges, lightweight security solutions and
lightweight encryption and decryption methods are
required. These solutions and methods must be appli-
cable in different IoT domains and must satisfy the
security requirements without affecting the QoS.

Intrusion detection systems (IDSs)
IDSs: a historical overview
Monitoring and analyzing user information, networks,
and services through passive traffic collection and analy-
sis are useful tools for managing networks and discovering
security vulnerabilities in a timely manner [40, 41]. An
IDS is a tool for monitoring traffic data to identify and

protect against intrusions that threaten the confidentiality,
integrity, and availability of an information system [42].
The operations of an IDS are schematically illustrated in
Fig. 5.
The operations of an IDS can be divided into three

stages. The first stage is the monitoring stage, which relies
on network-based or host-based sensors. The second
stage is the analysis stage, which relies on feature extrac-
tion methods or pattern identification methods. The final
stage is the detection stage, which relies on anomaly or
misuse intrusion detection. An IDS captures a copy of the
data traffic in an information system and then analyzes
this copy to detect potentially harmful activities [43].
The concept of an IDS as an information security sys-

tem has evolved considerably over the past 30 years.
During these years, researchers have proposed various
methods and techniques for protecting different types
of systems using IDSs. In 1987, Denning presented an
intrusion detection model that could compare malicious
attack behavior against the normal model for the system
of interest [44].
In 2000, Axelsson [45] surveyed 20 research projects

on IDSs. He listed fourteen IDSs relying on host-based
methods, two IDSs relying on network-based methods
and three IDSs relying on both host-based and network-
based methods. However, the IDS model used in those
studies was out of date and depended on the local machine
more than on the network traffic during the analysis
stage.
In 2013, Ganapathy et al. [46] presented a sur-

vey on intelligent techniques for feature selection and
classification-based intrusion detection in networks. This
survey considered fuzzy techniques, neural networks,
genetic algorithms, neuro-genetic algorithms, particle
swarm intelligence and rough sets for Internet secu-
rity protection and QoS enhancement. Moreover, these
authors proposed new feature selection and classification

Fig. 5 IDS operations. IDS operations can be divided into the monitoring stage, the analysis stage and the detection stage
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algorithms. In their experiment, they used 19 flow-based
features comprising basic features, packet content features
and traffic features.
In 2014, Mitchell and Chen [47] surveyed 60 papers

on IDSs designed for wireless environments. Their survey
revealed the strengths and weaknesses of IDS tech-
niques for wireless local area networks (WLANs), wire-
less mesh networks (WMNs), wireless personal area
networks (WPANs), wireless sensor networks (WSNs),
cyber-physical systems (CPSs), ad hoc networks and
mobile telephony.
Mitchell and Chen [47] proved that an anomaly-based

IDS is the most suitable design for mobile telephony sys-
tems. However, such IDSs face challenges in terms of their
high false positive rate and computational complexity [47].
High false positive and false negative rates reduce the QoS
of a mobile network system. If any user packet is dropped
by mistake, the user will suffer a billing error, and the user
packet will be delayed [47]. Anomaly-based IDSs also face
challenges with regard to illegal analysis methods, such as
packet-based methods, that infringe on user privacy [47].
This survey proposed the detection latency as a critical
metric for use in future research.
Also in 2014, Butun et al. [48] surveyed 18 papers focus-

ing on mobile ad hoc networks (MANETs) and 17 papers
focusing on WSNs in their survey on IDSs in WSNs.
These authors discussed the feasibility of using systems
designed for MANETs in WSNs. The possible security
attacks against WSNs were divided into two categories:
passive attacks and active attacks. These authors proved
that IDSs are very important for the security of WSNs
and that an IDS designed for a WSN must have certain
special characteristics, including low power consumption.

A WSN is a resource-constrained environment, so the
effectiveness of an IDS in a WSN depends on its effect on
the energy consumption of the network.
Butun et al. [48] recommended the use of a hierar-

chical IDS model to solve the energy consumption issue
in WSNs. In accordance with the relevant application
requirements, Butun et al. [48] recommended using a dis-
tributed IDS scheme for mobile applications, a centralized
IDS scheme for stationary applications and a hierarchical
IDS scheme for cluster-based applications.

IDSs: types andmethods
The implementation of an IDS depends on the environ-
ment. A host-based intrusion detection system (HIDS) is
designed to be implemented on a single system and to pro-
tect that system from intrusions or malicious attacks that
will harm its operating system or data [49].
A HIDS generally depends on metrics in the host envi-

ronment, such as the log files in a computer system [50].
These metrics or features are used as input to the decision
engine of the HIDS. Thus, feature extraction from the host
environment serves as the basis for any HIDS. The opera-
tional structure of a HIDS and its location in the network
are shown in Fig. 6.
A network-based intrusion detection system (NIDS)

sniffs network traffic packets to detect intrusions and
malicious attacks [50]. A NIDS can be either a software-
based system or a hardware-based system. For example,
Snort NIDS is a software-based NIDS [51]. The opera-
tional structure of a NIDS and its location in the network
are shown in Fig. 7.
Network expansion and increasing traffic volumes

necessitate the implementation of IDSs as hardware

Fig. 6 Generic architecture of a host-based IDS (HIDS). The operational structure of a HIDS and its location in the network
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Fig. 7 Generic architecture of a network-based IDS (NIDS). The operational structure of a NIDS and its location in the network

systems, such as a smart sensor architecture [52]. For
example, field programmable gate arrays (FPGAs) can be
used as the basis of a hardware-based NIDS. The special
characteristics of FPGAs, such as their ability to support
high-speed interfaces, dynamic reprogramming and very
high-volume data processing, make FPGAs very suitable
for use in NIDSs [53].

