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Abstract

Dynamic workloads in cloud computing can be managed through live migration of virtual machines from
overloaded or underloaded hosts to other hosts to save energy and/or mitigate performance-related Service Level
Agreement (SLA) violations. The challenging issue is how to detect when a host is overloaded to initiate live migration
actions in time. In this paper, a new approach to make long-term predictions of resource demands of virtual machines
for host overload detection is presented. To take into account the uncertainty of long-term predictions, a probability
distribution model of the prediction error is built. Based on the probability distribution of the prediction error, a
decision-theoretic approach is proposed to make live migration decision that take into account live migration
overheads. Experimental results using the CloudSim simulator and PlanetLab workloads show that the proposed
approach achieves better performance and higher stability compared to other approaches that do not take into
account the uncertainty of long-term predictions and the live migration overhead.
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Introduction
Cloud computing is a promising approach in which
resources are provided as services that can be leased and
released by users through the Internet in an on-demand
fashion [1]. One of the widely used cloud computing ser-
vice models is Infrastructure as a Service (IaaS) [2] where
raw computing resources are provided in the form of Vir-
tual Machines (VMs) to cloud consumers charged for the
resources consumed. Virtualization approaches such as
Xen [3] and VMware [4] allow infrastructure resources
to be shared in an effective manner. VMs also make it
possible to allocate resources dynamically according to
varying demands, providing opportunities for the efficient
use of computing resources, as well as the optimization of
application performance and energy consumption.
One of the main features virtualization technology

offers for dynamic resource allocation is live migration
of VMs [5]. It allows cloud providers to move away VMs
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from overloaded hosts to keep VM performance to SLA
levels and to dynamically consolidate VMs to fewer hosts
to save energy when the load is low. Using live migration
and applying online algorithms that make live migra-
tion decisions, it is possible to manage cloud resources
efficiently by adapting resource allocation to VM loads,
keeping VM performance levels according to SLAs and
lowering energy consumption of the infrastructure.
An important problem in the context of live migration

is to detect when a host is overloaded or underloaded.
Most of the state-of-the-art approaches are based on
monitoring resource usage, and if the actual or the pre-
dicted next value exceeds a specified threshold, then a
host is declared as overloaded. However, live migration
is an expensive action, expressed as VM performance
violations. The problem with existing approaches is that
basing decisions for host overload detection on a single
resource usage value or a few future values can lead to
hasty decisions, unnecessary live migration overhead and
stability issues.
A more promising approach is to base live migra-

tion decisions on resource usage predictions several steps
ahead in the future. This not only increases stability by
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performing migration actions only when the load persists
for several time intervals, but also allows cloud providers
to predict overload states before they happen. On the
other hand, predicting further into the future increases
the prediction error and the uncertainty, thus diminishing
the benefits of long-term prediction. Another important
issue is that live migration actions should only be per-
formed if the penalty of SLA violations is larger than the
penalty of the live migration overhead.
In this paper, a new approach for host overload and

underload detection is presented based on long-term
resource usage predictions that take into account the pre-
diction uncertainty and the live migration overhead. More
specifically, the paper makes the following contributions:

• A novel approach to dynamically allocate resources
to VMs in an IaaS cloud environment is presented. It
combines local and global VM resource allocations.
Local resource allocation means allocating CPU
resource shares to VMs according to the current
load. Global resource allocation means performing
live migration actions when a host is overloaded or
underloaded in order to mitigate VM performance
violations and reduce the number of hosts to save
energy.

• A novel approach based on long-term resource usage
predictions is presented to detect when a host is
overloaded or underloaded. For long-term
predictions, a supervised machine learning approach
based on Gaussian Processes [6] is used.

• To take into account the uncertainty of long-term
predictions for overload detection, a novel
probabilistic model of the prediction error is built
online using the non-parametric kernel density
estimation [7] method.

• To take into account VM live migration overheads, a
novel decision-theoretic approach based on a utility
function is proposed. It performs live migration
actions only when the predicted utility value (penalty)
of SLA violations is greater than the utility value of
live migration overhead.

The proposed approach is experimentally compared to
other approaches: (a) an approach that relies on short-
term predictions, (b) an approach that makes long-term
predictions without taking into account prediction uncer-
tainty, (c) an approach that makes long-term predictions
taking into account prediction uncertainty, but not apply-
ing decision theory for considering live migration over-
head, and (d) a the state-of-the-art approach based on
Local Regression Detection [8] for host overload detec-
tion. Experimental evaluations based on the CloudSim
[9] simulator and PlanetLab [10] workloads show that
the proposed approach achieves better performance and
stability compared to the other approaches.

The paper is organized as follows. “Resource manager
architecture” section presents the overall architecture of
the resource management approach. “VM agent” section
discusses the functionality of the VM agent. “Host
agent” section explains the duties of the host agent: prob-
abilistic and decision-theoretic overload, underload and
not-overload detection. “Global agent” section presents
the global agent, and “VM SLA violation” section dis-
cusses VM SLA violation metrics. In “Experimental eval-
uation” section, the experimental evaluation is presented.
Related work is discussed in “Related work” section. The
last section concludes the paper and outlines areas for
future research.

Resourcemanager architecture
This work focuses on managing an IaaS cloud in which
several VMs run on physical hosts. The overall architec-
ture of the resource manager and its main components
are shown in Fig. 1. There is a VM agent for each VM
that determines the resource shares to be allocated to its
VM in each time interval. There is a host agent for each
host that receives the resource allocation decisions of all
VM agents and determines the final allocations by resolv-
ing any possible conflicts. It also detects when a host is
overloaded or underloaded and transmits this informa-
tion to the global agent. The global agent initiates VM
live migration decisions by moving VMs from overloaded
or underloaded hosts to not-overloaded hosts to mitigate
SLA violations and reduce the number of hosts. In the fol-
lowing sections, a more detailed discussion is provided for
each of the components of the resource manager.

VM agent
The VM agent is responsible for local resource alloca-
tion decisions by dynamically determining the resource
shares to be allocated to its own VM. Allocation decisions
are made in discrete time intervals where in each inter-
val the resource share to be given in the next time interval
is determined. In this work, the time interval is set to
10 seconds to adapt quickly to changing load. The inter-
val is not set to less than 10 seconds, since in long-term
prediction this would increase the number of time steps
to predict into the future, lowering the prediction accu-
racy. This time interval value is also used in previous work
[11] for long-term prediction, where the same reasoning is
used to make it possible to predict further into the future.
Setting a larger time interval can lead to inefficiencies and
SLA violations due to the lack of quick adaptation to the
load variation. This dynamic allocation of resource shares
permits the cloud provider to adapt the resources given to
each VM according to the current load, thus keeping the
required performance level with the minimum resource
costs. Our work focuses on CPU allocation, but in prin-
ciple the approach can be extended to other resources as
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Fig. 1 Resource manager architecture

well. More specifically, for CPU share allocation, the CPU
CAP setting that most modern virtualization technolo-
gies offer is used. The CAP is the maximum CPU capacity
that a VM can use, given as a percentage of the total
capacity, which provides good performance isolation
between VMs.
To estimate the CPU share allocated to each VM, first

the value of the CPU usage for the next time interval
is predicted. Then, the CPU share is calculated as the
predicted CPU usage plus 10% of the CPU capacity, sim-
ilar to previous work [12]. By setting the CPU CAP to
leave 10% room above the required CPU usage allows us
to account for prediction errors and reduces the possi-
bility of performance-related SLA violations. To predict
the next CPU usage value, a time series forecasting tech-
nique, based on the history of previous CPU usage values,
is used. More specifically, a machine learning approach
based on Gaussian Processes [6] is employed. Although
for local resource allocation only a one step ahead predic-
tion is needed, our VM agent predicts several steps ahead
into the future to support overload detection through
long-term prediction.