IDSs: detection techniques
An IDS depends on algorithms for implementing the vari-
ous stages of intrusion detection. There are a vast number
of algorithms for all IDS types andmethods. Some of these
IDS algorithms will be discussed briefly in the section
titled ‘IDSs Designed for IoT Systems’.
Additionally, some of these IDS algorithms can be

used for multiple different detection techniques. Thus,
this section focuses on lightweight anomaly-based IDS
algorithms that can be used in IoT-based environments
depending on the complexity, execution time and detec-
tion time requirements. Principal component analysis
(PCA) is a lightweight algorithm that can be used for
various detection techniques in IDSs; thus, the PCA algo-
rithm will be discussed as a representative example in the
following.
Mori et al. [54] have stated that “principal component

analysis (PCA) is a commonly used descriptive multivari-
ate method for handling quantitative data and can be
extended to deal with mixed measurement level data.”
Thus, PCA has been widely applied in various fields.
As described by [55], PCA generates a set of variables
depending on the variance-covariance structure of the
original variables. These new variables are linear combi-
nations of the original variables and are fewer in number
than the original variables.

In IDSs, PCA is used as a dimensionality reduction
and detection technique. Elrawy et al. [56] used the PCA
approach to create an anomaly-based statistical and data
mining IDS that depends on the division of the principal
components into the most and least significant princi-
pal components. In this system, the detection stage relies
on the major principal component score and the minor
principal component score. In addition, PCA has been
used in intrusion detection techniques based on payload
modeling, statistical modeling, data mining and machine
learning [56–58].

Misuse-based intrusion detection
A misuse-based intrusion detection technique uses a
database of known signatures and patterns of malicious
codes and intrusions to detect well-known attacks [59].
Network packet overload, the high cost of signature
matching, and the large number of false alarms are three
disadvantages of misuse-based IDSs [60]. In addition, the
severe memory constraints in some types of networks,
such asWSNs, result in low performance of misuse-based
IDSs because of their need to store a large database of
attack signatures [61].
Moreover, the signature and pattern databases in

signature-based IDSs and pattern-matching IDSs need to
be continuously updated. Such misuse-based IDSs are
designed to detect malicious attacks and intrusions based
on previous knowledge.

Anomaly-based intrusion detection
In an anomaly-based intrusion detection technique, a nor-
mal data pattern is created based on data from normal
users and is then compared against current data pat-
terns in an online manner to detect anomalies [62]. Such
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anomalies arise due to noise or other phenomena that
have some probability of being created by hacking tools.
Thus, anomalies are unusual behaviors caused by

intruders that leave footprints in the computing envi-
ronment [63]. These footprints are detected in order to
identify attacks, particularly unknown attacks.
An anomaly-based IDS operates by creating a model

of the normal behavior in the computing environment,
which is continuously updated, based on data from nor-
mal users and using this model to detect any deviation
from normal behavior [64]. The advantages and disad-
vantages of various anomaly-based intrusion detection
techniques are shown in Table 1. These techniques will be
discussed in the following.

Table 1 A short comparison between anomaly IDS techniques
with a focus on the advantages and disadvantages of each
technique

Technique Advantages Disadvantages

Data mining 1- Models are created
automatically

1- Based on historical
data

2- Applicable in
different
environments

2- Depends on
complex algorithms

3- Suitable for online
datasets

Machine learning 1- High detection
accuracy

1- Requires training
data

2- Suitable for
massive data volumes

2- Long training time

Statistical model 1- Suitable for online
datasets

1- Based on historical
behavior

2- System simplicity 2- Detection accuracy
depends on statistical
and mathematical
operations

Rule model 1- Suitable for online
datasets

1- Based on a set of
rules

2- System simplicity 2- High false positive
rate

Payload model 1- High detection
accuracy for known
attacks

1- Privacy issues

2- Long processing
time

Protocol model 1- High detection
accuracy for a specific
type of attack

1- Designed for a
specific type of
protocol

Signal processing
model

1- High detection
accuracy

1- Depends on
complex
pattern-recognition
methods

2- Low false positive
rate

• A data mining approach is a means for extracting
knowledge from a large amount of data, analogous to
extracting gold from numerous rocks and sand [65].
The extracted knowledge is defined as interesting pat-
terns in the data [66]. Such a pattern can describe
the behavior of data from users or networks in a
computing environment. The ability to automatically
generate models that depend on the traffic description
is one of the advantages of the data mining approach.
Moreover, this approach can be applied in generalized
IDSs and in any computing environment [67]. The
data mining approach works perfectly for an online
data stream that is unbounded, continuous and rapidly
increasing in volume [68]. A procedure consisting of
a rule learning stage, a clustering stage, a classification
stage, and a regression stage is applied in the design of
an IDS based on this approach [68].