Host agent
One of the duties of the host agent is to play the role of
an arbitrator. It gets the CPU requirements from all VM
agents, and by resolving any conflicts between them, it
decides about the final CPU allocations for all VMs. Con-
flicts can arise when the CPU requirements of all VMs
exceed the total CPU capacity. If there are no conflicts,

the final CPU allocation is the same as the allocations
requested by the VM agents. If there is a conflict, the host
agent computes the final CPU allocations according to the
following formula:

FinalA = A
SumA

∗ TotalCapacity (1)

where FinalA is the final allocation, A is the required allo-
cation, SumA is the sum of all VMs’ requested allocations
and TotalCapacity is the total CPU capacity.
Another duty of the host agent, which is the main focus

of this work, is to detect whether the host is overloaded
or underloaded. This information is passed to the global
agent that then initiates live migration actions for mov-
ing VMs away from overloaded or underloaded hosts
according to the global allocation algorithm.

Overload detection
For overload detection, a long-term time series prediction
approach is used. Long-term prediction in the context of
this work means predicting 7 time intervals ahead into
the future. A straightforward way for host overload detec-
tion is as follows. A host is declared as overloaded if
the actual and the predicted total CPU usage of 7 time
intervals ahead into the future exceed an overload thresh-
old. The predicted total CPU usage of a time interval
into the future is estimated by summing up the predicted
CPU usage values of all VMs of the corresponding time
interval. The value of predicting 7 time intervals into the
future is chosen such that it is greater than the estimated
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average live migration time (around 4 time intervals). In
this work, the average live migration time is assumed to
be known and its value of 4 time intervals is estimated
by averaging over all VM live migration times over sev-
eral simulation experiments. In real world scenarios, this
value is not known in advance, but it can be estimated
based on the previous history of live migration times.
Another more fine-grained approach would be to apply
VM live migration modelling [13] for live migration time
prediction based on relevant VM parameters. Based on
this estimated live migration time, the number of time
steps to predict into the future can be set to a value
greater than the migration time. This is done in order to
signal overload states that last longer than the live migra-
tion time. Performing live migration actions for overload
states that last less than the live migration time is use-
less, since in this case the live migration action does not
eliminate the overload state. Having a larger value than
7 time intervals is not really useful either, since this can
lead to skipping some overload states that do not last
long, but that can be eliminated by live migration actions.
Some preliminary experiments have shown that increas-
ing the number of prediction time intervals further into
the future does not increase the stability and performance
of the approach. The overload threshold value is deter-
mined dynamically based on the number of VMs and is
related to the VM SLA violation metric, as explained in
“VM SLA violation” section .

Underload detection
The host agent also detects whether a host is underloaded
in order to apply dynamic consolidation by live migrat-
ing all its VMs to other hosts and turning off the host
to save energy. Here, long-term time series predictions of
CPU usage are also used. The host is declared as under-
loaded if the actual and the predicted total CPU usage
of 7 time intervals ahead into the future are less than an
underload threshold. Again, the value of 7 time intervals
is long enough to skip short-term underload states, but
not too long as to miss any opportunity for consolidation.
The underload threshold value is a constant value, and in
this work it is set to 10% of the CPU capacity, but it can
be configured by the administrator according to his or her
preferences for consolidation aggressiveness.

Not-overload detection
To make live migration decisions, the global agent needs
to know the hosts that are not overloaded in order to use
them as destination hosts for VM live migrations. A host
is declared as not overloaded if the actual and the pre-
dicted total CPU usage of 7 time intervals ahead into the
future is less than the overload threshold. The actual and
the predicted total CPU usage of any time interval is esti-
mated by summing up the actual and predicted CPU usage

of all existing VMs plus the actual and the predicted CPU
usage of the VM to be migrated. The purpose is to check
whether the destination host remains not overloaded after
the VM has been migrated.

Uncertainty in long-term predictions
Overload or underload detection based on long-term pre-
dictions carries with it the uncertainty of correct pre-
dictions, which can lead to erroneous decisions. To take
into account the uncertainty of long-term predictions,
the above detection mechanisms are augmented with the
inclusion of a probabilistic distribution model of the pre-
diction error.
First, the probability density function of the prediction

error for every prediction time interval is estimated. Since
the probability distribution of the prediction error is not
known in advance and different workloads can have dif-
ferent distributions, a non-parametric method to build
the density function online is required. In this work, a
non-parametric method for probability density function
estimation based on kernel density estimation [7] is used.
It estimates the probability density function of the pre-
diction error every time interval based on a history of
previous prediction errors. In this work, the probability
density function of the absolute value of the prediction
error is used. Since there are 7 time interval predictions
into the future, 7 different prediction error probability
density functions are built online.

Probabilistic overload detection
Based on the probability density function of the predic-
tion error, it can be estimated probabilistically, for each
predicted time interval, if the future total CPU usage will
be greater than the overload threshold. In the following,
for convenience, the future total CPU usage is just called
the future CPU usage. This is achieved by Algorithm 1
that returns true or false with some probability whether
the future CPU usage will be greater than the overload
threshold.
First, the algorithm finds the probability that the future

CPU usage will be greater than the overload threshold.
If the predicted CPU usage is greater than the overload
threshold, the difference, called max_error, between the
predicted CPU usage and overload threshold, is found.
For the future CPU usage to be greater than the over-
load threshold, the absolute value of the error (i.e., the
difference between predicted and future value) should
be less than max_error. Based on a cumulative distri-
bution function of the prediction error, the probability
that the prediction error is less than max_error, i.e., the
future CPU usage is greater than the overload threshold,
is found. Since it can happen that the future CPU usage
will be greater than the overload threshold, and also that
the prediction error will be greater than max_error, the
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Algorithm 1: IsUtilizationOver
1 if Pred_Total_Util >= OverThreshold then
2 max_error=Pred_Total_Util - OverThreshold
3 probability=CumulativeProbability(max_error)
4 probability=(probability+1)/2
5 end
6 else
7 max_error=OverThreshold - Pred_Total_Util
8 probability=CumulativeProbability(max_error)
9 probability=(probability+1)/2

10 probability=1-probability
11 end
12 probability=(probability)*100
13 randnum=rand.nextInt(100)
14 if randnum < probability then
15 return true
16 end
17 else
18 return false
19 end

probability that this happens, given as (1-probability)/2, is
added to the calculated probability to yield the final prob-
ability (probability+1)/2. If the predicted CPU usage is less
than the overload threshold, by the same approach, first,
the probability that the future CPU usage will be less than
the overload threshold is found. Then, the probability that
the future CPU usage will be greater than the overload
threshold is given as (1-probability). Finally, the algorithm
returns true with the estimated probability.
Algorithm 1 returns the overload condition probabilisti-

cally only for a single prediction time interval. Therefore,
to declare the host as overloaded, the actual CPU usage
should exceed the overload threshold, and the algorithm
should return true for all 7 prediction time intervals in the
future.
The interpretation of taking into account prediction

uncertainty in overload detection is as follows. Although
CPU prediction can lead to values above the overload
threshold, there is some probability, due to the uncertainty
of prediction, that the CPU utilization will be lower than
the threshold. This means that for some fraction of the
time the host will not be considered as overloaded. This
increases the stability of the approach, as shown by the
lower number of live migrations for the probabilistic over-
load detection approach, compared to other approaches.
Furthermore, when CPU prediction is lower than the
overload threshold, there is some probability that the CPU
utilization will be greater than the threshold. This means
that for some fraction of the time the host will be consid-
ered as overloaded. In summary, we can say that the host
is considered as overloaded or not in proportion to the

uncertainty of prediction, which is the right thing to do,
as supported by our good experimental results compared
to approaches that do not take prediction uncertainty into
account.

Algorithm 2: IsUtilizationNotOver
1 if Pred_Total_Util >= OverThreshold then
2 max_error=Pred_Total_Util - OverThreshold
3 probability=CumulativeProbability(max_error)
4 probability=(probability+1)/2
5 probability=1-probability
6 end
7 else
8 max_error=OverThreshold - Pred_Total_Util
9 probability=CumulativeProbability(max_error)

10 probability=(probability+1)/2
11 end
12 probability=(probability)*100
13 randnum=rand.nextInt(100)
14 if randnum < probability then
15 return true
16 end
17 else
18 return false
19 end

Probabilistic not-overload detection
To take into account the uncertainty of long-term pre-
dictions in detecting whether a host is not overloaded,
Algorithm 2 is proposed. It returns true, with some prob-
ability, if the future CPU usage of some prediction time
interval will be less than the overload threshold. The host
is declared as not overloaded if the actual CPU usage is
less than the overload threshold, and Algorithm 2 returns
true for all 7 prediction time intervals in the future.

Probabilistic underload detection
To detect whether a host is underloaded, Algorithm 3 is
proposed. It returns true, with some probability, if the
future CPU usage of some prediction time interval will
be less than the underload threshold. The host is declared
as underloaded if the actual CPU usage is less than the
underload threshold, and Algorithm 3 returns true for all
7 prediction time intervals into the future.

Decision-theoretic overload detection
The above improvements make it possible to take into
account the uncertainty of long-term predictions in the
detection process, but do not take into account the live
migration overhead. In this section, a further approach,
based on decision theory, is presented that performs live
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Algorithm 3: IsUtilizationUnder
1 if Pred_Total_Util >= UnderThreshold then
2 max_error=Pred_Total_Util - UnderThreshold
3 probability=CumulativeProbability(max_error)
4 probability=(probability+1)/2
5 probability=1-probability
6 end
7 else
8 max_error=UnderThreshold - Pred_Total_Util
9 probability=CumulativeProbability(max_error)

10 probability=(probability+1)/2
11 end
12 probability=(probability)*100
13 randnum=rand.nextInt(100)
14 if randnum < probability then
15 return true
16 end
17 else
18 return false
19 end

migration actions only if SLA violations due to future host
overload states are greater than the penalty of VM live
migration.
Applying decision theory requires us to define a util-

ity function that should be optimized. In this work, the
utility function value represents the penalty of the host
SLA violation or the penalty of live migration overhead.
A SLA is a contract between the cloud provider and the
cloud consumer that defines, among others, the perfor-
mance level the cloud provider should conform to and the
penalty costs of violating it. In this work, a host SLA vio-
lation is defined as the situation when the total CPU usage
of the host exceeds the overload threshold for 4 consecu-
tive time intervals. The penalty of host SLA violation is the
percentage of the CPU capacity that the total CPU usage
exceeds the overload threshold for all 4 consecutive time
intervals. The penalty value can be converted to a mon-
etary value with some conversion function, but here it is
treated as a CPU capacity percentage value.
Since each VM live migration is associated with some

performance degradation, a penalty value for each VM live
migration action can be defined in a SLA contract. More
concretely, a SLA violation penalty value (expressed also
as a percentage of the CPU capacity) for each time interval
during VM live migration is defined. The VM live migra-
tion SLA violation penalty is defined as the sum of all SLA
violation penalties for all time intervals that the VM live
migration lasts.
The proposed decision-theoretic approach tries to min-

imize the host SLA violation penalty (utility value), taking
into account the VM live migration SLA violation penalty.

In the following, the term utility value will be used instead
of host SLA violation penalty. First, the expected utility
value of the future host overload state is estimated. The
expected utility is given by the sum of the expected util-
ity values of all 4 consecutive future time intervals from
interval 4 to interval 7. It is started from time interval 4
instead of time interval 1 in order to capture an overload
state before it happens and eliminates it through VM live
migration that takes, on the average, 4 time intervals.
If the future CPU usage is known, then the utility of a

time interval can be given just as the difference between
future CPU usage and the overload threshold. Since only
the predicted CPU usage is known, the expected utility
value of one time interval can be calculated as follows.
First, the CPU usage interval between the total CPU
capacity and the overload threshold is divided into a fixed
number of levels (5 in this work). Then, the CPU usage
above the overload threshold (i.e., the utility value) of each
level is calculated as shown in Algorithm 4.

Algorithm 4: LevelUsage
1 Interval=100-OverThreshold
2 Delta=Interval/UsageLevels
3 Start=OverThreshold+Level*Delta
4 return ((Start+(Delta/2))-OverThreshold)

In Algorithm 4, Interval is the CPU usage interval width
above the overload threshold, Delta is the CPU usage
interval width of the corresponding level, Level is the level
number (from 0 to 4), whose utility value will be found,
UsageLevels is the total number of levels and Start is the
CPU usage of the start of level interval. The algorithm
returns as the utility value the CPU usage value taken from
themiddle of the level interval. Algorithm 4 is run for each
possible level to find its utility value.
Second, for any time interval, the probability that the

CPU usage of some level will indeed be the future CPU
usage is calculated by Algorithm 5.
Start and Delta are calculated as in Algorithm 4,

Pred_Util is the total predicted CPU usage of the corre-
sponding time interval, CumProbability() represent the
cumulative distribution function used to find the proba-
bility that the prediction error is less than a certain value
and prob represents the probability that the CPU usage of
the corresponding level will be the future CPU usage. The
algorithm considers three possible situations in which the
level interval can be: one in which the interval does not
include the predicted CPU usage and is below it, one in
which the interval includes the predicted CPU usage, and
one in which the interval does not include the predicted
CPU usage and is above it. In each case, based on the
cumulative distribution function of the prediction error,
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Algorithm 5: LevelProbability
1 End=Start+Delta;
2 if Pred_Util > End then
3 prob=(CumProbability(Pred_Util - Start) -