• Machine learning is a technique that depends on two
stages: the training or learning stage and the detection
or testing stage [69]. The training stage depends on
mathematical algorithms or functions that use normal
data as a reference input to learn the characteristics
of the computing environment. Then, in the detection
stage, these characteristics are used for detection and
classification [70]. Supervised learning is one type of
machine learning technique in which the character-
istics of the training dataset are used in the learning
phase to create a classification model, which is then
used to classify new unseen instances [71]. Unsuper-
vised learning is a type of machine learning technique
that depends on the features of the data without using
clustered training data [71].
A pattern classification method in machine learning

depends on pattern recognition, whereas a single clas-
sifier method depends on a single machine learning
algorithm [72, 73].

• The statistical model approach depends on statistical
mathematical operations [74]. The statistics of histor-
ical user behavior are used to create a normal model,
and any deviations from this model are then detected.
These deviations are considered abnormal data. The
statistical model approach uses statistical mathemat-
ical operations applied to a training dataset to detect
abnormal traffic from the observed traffic patterns
[75].

• The rule model approach depends on the creation
of rules for the computing environment. These rules
are extracted from data traffic patterns. A rule-model-
based IDS detects any anomalous data traffic that
breaks these rules and considers any such anomaly as
an attack [76]. The rule creation process depends on
the historical system behavior. Thus, the system must
be monitored for a long time to avoid an excessively
high false positive rate.
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• The payload model approach depends on the packet
traffic of a specific port or user for a given application.
In a signature-based IDS, the payload model is based
on pattern matching to identify attack packets with
specific characteristics [77]. By contrast, an anomaly-
based IDS that uses the payload model approach cre-
ates a model that depends on bytes or calculations
from bytes that describe the normal characteristics of
the packet payload [57].

• The protocol model approach depends on moni-
toring protocols in different layers of the comput-
ing environment. An IDS based on this approach
detects anomalies associated with a specific proto-
col or a protocol that is not present in the normal
model. A specification-based approach, a parser-based
approach or an approach based on application proto-
col keywords can be used to analyze the protocols in a
computing environment [78].

• The signal processing model approach depends on
traffic analysis using signal processing methods. An
IDS based on this approach creates a normal pattern
by capturing the statistics of normal data traffic and
the data distribution over time, and any deviation from
this pattern is considered to be an anomaly [79].

Specification-based intrusion detection
The concept of a specification-based IDS was proposed
by Ko et al. [80] in 1997. They proposed a monitoring
and detection system based on security specifications that
determine the normal behavior of the system to be pro-
tected. These security specifications are created based on
the functions and security policies for this system. Thus,
operating sequences that are not included in the system
behavior are considered security violations [81].
The most important challenge in designing a robust

specification-based IDS is creating a formalism that cap-
tures the valid operating sequences of the system. There-
fore, the cost of defining the specification “trace policy”
and the difficulty of evaluating and verifying the specifi-
cations limit the real-world applicability of specification-
based IDSs. A specification-based IDS learns the root
characteristics of attacks and detects known attacks like a
misuse-based IDS, and it also has the ability of anomaly-
based IDSs to detect unknown attacks, such as operating
sequences that are not included in the normal behavior of
the system [82–84].

IDSs: performance evaluation
The measures used to assess IDS performance depend on
four factors, namely, the numbers of true positives (α),
true negatives (δ), false positives (γ ) and false negatives
(β), as described in Table 2. Following [85, 86], these fac-
tors and the performance metrics for IDSs are described
below.

Table 2 The two-dimensional confusion matrices that define the
main factors considered in IDS performance evaluation when
predicting the anomaly and normal classes

Predicting the anomaly class

Attack Normal

Actual Attack αA βA

Class Normal γA δA

Predicting the normal class

Normal Attack

Actual Normal αN βN

Class Attack γN δN

When predicting the anomaly class, a true positive (αA)
is a correct classification that indicates an intrusion. A
true negative (δA) is a correct classification that indicates
no intrusion. A false positive (γA) is an incorrect classifica-
tion that indicates an intrusion when there is no intrusion.
A false negative (βA) is an incorrect classification that
indicates no intrusion when there is an intrusion. The
true positive rate (TPR), which describes the probability
of detecting intrusions, is calculated as:

TPR = αA
αA + βA

(1)

The false positive rate (FPR), which describes the prob-
ability of incorrectly identifying normal behavior as an
intrusion, is calculated as:

FPR = γA
γA + δA

(2)

The recall (R), which describes the percentage of the
total relevant records in a database that are retrieved by
searching, is calculated in the same way as the TPR. The
precision (P), which describes the percentage of relevant
records among the records retrieved, is calculated as:

P = αA
αA + γA

(3)

The F-score (F), which describes the balance between P
and R, is calculated as:

F = 2 ∗ P ∗ R
P + R

(4)

The overall success rate, which describes the percentage
of correct classifications, is calculated as:

SuccessRate = αA + δA
αA + δA + γA + βA

(5)

ErrorRate = 1 − SuccessRate (6)
When predicting the normal class, the same definitions

and equations can be used, except with the parameters αN ,
βN , γN and δN .
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IDSs designed for IoT systems
Due to the security challenges facing IoT systems, meth-
ods that can proactively identify new attacks are most
suitable for protecting IoT networks. Thus, a robust IDS
that can detect new attacks in IoT-based smart environ-
ments is required. An overview of the IDSs that have been
proposed for IoT systems is shown in Table 3.
According to the recommendations in recent surveys of