CumProbability(Pred_Util - End))/2
4 end
5 else if (Pred_Util <=End)AND(Pred_Util>=Start)
then

6 prob1=CumProbability(Pred_Util - Start)/2
7 prob2=CumProbability(End - Pred_Util)/2
8 prob=prob1+prob2
9 end

10 else
11 prob=(CumProbability(End - Pred_Util) -

CumProbability(Start - Pred_Util))/2
12 end
13 return prob

the probability that the future CPU usage value will fall
inside the level interval is calculated. Since the probabil-
ity density function of the absolute value of the prediction
error is used, the probability that the prediction error
is less than a certain value but on the other side of the
predicted CPU usage should be excluded from the cal-
culations. Therefore, the estimated probability should be
divided by two.
The expected utility of each time interval into the future

is given by the sum, over all levels, of the product of
the level utility value (the level CPU usage) with the cor-
responding probability of getting that CPU usage value
(level probability). The expected utility of a future host
overload state is given as the sum of the expected utili-
ties of 4 consecutive time intervals into the future starting
from time interval 4. The host is declared as overloaded
and therefore a VM live migration action should be taken
if the expected utility (which is the expected host SLA vio-
lation penalty) of the future overload state is greater than
the live migration SLA violation penalty.
One point that should be stressed is that the above

decision is based on the short-term optimization of the
utility value but does not consider the long-term util-
ity value accumulation that can result from utility values
of overload states that are less than live migration SLA
violation penalties but over time can accumulate to big-
ger values. To address this issue, the utility values of
overload states that are less than the live migration SLA
violation penalty are accumulated, and at each time inter-
val, a check is made. If the accumulated utility value is
greater than the live migration SLA violation penalty,
than a VM live migration action is performed regardless
whether there is no overload state at that time interval.
The same modification is also added to the probabilistic

detection approaches explained in the “Probabilistic over-
load detection”, “Probabilistic not-overload detection” and
“Probabilistic underload detection” sections.

Decision-theoretic not-overload detection
To detect whether the destination host is not overloaded
after a possible VM live migration, a check is made
whether the expected utility of 4 consecutive future time
intervals starting from interval 4 is greater than zero. If it
is zero, then the host will be not overloaded after a VM
live migration and can serve as a destination of the VM.

Decision-theoretic underload detection
To detect whether a host is underloaded, the same
approach of probabilistic underload detection that is pre-
sented in “Probabilistic underload detection” section is
used. The utility value is not used for underload detection,
since it represents a host SLA violation that can happen
only when the host is in the overload state.

Global agent
The global agent makes global resource allocation deci-
sions by live migrating VMs from overloaded or under-
loaded hosts to other hosts to reduce SLA violations and
energy consumption. It gets notifications from the host
agent if a host will be overloaded or underloaded in the
future and performs the appropriate VM live migration
action if it is worth the cost.
The global agent applies the general resource alloca-

tion algorithm used in previous work [8] for global VM
resource allocation and the Power Aware Best Fit Decreas-
ing (PABFD) [8] algorithm for VM placement, with the
following modifications. For overload or underload detec-
tion, our approaches presented above to apply long-term
prediction with uncertainty consideration are used. For
VM selection, the Minimum Migration Time (MMT) [8]
policy is used, but with the modification that only one VM
is selected for migration in each decision round even if
the host can possibly remain overloaded after migration.
This is done to reduce the number of simultaneous VM
live migrations and the associated overhead. For the con-
solidation process, unlike the previous work [8] that con-
siders all hosts excluding overloaded and turned off hosts,
we consider only underloaded hosts that are detected
by the proposed approaches based on long-term predic-
tion. From the list of underloaded hosts, the ones that
have lower average CPU usage of previous history values
are considered first. As VM live migration destinations,
the hosts detected as not overloaded by the presented
approaches with long-term predictions are chosen.

VM SLA violation
Since it is difficult for the cloud provider to measure a per-
formance violation metric outside VMs that depends on
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the performance metric of various applications, such as
response time or throughput, we defined a general SLA
violation metric that can be easily measured outside VMs.
It is based only on VM resource usage. More specifically,
it is called VM SLA violation and represents the penalty
of the cloud provider for violating the performance of the
VMs of the cloud consumer. The performance of an appli-
cation running inside a VM is at an acceptable level if the
required VM resource usage is less than the resource share
allocated.
Following the previous argument, a VM SLA violation

is defined to happen if the difference between the allo-
cated CPU share and CPU usage of a VM is less than 5%
of the CPU capacity for 4 consecutive time intervals. For
example, if the CPU share allocated to a VM is 35% of
the CPU capacity and the actual CPU usage is more than
30% for 4 consecutive time intervals, then there is a VM
SLA violation. The idea of this definition is that applica-
tion performance gets worse as the required CPU usage is
near to the allocated CPU share. The penalty of a VM SLA
violation is the CPU share by which the actual CPU usage
exceeds the 5% threshold difference from the allocated
CPU, for all 4 consecutive time intervals. Although the
SLA violation penalty is defined in terms of CPU usage, it
can be easily converted to a monetary value by some con-
version function. Thus, one of the goals of the global agent
is to mitigate VM SLA violations by providing sufficient
free CPU capacity through VM live migration, in order to
have the CPU share allocation above the required usage
by more than 5% for each VM.
Having defined the VM SLA violation metric, the over-

load threshold can be defined as follows. It is calculated
dynamically based on the number of VMs. Let us defineN
as the number of VMs on a host. To avoid a VM SLA vio-
lation, each VM should have more than 5% capacity above
CPU usage, so the total free CPU capacity of the host
should be more than N ∗ 5%. Based on this, the overload
threshold is calculated as the total CPU capacity (100%)
minusN ∗5%. This means that the overload threshold rep-
resents the CPU usage level above which some VMs will
have SLA violations.

Experimental evaluation
In this section, an experimental evaluation of the pro-
posed approach is presented. First, the experimental
setup is described. Then, the experimental results are
discussed.

Experimental setup
To conduct controllable and repeatable experiments in
a large cloud infrastructure, the CloudSim [9] simulator
is used. It is a well known simulator that permits the
simulation of dynamic VM resource allocation and energy
consumption in virtualized environments. We have made

several modifications and extensions to CloudSim in
order to integrate the proposed approach and to pro-
vide support for setting the CPU CAP to VMs for local
resource allocation.
A virtualized data center with 100 heterogeneous hosts

is simulated in our experiments. Two types of hosts
are simulated, each with 2 CPU cores. One host has
CPU cores with 2,100 MIPS and the other one has CPU
cores with 2,000 MIPS, while both have 8 GB of RAM.
One host simulates the power model of the HpPro-
LiantMl110G4 Xeon3040 computer, and the other one
simulates the power model of the HpProLiantMl110G5
Xeon3075.
In the beginning of the simulation, on each host, on the

average, 3 VMs (leading to a total of 300 VMs) are sched-
uled. Four types of VMs are used, and each VM requires
one VCPU. Three VMs require a maximum VCPU capac-
ity of 1000 MIPS, while the other one requires 500 MIPS.
Two VMs require 1740 MB of RAM, one requires 870
MB, and the last one requires 613 MB. To test realistic
workloads, the CPU usage data of real VMs running on
the PlanetLab [10] infrastructure are chosen to simulate
VMworkloads. Each VM runs one application (cloudlet in
CloudSim terminology) and the cloudlet length, given as
the total number of instructions, is set to a large value in
order to prohibit cloudlets to finish before the experiment
ends. The experiment is run for 116 time intervals, and the
duration of a time interval is set to 10 seconds. The over-
load detection approach that does not apply prediction
error probability modelling yields the same results every
time it is run with the same workload, while the proba-
bilistic approaches lead to different results. This prevents
running repeated experiments with the same workload in
order to compare the two approaches in a fair manner. For
this reason, a small random value from a normal distribu-
tion with 0 mean and 0.001 standard deviation is added
to the CPU usage value of the PlanetLab workload for
each time interval. This adds enough perturbation for the
experiment to give different results for different runs, as
required.
For long-term time series prediction, the WEKA [14]

machine learning framework with Gaussian Processes for
regression is used through its Java API. A history of pre-
vious CPU usage data with a length of 20 samples is used
for prediction and forecasting model training. To keep
the simulation time to acceptable levels, the forecasting
model is trained every 5 time intervals with new CPU
usage data. For kernel density estimation, the empirical
probability distribution implementing the Variable Kernel
Method with Gaussian Smoothing of the Apache Com-
mons Math 3.6 API [15] is used. A history of previous
prediction errors with a length of 30 samples is used for
probability density function model training, which is done
in each time interval.
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Experimental results
In this section, experimental results of comparing six dif-
ferent approaches are presented. The first one called NO-
Migrations (NOM) is the approach that just allocates CPU
resources locally to VMs, but does not perform live migra-
tion actions. The second one called Short-Term Detection
(SHT-D) detects an overload state if the actual and the
predicted CPU usage values of the next two time inter-
vals in the future are above the overload threshold. Also,
to detect not-overload and underload states, the actual
and predicted CPU values for the next two time intervals
into the future are used. This approach represents detec-
tion based on short-term CPU usage predictions and is
expected to be quite sensitive to short spikes of overload
conditions. The third approach called Long-Term Detec-
tion (LT-D) bases overload, underload and not-overload
detections on long termCPU usage predictions of the next
7 control intervals into the future. The fourth approach
called Long-Term Probabilistic Detection (LT-PD) bases
overload, underload and not-overload detections on long-
term CPU usage predictions of the next 7 control intervals
into the future, but takes into account prediction uncer-
tainty through prediction error probability distribution
modelling. The next approach called Long-Term Decision
Theory Detection (LT-DTD) bases overload, underload
and not-overload detections on long-termCPU usage pre-
dictions of the next 7 control intervals into the future,
but takes into account prediction uncertainty and live
migration overhead by applying decision theory. The last
approach called Local Regression Detection (LR-D) is one
of the approaches used in related work [8] that uses the
local regression technique to predict the resource usage
in the future. We selected it as a representative state-of-
the-art technique, since it achieves the best performance
as shown by the authors [8] compared to other techniques
that use static or adaptive utilization thresholds.
In our evaluation, the following performance metrics

are used:

• VM SLA violation (VSV) as explained in “VM SLA
violation” section represents the penalty of the cloud
provider for each VM. It is important to stress that a
VM SLA violation can also happen because of wrong
local CPU share allocations as a result of wrong CPU
predictions. In the experiments, only a VM SLA
violation, as a result of shortage of CPU capacity due
to overload states of hosts, is shown.

• Energy consumption (E) of the data center for the
whole experimental time measured in KWh.

• Number of VM live migrations (NM) for the whole
experimental time.

• Since there is a trade-off between energy
consumption and SLA violations, another metric that
integrates both VM SLA violations and energy in a

single value is defined. This is called the Utility metric
and is given by the formula below:

Utility = CVSV
NOM_CVSV

+ Energy
NOM_Energy

(2)

where CVSV is the cumulative VSV value of all VMs
for the whole experimental time, Energy is the energy
consumption, NOM_CVSV is the cumulative VSV
value of the NOM approach, NOM_Energy is the
energy consumption of the NOM approach. Both
NOM_CVSV and NOM_Energy are used as reference
values for the normalization of the respective metrics.
Normalization is performed to permit the integration
of two metrics with different measuring units in a
single utility function. The best approach is the one
that achieves the minimal Utility value.

• Another metric that also has been used in previous
work [8] and can capture both energy and VM SLA
violations is ESV. This metric is given by:

ESV = E ∗ CVSV (3)

where E is energy consumption and CVSV is the
cumulative VSV value of all VMs for the entire
experimental time.

The simulation experiment is run for two different load
levels called LOW and HIGH and three different VM live
migration SLA violation penalties, mp=2%, mp=4% and
mp=6% (MP2,MP4,MP6). For convenience, in the follow-
ing, the term VM live migration SLA violation penalty is
shortened to live migration penalty. By load level we mean
the CPU usage consumed by each VM. The loads LOW
and HIGH are taken by multiplying the PlanetLab CPU
usage values for each time interval with a constant value
of 8 and 14, respectively. Each of the previously given live
migration penalties represents the migration penalty of
one time interval. The experiment is repeated five times
for each combination of approach, load level and migra-
tion penalty, and the results are exposed to a statistical
ANOVA analysis.
In Fig. 2, the cumulative VM SLA violation penalty

(cumulative VSV) for each approach averaged over all
combinations of load levels and migration penalties is
shown. The cumulative VSV value is the sum of VSV
values of all VMs for the whole experimental time. It
is evident from the graph that the LT-DTD and LT-PD
approaches that consider prediction uncertainty achieve
lower VM SLA violation levels than the other approaches,
with statistical significance, as shown by the ANOVA
analysis. On the other hand, we see that LR-D performs
better than SHT-D, but similar to LT-D with no statis-
tically significant difference. This is expected, since both
techniques apply prediction of resource usage into the
future, but without taking prediction uncertainty into



Minarolli et al. Journal of Cloud Computing: Advances, Systems and Applications  (2017) 6:4 Page 10 of 18