IDSs for IoT systems [3, 7], this paper focuses on the fea-
tures of all IDS methods for the IoT that can be applied
in smart environments. IoT systems require special secu-
rity measures with particular characteristics that are not
offered by traditional IDSs.
Liu et al. [87] proposed an artificial immune IDS for

IoT networks. This system can adapt to the IoT environ-
ment and automatically learn new attacks. The system is
based on machine learning and a signature-based model.
The adopted machine learning approach is designed after
the mechanisms of artificial immune systems. The objec-
tive of the system is to increase the security of the IoT
network; thus, it is a network IDS. This system has two
main features: self-adaptation to new environments and
self-learning of new attacks.
Kasinathan et al. [88] proposed an IDS that detects DoS

attacks based on 6LoWPAN in IoT networks. They pro-
posed a DoS detection architecture that consists of an
IDS probe, a DoS protection manager and a Suricata IDS
[89]. They designed this system based on a study of the
vulnerabilities present in IP-based WSNs. The Suricata
[89] IDS runs on a host computer; thus, the advantage of
this system is that it can overcome the problem of power
consumption, thus conserving power resources in WSNs.
Moreover, Kasinathan et al. [90] proposed an enhanced

IDS for detecting DoS attacks based on 6LoWPAN in
IoT networks. This system depends on the DoS detection
architecture presented in [88]; its main new elements are
a frequency agility manager (FAM) and security incident
and event management system (SIEM). These elements
together create a monitoring system that can monitor
large networks.
Jun and Chi [91] proposed an IDS integrated with com-

plex event-processing (CEP) technology. The benefit of
CEP technology is the ability to identify complex patterns
via real-time data processing. The event-processing IDS
architecture consists of an event filtering unit, an event
database unit, a CEP unit and an action engine unit. The
system depends on an event-processing model that uses
the rule model approach to detect intrusions.
The main features of this system are that it operates

in real time and shows high performance in detecting
intrusions in an IoT system using an event-processing
mechanism.
Krimmling and Peter [92] proposed a NIDS that

depends on machine learning for anomaly-based and

signature-based intrusion detection. The system frame-
work is designed for smart public transport applications
that use CoAP. The main features of this system are its
applicability to CoAP applications and its reliance on a
lightweight algorithm.
Butun et al. [93] proposed a NIDS for WSNs that com-

bines the statistical model approach and the rule model
approach. The system is based on a downward-IDS and
an upward-IDS in accordance with the hierarchical WSN
structure. The downward-IDS detects abnormal behavior
of the member nodes, and the upward-IDS detects abnor-
mal behavior of the cluster heads. The main features of
this system are its applicability to hierarchical WSNs and
its dependence on WSN clustering.
Surendar and Umamakeswari [82] proposed a

constraint-based specification IDS for IoT networks using
6LoWPAN. This system maintains efficiency in terms
of QoS metrics while detecting sinkhole attacks. The
system isolates malicious nodes and reconstructs the
network without these nodes. This IDS is a specification-
based IDS that depends on behavioral rules and uses the
protocol model approach.
The main features of this system are that it detects

sinkhole attacks, preserves QoS and isolates malicious
nodes.
In addition, Le et al. [83] proposed a specification-based

IDS for IoT networks using 6LoWPAN for the detection of
several topology attacks against the IPv6 Routing Protocol
for Low-Power and Lossy Networks (RPL), such as sink-
hole, rank, local repair, neighbor, and destination oriented
directed acyclic graph (DODAG) information solicitation
(DIS) attacks. In a DIS attack, for example, the attacker
increases the overhead in the network by using malicious
nodes to send DIS messages [94] with fake IP addresses
to the malicious nodes’ neighbors, forcing these other
nodes to generate DODAG information objective (DIO)
messages [83, 94]. The proposed IDS depends on ana-
lyzing the protocol behavior from trace files to learn the
route establishment and maintenance procedures for a
stable topology. The main features of this system are its
high efficiency in detecting RPL topology attacks in an
energy-efficient manner and its applicability to large-scale
networks.
Moreover, Bostani and Sheikhan [84] proposed a hybrid

IDS for IoT networks using 6LoWPAN for the detec-
tion of several RPL attacks. This system depends on
specification-based intrusion detection modules, serving
as IDS agents, in the router nodes and an anomaly-based
intrusion detection module, serving as the main IDS, in
the root node. The main features of this system are a
reduction in the number of communication messages due
to the lack of additional control messages or monitor
nodes in the IDS design and its applicability to large-scale
networks.
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Table 3 A comparison of IDSs designed for IoT systems, with a focus on the types, techniques and features of these systems with
respect to their adaptability to IoT-based smart environments

Reference Type Technique Features

Liu et al. (2011) [87] NIDS Machine learning & Signature model 1- Self-adaption 2- Self-learning
Hybrid intrusion detection

Kasinathan et al. (2013) [88] NIDS Rule model & Signature model 1- Detection of DoS attacks in 6LoWPAN
Hybrid intrusion detection 2- Decreased false alarm rate

Kasinathan et al. (2013) [90] NIDS Rule model & Signature model 1- Monitoring of large networks 2- Light weight and scalability
Hybrid intrusion detection 3- Detection of DoS attacks in 6LoWPAN