Fig. 2 Cumulative VSV over all loads and migration penalties

account. This shows that considering long-term predic-
tion uncertainty in decision-making is useful for lower-
ing VM SLA violations. More importantly, the LT-DTD
approach achieves the lowest level of VM SLA violations
compared to the other approaches, confirming the con-
clusion that applying decision theory to take into account
live migration penalty can result in better performance.
For example, the LT-DTD approach decreases the cumu-
lative VSV value relative to the LT-D approach by 27%
and relative to LT-PD by 12%. Furthermore, by comparing
LT-D with SHT-D, applying long-term predictions even
without considering prediction uncertainty can lower VM
SLA violations.
To see the effect the load level has on VM SLA viola-

tions, in Fig. 3 the cumulative VSV value is shown, aver-
aged over all migration penalties, for each approach and
the two load levels. First, it can be observed that for each
approach, increasing the load increases the VM SLA vio-
lations, which is expected since there is more contention
for resources. Again, we can see that for both load lev-
els, the LT-DTD approach achieves the lowest VSV value
compared to the other approaches. More importantly, the
reduction in VSV value by going from high load to low
load is larger for the LT-DTD approach than for the other
approaches. For example, the reduction in VSV value from
high to low load for the LT-D approach is 40%, while for
LT-DTD it is 59%. Furthermore, it can be observed that for
low load both LR-D and LT-D are worse even compared
to the non-migration case, and only for high loads they
show better results, with statistical significance, as indi-
cated by the ANOVA tests. This shows that when the load
is low, it is not worth, at least with respect to VM SLA vio-
lations, to perform live migration actions without taking
into account prediction uncertainty.

Fig. 3 Cumulative VSV over all migration penalties for two load levels

To understand how different approaches behave regard-
ing the migration penalty, Fig. 4 shows the cumulative
VSV value for each approach, averaged over two load
levels and three migration penalties. In general, for all
approaches, increasing the migration penalty results in
increased VM SLA violation values, which is expected
since the migration penalty is part of the VM SLA viola-
tion value calculation. It is evident that LT-DTD is more
robust and does not really follow this trend, as shown by
statistically not significant differences of the cumulative
VSV values between MP2 and MP4. This is because the

Fig. 4 Cumulative VSV over all loads for three migration penalties
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LT-DTD approach takes into account migration penalties
when making decisions.
In Fig. 5, we show the total number of VM live migra-

tions for each approach, averaged over all combinations
of load levels and migration penalties. It can be observed
that the LT-DTD approach achieves the smallest num-
ber of live migrations with a reduction of 46 and 29%
compared to LT-D and LT-PD, respectively. First, these
results show that by moving from short-term predic-
tion to long-term prediction increases the stability of the
approach, reducing the number of live migrations. More
importantly, taking into account uncertainty of long-term
predictions and live migration penalties increases stability
and reduces the number of live migrations further. Inter-
estingly, it can be observed that the LR-D approach has the
highest number of VM live migrations compared to the
other approaches. This can be explained by the fact that
the LR-D approach takes live migration actions if only one
predicted usage point in the future is above the thresh-
old, while the other approaches check several points into
the future.
In Fig. 6, we show for each approach how the num-

ber of live migrations is affected by the load level. In
general, apart from LT-DTD and LT-D, increasing the
load level increases the number of live migrations, which
can be explained by the fact that more live migrations
are required to deal with increased load. The LT-DTD
approach shows more stability by not increasing the num-
ber of live migrations with increased load, and since this
still results in better VSV values compared to the other
approaches (as shown in Fig. 3), this is a desirable behav-
ior. The LT-D approach shows a slight increase in the

Fig. 5Number of livemigrations over all loads andmigration penalties

Fig. 6 Number of live migrations over all migration penalties for two
load levels

number of live migrations, but this is not statistically
significant, as shown by an ANOVA analysis.
Figure 7 shows for each approach how the number

of live migrations changes by varying the migration
penalty. Unlike other approaches, both LT-DTD and LT-
PD show decreased numbers of livemigrations by increas-
ing the migration penalty. The LT-DTD approach shows a
decreased number of live migrations when moving from
MP2 to MP4, and this can be explained by the fact that

Fig. 7 Number of live migrations over all loads for three migration
penalties
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it takes the migration penalty into account when making
live migration decisions. This behavior has the benefit of
using the migration penalty as a parameter to control the
aggressiveness of the consolidation process. On the other
hand, the decreased number of live migrations for the
LT-DP approach, at least for MP2 to MP6, which is statis-
tically significant, does not have an apparent explanation
since this approach does not take into account the migra-
tion penalty in decision making. The only explanation is
that this behavior is caused because the LT-PD approach
also takes into account utility value accumulation in deci-
sion making the same way as LT-DTD does, as explained
in “Decision-theoretic overload detection” section . To
test this claim and to check whether also the LT-DTD
approach achieves the above behavior due to this this
modification, an experiment has been conducted to mea-
sure the number of live migrations for three migration
penalties with low load. The experiment is run for LT-PD
and LT-DTD, but without taking into account utility value
accumulation.
The results of the experiment are shown in Fig. 8. It is

evident that for LT-PD, increasing the migration penalty
does not change the number of live migrations, support-
ing the claim that the above behavior is caused only by
taking into account utility value accumulation in decision
making. However, for LT-DTD, increasing the migration
penalty decreases the number of live migrations, show-
ing that this behavior is due to the decision-theoretic
approach adopted by it.
Figure 9 shows the energy consumption of the data

center for the whole experimental time for each approach

Fig. 8 Number of migrations for LT-PD, LT-DTD for three migration
penalties

Fig. 9 Energy over all load levels and migration penalties

averaged over all combinations of load levels and migra-
tion penalties. It is evident that the LT-DTD approach
shows a slight increase in energy consumption compared
to the other approaches. For example, it increases energy
consumption by 5 and 0.30% compared to LT-D and
NOM, respectively. Although the LT-DTD approach saves
less energy, the improvement in the VMSLA violation val-
ues outweighs the decrease in energy savings, as shown
by the results of the Utility metric. The LR-D, LT-D and
SHT-D aproaches achieve more energy savings than the
LT-DTD approach at the expense of higher VM SLA
violations, resulting in worse ESV and Utility values.
In Fig. 10, we show for each approach how the energy

consumption is affected by the load level. It can be
observed, as expected, that increasing the load increases
the energy consumption for all approaches. Decreased
energy consumption with a decrease in the load level
can be explained by the fact that low load creates more
opportunities for consolidation and turning off hosts.
From the above argument it can be expected that by

decreasing the load level further, LT-DTD can save energy
compared to NOM. To test this claim, another experiment
is conducted with load lower than LOW load, which is
called Very LOW (VLOW). VLOW is taken by multiply-
ing the PlanetLab CPU usage values for each time interval
by a constant value of 2. The migration penalty is set to
MP4. The experiment is repeated for 5 times for each of
the LT-DTD and NOM approaches.
The average energy consumption and Utility values are

shown in Table 1. The Utility value is shown to understand
if any possible energy savings are achieved at the expense
of VM performance.
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Fig. 10 Energy over all migration penalties for two load levels