Jun and Chi (2014) [91] NIDS Rule model 1- Real-time detection
Anomaly-based intrusion detection 2- High performance in real time

Krimmling and Peter (2014) [92] NIDS Machine learning & Signature model 1- Applicability to CoAP applications
Hybrid intrusion detection 2- Light weight

Butun et al. (2015) [93] NIDS Statistical model & Rule model 1- Applicability to hierarchical WSNs
Hybrid intrusion detection 2- Dependence on WSN clustering

Surendar and Umamakeswari (2016) [82] NIDS Protocol model 1- Detection of sinkhole attacks in 6LoWPAN
Specification-based intrusion
detection

2- QoS preservation 3- Isolation of malicious nodes

Le et al. (2016) [83] NIDS Protocol model 1- Energy efficiency 2- Detection of RPL attacks in 6LoWPAN
Specification-based intrusion
detection

3- Applicability to large-scale networks

Bostani and Sheikhan (2017) [84] NIDS Protocol model & Machine learning 1- Detection of RPL attacks in 6LoWPAN
Hybrid intrusion detection 2- Real-time detection 3- Reduced number of

communication messages

Garcia-Font et al. (2017) [95] NIDS Machine learning & Signature model 1- Applicability to WSNs
Hybrid intrusion detection 2- Applicability to large-scale networks

Fu et al. (2017) [96] NIDS Protocol model & Signature model 1- Classification of attacks into categories
Hybrid intrusion detection 2- Use of GUI tools

Deng et al. (2018) [97] NIDS Machine learning & Data mining 1- Light weight
Hybrid intrusion detection 2- Improved detection efficiency with a low FPR

Amouri et al. (2018) [99] NIDS Protocol model & Machine learning 1- Low computational complexity
Hybrid intrusion detection 2- Low resource requirements

Liu et al. (2018) [100] NIDS Machine learning & Data mining 1- Adaptability to high-dimensional spaces
Hybrid intrusion detection 2- Reduced detection time 3- High accuracy on

high-volume data

Abhishek et al. (2018) [101] NIDS Statistical model 1- Real-time detection
Anomaly-based intrusion detection 2- Based on theoretical foundations with no need for

training data
Oh et al. (2014) [102] HIDS Pattern matching 1- Reduced memory size requirements

Misuse-based intrusion detection 2- Reduced processing workload 3- Increased speed
4- Scalable performance for a large number of patterns

Summerville et al. (2015) [103] HIDS Payload model 1- Low latency 2- Ultralight weight
Anomaly-based intrusion detection 3- High throughput in hardware or software

implementation
Mohan et al. (2016) [37] HIDS Rule model & Signature model 1- Simplicity

Hybrid intrusion detection 2- Self-learning
Arrignton et al. (2016) [104] HIDS Machine learning 1- High-efficiency monitoring

Anomaly-based intrusion detection 2- Cancellation of environment noise
Gupta et al. (2013) [105] Hybrid IDS Machine learning 1- Real-time detection 2- Adaptability to wireless networks

Anomaly-based intrusion detection 3- Ability to operate as both a NIDS and a HIDS

Raza et al. (2013) [106] Hybrid IDS Protocol model & Machine learning 1- Detection of RPL attacks in 6LoWPAN
Hybrid intrusion detection 2- Real-time detection 3- Light weight 4- Energy efficiency

Khan and Herrmann (2017) [107] Hybrid IDS Protocol model 1- Light weight 2- Energy efficiency
Anomaly-based intrusion detection 3- Applicability in healthcare environments
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Garcia-Font et al. [95] proposed a NIDS for WSNs that
depends on a machine learning approach and a signature
model. They used a signature-based detection engine and
an anomaly-based detection engine to improve the detec-
tion rate and the FPR. The system is designed to help
smart city administrators detect intrusions using the IDS
and an attack classification schema. The objective of the
system is to detect intrusions in WSNs in different smart
city environments. The main feature of this system is its
applicability to large-scale WSNs.
Fu et al. [96] proposed a NIDS that depends on

signature-based and protocol-based anomaly detection.
The proposed IDS structure focuses on detecting attacks
on IoT networks without being affected by the hetero-
geneity of such a network. The detection method depends
on comparing the abstracted action flows in the data pack-
ets against three databases based on the protocol type
information for each packet. These databases are a stan-
dard protocol library, an abnormal action library and a
normal action library. The proposed approach consists of
an event monitor, an event database, an event analyzer,
and a response unit. This approach provides a uniform
intrusion detection method for IoT networks based on
automata theory. The main features of this system are
the classification of attacks into three categories and the
development of graphical user interface (GUI) tools to
graphically present the abstract action flows and detect
possible intrusions.
Deng et al. [97] proposed a NIDS that depends on

the fuzzy c-means clustering (FCM) algorithm and the
PCA algorithm. The system combines a machine learn-
ing approach with a data mining approach to improve
the accuracy of intrusion detection for IoT networks. The
PCA algorithm is used for feature selection and reduction.
The FCM algorithm is used as a clustering method. The
KDD-CUP99 dataset [98] was used to evaluate the pro-
posed system. Themain features of this system are its light
weight and its ability to improve the detection efficiency
by achieving a low FPR.
Amouri et al. [99] proposed a NIDS based on the pro-

tocol model approach and machine learning. This system
consists of two detection stages. In the first stage, namely,
local detection, network behavior data are collected by
dedicated sniffers to generate a set of correctly classified
instances (CCIs) using a supervised learning approach
based on decision trees. In the second stage, namely,
global detection, CCIs are collected by supernodes to gen-
erate time-based profiles called the accumulatedmeasures
of fluctuation (AMoFs) for malicious and normal nodes
separately.
The main features of this system are its low computa-

tional complexity and low resource requirements.
Liu et al. [100] proposed a NIDS that depends on the

suppressed fuzzy clustering (SFC) algorithm and the PCA

algorithm. This system combines machine learning and
data mining to improve the accuracy of intrusion detec-
tion in high-dimensional space. The PCA algorithm is
used for feature extraction. A novel prejudgment-based
intrusion detection method using PCA and SFC is applied
that divides the dimension-reduced data into high-risk
and low-risk data. The main feature of this system is
its adaptability to high-dimensional spaces, such as the
IoT space. Moreover, the efficiency and effectiveness of
the IDS are optimized by reducing the detection time
and increasing the accuracy by means of a frequency
self-adjustment algorithm.
Abhishek et al. [101] proposed a NIDS that depends

on the packet drop probability (PDP) in an IoT device
to monitor gateways and detect malicious gateways. The
system uses the statistical model approach for anomaly-
based intrusion detection using a likelihood ratio test to
detect malicious gateways, which corrupt the communi-
cations between IoT devices and access points. One of
the disadvantages of this system is that it can only detect
malicious getaways that affect downlink packets; it does
not consider malicious getaways that affect uplink packets
from IoT devices. Themain features of this system are that
it is based on theoretical foundations instead of requiring
training data and that it can detect malicious gateways in
real time.
Oh et al. [102] proposed a lightweight malicious-

pattern-matching IDS. They stressed that traditional IDSs
are not applicable for smart objects due to the limited
memory size and battery life of these objects. Thus, a
powerful and lightweight IDS is required because of these
restrictions. Oh et al. proposed the auxiliary skipping (AS)
algorithm, the early decision with boundary searching
(EBS) algorithm, and an approach that uses both AS and
EBS (AS-EBS).
These algorithms reduce the number of matching oper-

ations that must be performed [102]. The system depends
on a pattern-matching approach based on signature detec-
tion. The advantage of this system is that it can be applied
to smart objects with limitedmemory size and battery life.
The main features of this system are the reduced mem-
ory size required for matching operations, the reduced
workload for processing on smart objects, the increased
speed of processing, and its scalable performance for a
large number of patterns.
Summerville et al. [103] proposed an ultralightweight

deep packet anomaly detection approach that can be
implemented on small IoT devices. The system is designed
with a dependence on the bitwise AND operation and
uses a payload model approach for anomaly-based intru-
sion detection. Themain features of this system are its low
latency, high throughput and ultralight weight.
Mohan et al. [37] proposed a HIDS that depends on

signature-based and rule-based anomaly detection. The
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system uses the traditional signature-based technique in
combination with Snort-rule-based intrusion detection.
Thus, the system can detect known attacks using the sig-
nature database and unknown attacks using SNORT rules.
The main challenge of this system is privacy because the
system uses a deep packet inspection technique to detect
attacks. The main features of this system are its simplicity
and self-learning capability.
Arrignton et al. [104] proposed a HIDS that depends

on a machine learning approach for anomaly-based intru-
sion detection. The machine learning approach is based
on the mechanisms of artificial immune systems. The
main features of this system are its use of a behavioral
modeling IDS (BMIDS) to decide whether behavior is
acceptable and its increased detection sensitivity achieved
by canceling out environmental noise.
Gupta et al. [105] confirmed that the threat of attacks

in IoT systems affects not only the computational envi-
ronment but also human life and the economy. For this
reason, they proposed a computational-intelligence-based
IDS for wireless communications and IoT systems. They
proposed a three-tier architecture as the basis of an intel-
ligent IDS suitable for wireless networks; this architec-
ture consists of an information storage unit, a computa-
tional intelligence and optimization unit, and a clustering
and intrusion reporting unit. This system depends on a
machine learning approach for anomaly-based intrusion
detection.
The machine learning approach applied in this IDS is

based on the swarm intelligence (SI) paradigm, which is a
specific type of computational intelligence (CI) paradigm
[105]. The system targets IP addresses to detect attacks;
thus, it has the disadvantage that it cannot be applied in
regions ofWSNs that do not use the TCP/IP protocol. The
main feature of this system is its ability to operate as both
a NIDS and a HIDS.
Raza et al. [106] proposed a hybrid-based IDS for IoT

networks using 6LoWPAN for the detection of several
RPL attacks. They proposed the SVELTE IDS, which con-
sists of a 6LoWPAN mapper unit, an intrusion detection
unit and a mini-firewall unit. The 6LoWPANmapper unit
collects information about the RPL network. The intru-
sion detection unit analyzes the data from the 6LoWPAN
mapper unit to detect intrusions. The mini-firewall unit
filters unwanted traffic. This system is designed for dis-
tributed and centralized IDS placement strategies. The
main features of this system are its light weight and energy
efficiency.
Khan and Herrmann [107] proposed three algorithms

based on the protocol model approach using a trust man-
agement mechanism for IoT networks. One of these algo-
rithms is neighbor based trust dissemination (NBTD),
which can be used to implement a NIDS in a border router
using the centralized approach. The second algorithm is

tree based trust dissemination (TTD), which can be used
to implement a HIDS in a small network with extra-high
communication costs using the distributed approach. The
third algorithm is clustered neighbor based trust dissemi-
nation (CNTD), which can be used to implement a NIDS
using the distributed approach to reduce the number of
packet exchanges compared with the NBTD algorithm.
The main features of these algorithms are their light
weight, energy efficiency and applicability in healthcare
environments.