The LT-DTD approach achieves energy savings of 22.8%
compared to NOM, with a better Utility value. This shows
that when the load decreases, the LT-DTD approach gives
more priority to the consolidation process, reducing the
number of hosts and saving energy. On the other hand,
when the load increases, it gives more priority to the load
balancing process by saving less energy but lowering the
VM SLA violations.
In Fig. 11, we show for each approach how the

energy consumption is affected by migration penalty. An
ANOVA statistical analysis indicates, for each approach,
no statistically significant differences of energy value
between different migration penalty cases. This shows
that the migration penalty has no significant effect on
energy consumption.
To understand better the trade-off between energy sav-

ings and performance of VMs, in Fig. 12 we present the
Utility for each approach over all load levels and migra-
tion penalties. The Utility is the metric that indicates
improvements in both energy savings and VM SLA vio-
lations and can serve as the metric of measuring the
overall performance. It can be observed that the LT-
DTD approach achieves the lowest Utility value com-
pared to other approaches with statistical significance,

Table 1 Energy and utility for two approaches with MP4 penalty
and VLOW load

Approach Energy (KWh) Utility value

LT-DTD 70.2 0.79

NOM 91 0.88

Fig. 11 Energy over all loads for three migration penalties

as shown by an ANOVA analysis. It improves the Util-
ity by approximately 9.4% and 4.3% compared to LT-D
and LT-PD approaches, respectively. These results show
that although the LT-DTD approach achieves slightly less
energy savings, it improves the SLA violations, thus find-
ing the best performance-energy trade-off. With respect
to the Utility value, the LR-D approach performs better
than the SHT-D approach, but slightly worse than the LT-
D approach. This is because the LR-D approach achieves

Fig. 12 Utility value over all loads and migration penalties
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less energy savings than the LT-D approach with similar
SLA violations, as shown in Figures 2 and 9.
Figure 13 shows for each approach how the Utility is

affected by the load levels. It can be observed that increas-
ing the load increases the Utility value, since both energy
consumption and SLA VM violations are increased. For
each load level, the LT-DTD approach achieves the lowest
Utility value compared to the other approaches. Similar
to the case of the cumulative VSV value, it is also evident
that for high load, the LR-D and LT-D approaches achieve
comparably equal Utility values and show improvements
compared to the NOM case with statistical significance.
Figure 14 shows for each approach the effect that the

migration penalty has on the Utility. In general, for all
approaches it can be observed that increasing the migra-
tion penalty increases the Utility, since it increases the
VM SLA violation penalty. However, similarly to the VSV
value, the LT-DTD approach seems to be more resistant
in increasing the Utility. This can be observed at least for
the case of moving from MP2 to MP4 where there are
no statistically significant differences resulting from the
ANOVA analysis.
In Figs. 15, 16 and 17, the overall ESV value, the ESV

value for two load levels and the ESV value for three
migration penalties, are shown, respectively. For display
convenience, the ESV value in the graphical illustration is
divided by 10.000. It can be observed that the ESV value
shows the same trend as the Utility value. The LT-DTD
approach achieves the lowest ESV value compared to the
other approaches with statistical significance, as shown by
the ANOVA analysis. Similarly to the Utility value, the LR-
D approach performs comparably equal with LT-D and

Fig. 13 Utility value over all migration penalties for two load levels

Fig. 14 Utility value over all loads for three migration penalties

better than NOM and SHT-D with statistical significance,
especially for high loads. Furthermore, regarding the ESV,
the LT-DTD approach seems to be more resistant with
respect to increasing the ESV value with an increased live
migration penalty.

Related work
There are many works in the literature on dynamic
resource allocation in cloud computing, tackling the

Fig. 15 ESV value over all loads and migration penalties
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Fig. 16 ESV value over all migration penalties for two load levels

problem from different angles. Therefore, we cannot pro-
vide an exhaustive treatment of related work, but focus
mainly on the aspects of VM resource demand prediction
and host overload detection.
Several works apply VM live migration to allocate

resources to VMs for overload mitigation or consolida-
tion of VMs to fewer hosts. For example, Wood et al. [16]
propose an approach called Sandpiper for overload detec-
tion and live migration of VMs from overloaded hosts to

Fig. 17 ESV value over all loads for three migration penalties

not overloaded ones. Their overload detection approach
declares a host as overloaded if the past k resource usage
values and the next predicted one exceed a given thresh-
old. They use a greedy algorithm that live migrates heavy
loaded VMs to least loaded hosts.
Similarly, Khanna et al. [17] propose an approach for

dynamic consolidation of VMs based on live migration.
Their approach for host overload detection is also based
on resource usage exceeding a threshold value. Their goal
is to minimize the number of hosts by maximizing the
variance of resource capacity residuals. This is achieved by
ordering VMs in non-decreasing order of their resource
usage and migrating the least loaded VM to the least
residual resource capacity host.
Beloglazov et al. [18] propose energy-aware heuristic

algorithms for dynamic allocation of VMs to hosts based
on live migration. They decide on the overload or under-
load state of a host based on whether the CPU usage is
higher or lower than the overload or underload thresh-
olds, respectively. The authors apply a modified Best-Fit-
Decreasing (BFD) heuristic to pack VMs to fewer hosts,
which takes into account the power increase of hosts.
All the above approaches base host overload or under-

load detection on current or short-term predictions of
resource usage and static usage thresholds, which can
be sensitive to short spikes of load that can cause sta-
bility problems and unnecessary live migrations. In con-
trast, our approach bases overload or underload detection
on long-term predictions of CPU usage by taking into
account prediction uncertainty, which results in stabil-
ity and efficient live migration actions, as shown by the
experimental results.
Several other works apply more sophisticated

approaches than just static usage thresholds. For exam-
ple, Beloglazov and Buyya [8], as a continuation of their
previous work [18], present different heuristics for host
overload and underload detection based on statistical
analysis of historical resource usage data. They propose
to use adaptive usage thresholds based on statistical
parameters of previous data, such as CPU usage Median
Absolute Deviation (MAD) or interquartile range (IQR).
The authors also apply local regression methods for
predicting CPU usage value some time ahead into the
future. Our approach also applies CPU usage prediction,
but additionally considers prediction uncertainty and live
migration penalties in decision making.
Ferreto et al. [19] present an approach called dynamic

consolidation with migration control in which they formu-
late the consolidation problem as a linear programming
problem with constraints that prohibits migrating VMs
with steady workload. As the authors show, this results
in lowering the number of VM migrations with a small
increase in the number of hosts. Their work is comple-
mentary to our work, since it tries to avoid unnecessary
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migrations, but can not provide stability if the data center
is running only variable load VMs.
Gong and Gu [20] propose a dynamic consolidation

approach called Pattern-driven Application Consolidation
(PAC) based on extracting patterns of resource usage
called signatures using signal processing approaches such
as Fast Fourier Transform (FFT) and dynamic time warp-
ing (DTW). Based on extracted signatures, they perform
dynamic placements of VMs to the hosts that have the
highest match between VM resource usage signature and
host free capacity signature. Their work focuses on peri-
odic global consolidation for VM resource usage patterns
that show periodicity. The authors also consider on-
demand VM migrations for instantaneous overloads, but
in contrast to our approach, they base overload detec-
tion on a single resource usage value exceeding a static
threshold.
Andreolini et al. [21] propose an approach for host over-