Performance analysis
In this section, a descriptive statistical analysis is applied
to the reviewed papers based on several performancemet-
rics: the TPR, FPR, energy consumption, processing time
and performance overhead. The suitability of an IDS for
IoT-based smart environments depends on these metrics;
thus, they are the focus of this study.
In a traditional communication network, the perfor-

mance of an IDS depends on the TPR and FPR only. In an
IoT-based smart environment, the energy consumption,
processing time and performance overhead of an IDS are
also of critical interest. Because of the power and memory
limitations of IoT devices, these metrics are very impor-
tant to the QoS of an IoT system. Therefore, they are
important performance metrics for an IDS designed for
IoT-based smart environments.
Table 4 summarizes the technical details of the surveyed

papers in terms of the important performance metrics of
the proposed IDSs and their effects on smart environ-
ments. In Table 4, the symbol - indicates that no exper-
imental result is available for the corresponding metric.
The symbol * indicates that no numerical result was deter-
mined for this metric. The terms MAX and MAX range
refer to the maximum result or maximum range result,
respectively, for this metric.
Table 4 merely summarizes the experimental results

from the surveyed papers; it is not intended as a com-
parison of these results. The experiments reported in
these papers were performed under different conditions
and using databases of different sizes. Thus, a standard
IoT workbench with a standard IoT database would be
required to conduct a fair comparison.
Tables 3 and 4 illustrate that the majority of researchers

focus on three parameters during the testing stage: the
TPR, FPR and processing time. Thus, IDSs are designed
based on four features. First, such a system should be
compatible with IoT systems. Second, it should be able
to detect attacks in real time. Third, it should depend on
lightweight algorithms. Fourth, it should be scalable.
Tables 3 and 4 show that some previous IDS studies

did not present experimental results, whereas others pre-
sented only systemmethodologies that were not subjected
to real experiments. Only a few previous IDS studies
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Table 4 A descriptive statistical analysis of the surveyed IDSs in terms of the important performance metrics affecting IDS suitability in
IoT systems

Reference TPR (%) FPR (%) Energy (J) Processing time (s) Performance overhead

Liu et al. (2011) [87] - - - - -

Kasinathan et al. (2013) [88, 90] MAX range Zero - * -

TP = (20-25)

Jun and Chi (2014) [91] * * - MAX MAX memory = 730 MB

0.422 MAX CPU = 62%

Krimmling and Peter (2014) [92] * * - - -

Butun et al. (2015) [93] MAX range at MAX TPR - - -

(90-100) Zero

Surendar and Umamakeswari (2016) [82] * * MAX range - *

for one node

(0.09-0.1)

Le et al. (2016) [83] MAX at MAX TPR for one node 120 -

100 6.78 0.12

Bostani and Sheikhan (2017) [84] MAX at MAX TPR - -

100 2.98

Garcia-Font et al. (2017) [95] MAX range at MAX TPR - - -

(50-60) (25-30)

Fu et al. (2017) [96] * * - * -

Deng et al. (2018) [97] 96.8 1.6 - * -

Amouri et al. (2018) [99] 100 * - 3000 -

Liu et al. (2018) [100] MAX 1.5 - MAX range -

97.4 (0.5-0.6)

Abhishek et al. (2018) [101] MAX at MAX TPR - - -

100 5.5

Oh et al. (2014) [102] 100 Zero - MAX at best -

performance = 40

Summerville et al. (2015) [103] MAX * - - -

100

Mohan et al. (2016) [37] * * - - -

Arrignton et al. (2016) [104] * * - - -

Gupta et al. (2013) [105] - - - - -

Raza et al. (2013) [106] MAX range at MAX TPR for one node 120 Memory

(80-100) Zero 2.88 1.76 KB

Khan and Herrmann (2017) [107] MAX at MAX TPR * - *

100 1.1

The symbol (-) indicates that no experimental result is available for the corresponding metric. The symbol * indicates that no numerical result was determined for this metric.
The terms MAX and MAX range refer to the maximum result or maximum range result, respectively, for this metric. The terms CPU, memory, TP, TPR, and FPR denote the
utilization of the central processing unit (as a percentage), the memory consumption (in bytes), the number of anomalies correctly classified, the probability of detecting
intrusions (as a percentage) and the probability of incorrectly identifying normal data as an intrusion (as a percentage), respectively. The energy and processing time values
are measured in units of joules and seconds, respectively

have presented practical results for the performance met-
rics that characterize the suitability of IDSs for IoT-based
smart environments. Thus, the development of IDSs for
IoT-based smart environments is still in an incipient
phase.