load detection in which a host is declared as overloaded
when there is a substantial change in the load trend of
the host, as a result of applying the CUSUM algorithm.
Their goal is similar to the goal of our work for provid-
ing a robust and stable approach avoiding unnecessary live
migrations, but their load change point detection requires
past history usage data to be available, at which point the
SLA violations have already happened. In contrast, our
approach applies long-term prediction to avoid violations
before they happen.
Beloglazov and Buyya [22] propose an approach for

host overload detection based onMarkov chains and opti-
mization of inter-migration time with Quality of Service
(QoS) constraints. The goal of their approach is finding
the solution (migration probabilities of each state) of an
optimization problem to maximize inter-migration time
while keeping the Overload Time Fraction (OTF) met-
ric inside certain values. To take into account dynamic
and non-stationary workloads, the authors apply a multi-
size sliding window approach. Similarly, we also propose
an approach for host overload detection, but in con-
trast, we apply long-term prediction techniques taking
into account the VM live migration penalty. Another
difference is that we tackle a different performance met-
ric, i.e., minimization of SLA violations of each VM,
while Beloglazov and Buyya focus on keeping the per-
centage of time that a host is overload inside certain
constraints.
There are several works that apply VM resource demand

prediction techniques for resource allocation in cloud
computing. For example, Gong et al. [23] and later Shen
et al. [11] propose an approach for VM fine-grained
resource allocation based on resource demand predic-
tion. They base their resource demand prediction on two
methods: a) Fast Fourier Transform to find periodicity
or signature of resource demand and b) a state based

approach using Markov chains. Similarly to our approach
for overload detection, they apply these methods for long-
term prediction of host resource conflicts. If they predict
a conflict, they apply a live migration action to resolve it,
taking into account the migration penalty. As the authors
point out, using a multi-stepMarkovmodel to predict fur-
ther into the future lowers the prediction accuracy. This is
exactly the problem we tackle in this paper by taking into
account uncertainty of long-term prediction to deal with
low prediction accuracy.
Islam et al. [24] propose resource prediction approaches

based on machine learning. More specifically, they pro-
pose and experiment with Linear Regression and an Error
Correction Neural Network. They show experimentally
the superiority of the neural network in making more
accurate predictions, but they do not apply their tech-
niques to host overload detection or in general for VM
resource allocation.
Farahnakian et al. [25] propose a prediction technique

based on linear regression to detect if a host is overloaded
or underloaded. They train a model based on past CPU
utilization history and predict the next CPU utilization.
Based on this prediction, they detect if a host is overloaded
or underloaded and apply VM live migration to move
VMs to other hosts. The problem with their approach is
that they base their overload or underload detection tech-
nique on short-term CPU utilization prediction which is
susceptible to oscillatory load. In contrast, we apply long-
term prediction augmented with uncertainty estimation
to provide a more stable approach.
Khatua et al. [26] propose an approach for VM load

prediction several time steps into the future by applying
an Auto-regressive Integrated Moving Average (ARIMA)
model. They apply their approach for horizontal scal-
ing in cloud settings. If an overload situation is detected,
based on some threshold value, then the number of VMs
is increased. Also, their approach does not consider the
uncertainty and prediction errors in their model of long-
term prediction, which is important for increasing the
quality of allocation decisions.
Ashraf et al. [27] propose a load prediction approach for

VM resource allocation and admission control of multi-
tier web applications in cloud computing. Their predic-
tion method is based on a two step procedure. In the first
step, a so called load tracker, based on Exponential Mov-
ing Average (EMA), constructs a representative view of
the load by filtering the noise. In the second step, a load
predictor based on linear regression takes as input the
representative view of the load produced by load tracker
and provides as output the predicted load value in some
interval k in the future. They apply a hybrid reactive-
proactive approach to calculate a weighted utilization.
Through a linear interpolation, the authors mix the mea-
sured and the predicted value, by including a weight factor
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w that depends on the prediction error. In contrast to
their work, our approach to prediction is different. We
apply a long-term prediction method directly to the past
resource utilizations and consider long-term prediction
uncertainty through prediction error probability distribu-
tion. Furthermore, their approach is applied for horizontal
VM scaling and admission control of multi-tier web appli-
cations, while we tackle the problem of host overload
detection and mitigation through VM live migration.
Qiu et al. [28] propose an approach for VM load pre-

diction based on a deep learning prediction model. More
specifically, this model is composed of two layers, the
Deep Belief Network (DBN) and a regression layer. The
DBN is used to extract the high-level workload features
from the past VM resource utilizations, while the regres-
sion layer is used to predict the future load values. The
authors evaluate experimentally only the prediction accu-
racy of the approach, but do not apply it on any VM
resource allocation problem. In contrast, we propose and
evaluate a complete approach for VM resource allocation
problem through long-term resource prediction and VM
live migration.

Conclusion
In this paper, a novel approach for VM resource alloca-
tion in a cloud computing environment has been pre-
sented. It allocates resources locally by changing the CPU
share given to VMs according to the current load. Global
resource allocation is performed by migrating VMs from
overloaded or underloaded hosts to other hosts to reduce
VM SLA violations and energy consumption. For over-
load or underload host detection, long-term predictions
of resource usage are made, based on Gaussian processes
as a machine learning approach for time series forecast-
ing. To take into account the prediction uncertainty, a
probability distribution model of the prediction error is
constructed using the kernel density estimation method.
To consider the VM live migration overhead, a decision-
theoretic approach is applied.
We can draw the following conclusions. First, making

long-term predictions of resource demand can increase
stability and overall performance of a cloud. Second,
making overload detection decisions proportional to
uncertainty of predictions is the right thing to do, as
supported by our experimental results. Third, taking
into account both prediction uncertainty and live migra-
tion overhead by applying decision-theoretic optimization
methods yields the best decisions and improves the per-
formance further.
There are several areas for future work. First, we want

to point out that our approach is based on a long-term
prediction model that relies on historical load patterns.
This means that our prediction model cannot easily pre-
dict sudden and sharp increases of the load (i.e., load

bursts). This issue is out of scope of this paper, but it can
be addressed by focusing on load burst detection tech-
niques ([29–31]). Thus, an interesting area of future work
is combining load burst detection techniques with load
prediction techniques to deal with a large variety of cloud
load patterns. Second, in addition to the currently used
scheme of predicting the next CPU usage value for local
resource allocation, more sophisticated schemes based on
control theory [32, 33], Kalman filters [34] or fuzzy logic
[35, 36] can be explored. Third, a distributed resource
allocation approach should be investigated, where each
host agent makes live migration decisions in coopera-
tion with nearby host agents. A distributed approach
is suitable for large scale cloud infrastructures where
centralized optimization complexity and single point of
failure are important factors to consider. In distributed
approaches, the problem is how local agents with a lim-
ited view should coordinate each other to achieve a
global optimization objective. Finally, investigating long-
term prediction of the usage of multiple resources (e.g.,
CPU, memory and I/O bandwidth) and their interdepen-
dencies in allocation decisions is an interesting area of
future work.
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