Discussion and future outlook
Integrity, confidentiality, and availability are three
important factors in IoT systems. In most cases, applica-
tions that use the IoT model are considered to be vital,
such as industrial and medical applications. On the one



Elrawy et al. Journal of Cloud Computing: Advances, Systems and Applications            (2018) 7:21 Page 17 of 20

hand, these applications can be real-time applications;
thus, network delay and latency directly affect their per-
formance. On the other hand, attacks such as DoS, DDoS,
probing, and RPL attacks can degrade the usability of
these applications. Thus, security issues can be consid-
ered a life-threatening concern in e-health systems, for
example [108]. Consequently, powerful security measures
are required in IoT networks. Such a security mechanism
must protect the IoT network and its resources without
impacting the system’s performance or user privacy.
Moreover, IoT-based smart environments consist of a

wide range of devices, sensors and IoT objects from differ-
ent vendors and based on different IoT platforms. Thus,
interoperability issues prevent the emergence of IoT tech-
nology at a large scale [109]. Interoperability and stan-
dardization issues must be considered in designing IDSs
for IoT-based smart environments.
IoT networks suffer from power efficiency problems;

thus, a lightweight IDS that requires only a small num-
ber of computational operations is needed. In a HIDS, the
IoT devices must simultaneously perform the necessary
computational operations for the IDS and for IoT services.
Thus, power resources and battery life must be consid-
ered in HIDS designs. Because of the power and memory
limitations of IoT systems, the energy consumption, pro-
cessing time and performance overhead of an IDS are
important performancemetrics. Thus, thesemetrics must
be considered when designing IDSs for IoT-based smart
environments. These issues should receive greater focus
in research on HIDSs for such environments.
Privacy is another important factor in IoT systems.

Deep packet inspection techniques are considered a vio-
lation of privacy. Such techniques and other techniques
with similar characteristics are therefore undesirable.
Moreover, the blocking of normal data packets affects
IoT applications and services. This effect is very harm-
ful, particularly for vital and real-time applications, such
as industrial and medical applications. Therefore, intro-
ducing a smart system without deep packet inspection
requires trusting that the operations in the IoT system
will prevent any unauthorized access to IoT objects, thus
helping to solve the user privacy problem. A new IDS
design with a very low FPR and a very high detection
accuracy is required for application in vital and real-time
applications because traditional IDSs cannot satisfy these
requirements.
An IDS based on a hybrid intrusion detection tech-

nique is required to detect different types of attacks
from different computational environments. The IDS
must be compatible with the 6LoWPAN protocol to
detect attacks in WSNs in IoT networks. Furthermore,
an autonomous IDS that can detect intrusions without
human intervention is required for application in the IoT
environment.

IDS placement is also a serious issue that must be con-
sidered when designing any type of IDS, whether it is a
NIDS or a HIDS. The placement of the IDS in the IoT net-
work will affect the overall efficiency of the IDS. There
are two general IDS placement strategies: centralized and
distributed. The centralized strategy offers the advantage
of centralized management but can also lead to system
processing overload, which may affect the QoS in IoT
networks. The distributed strategy has the advantages of
reducing the amount of monitored traffic and increasing
the processing capacity. However, implementing an IDS in
different regions of an IoT network is a challenge due to
the associated management issues.
Finally, there is a need for both normal and anomaly

databases that are up to date and integrated with IoT
applications and services. These databases will be very
useful for testing different IDS types and techniques
in IoT environments. The ability to perform successful
and meaningful IDS comparisons will depend on these
databases.

Concluding remarks
As the numbers of IoT users, services, and applications
increase, an urgent need for a robust and lightweight
security solution that is suitable for use in IoT environ-
ments is emerging. Furthermore, IoT networks are the
basis of smart environments; thus, any deficiencies in
the security of these IoT networks will directly influence
the smart environments on which they are based. Attacks
such as DoS, DDoS, probing, and RPL attacks affect the
services and applications offered in IoT-based smart envi-
ronments; thus, the security of IoT environments is a very
serious issue. An IDS is one possible solution for this issue.
This has paper presented a survey of IDSs designed for IoT
environments. Recommendations for designing a robust
and lightweight IDS were also discussed.
In this survey, several papers were investigated. These

papers mainly study the design and implementation of
IDSs for use in the IoT paradigm that can be applied
in smart environments. The features of all IDS methods
presented in these papers were summarized. Moreover,
this paper proposed some recommendations that must be
considered when designing an IDS for the IoT, such as the
need for a powerful and lightweight system with a suit-
able placement strategy that does not adversely affect the
integrity, confidentiality, and availability of the IoT envi-
ronment. This study showed that there is a need to design
an integrated IDS that can be applied in IoT-based smart
environments. This design will need to be tested on a uni-
fied IoT database. The question of the placement strategy
must be considered in this design.
Future work will investigate the design of a high-

performance hybrid IDS specifically designed for IoT-
based smart environments based on the recommendations
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of this study. Moreover, the security vulnerabilities of IoT
enabling technologies and protocols will be considered in
the IDS design. In addition, the IDS will be implemented
on programmable reconfigurable hardware devices, such
as FPGAs, to facilitate adaptation to IoT-based smart
environments. The design should be suitable for both dis-
tributed and centralized placement strategies and have the
ability to detect different types of attacks.
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