Ye et al. Journal of Cloud Computing Advances, Systems
and Applications (2015) 4:19
DOI 10.1186/513677-015-0044-6

® Journal of Cloud Computing

a SpringerOpen Journal

RESEARCH Open Access
@ CrossMark

Multi-dimensional key generation of
ICMetrics for cloud computing

Bin Ye'", Gareth Howells', Mustafa Haciosman' and Frank Wang?

Abstract

Despite the rapid expansion and uptake of cloud based services, lack of trust in the provenance of such services
represents a significant inhibiting factor in the further expansion of such service. This paper explores an approach
to assure trust and provenance in cloud based services via the generation of digital signatures using properties or
features derived from their own construction and software behaviour. The resulting system removes the need for a
server to store a private key in a typical Public/Private-Key Infrastructure for data sources. Rather, keys are generated
at run-time by features obtained as service execution proceeds. In this paper we investigate several potential software
features for suitability during the employment of a cloud service identification system. The generation of stable and
unique digital identity from features in Cloud computing is challenging because of the unstable operation environments
that implies the features employed are likely to vary under normal operating conditions. To address this, we introduce a
multi-dimensional key generation technology which maps from multi-dimensional feature space directly to a key space.

Subsequently, a smooth entropy algorithm is developed to evaluate the entropy of key space.

Keywords: Cryptography, Cloud computing, Security, Key generation, ICMetrics, Multi-dimensional space

Introduction

Along with the popularity of Cloud computing, the ma-
jority of mediumto small sizedcompanies start to deploy
their servers on the third party Cloud computing service
providers in order to reduce the costs. However, due to
the low boundary of technologies of setting up on Cloud
servers, many malware or phishing sites can manipulate
server using such vulnerabilities. For this reason, to the
research topic of quickly identifying such web servers
and protecting the customers’ private data is becoming
an important research area. This paper introduces a
technique termed ICMetrics that could be used to pro-
tect services located in a Cloud server, a digital signature
could be generated using properties or features derived
from the server’s own construction and behaviour [9].
The ICMetrics is capable of assuring both their authenti-
city and freedom from malware, which means that it
simultaneously allows the flexibility of the system to be
operated within their designed specification and execu-
tionon an arbitrary platform. Generally, there are several

* Correspondence: by30@kent.ac.uk

'The School of Engineering and Digital Arts, The University of Kent, Jennison
Building - Room 1.46, Canterbury CT2 7NTKent, UK

Full list of author information is available at the end of the article

@ Springer

license, and indicate if changes were made.

major advantages to use the ICMetrics:. Firstly, there is no
need to store encryption keys or device characteristic tem-
plates, because a digital signature is only regenerated
when required. For this reason, there is no physical rec-
ord of the key, which means that it is not possible to
compromise the security of sensitive data through the
unauthorised access to the keys. Furthermore, if a sys-
tem is compromised, that would not disclose the sensi-
tive template data or keys. As a result of that, it would
not allow the unauthorised access to other systems pro-
tected by the same ICMetrics or indeed any system
protected by any other ICMetrics templates present. In
addition, another advantage of using the ICMetrics is
that a faulty or maliciously tampered device would be
autonomously prevented from decrypting its own data
or participating in any initiated secure communications.
This is because tampering with the constitution of soft-
ware would cause its behaviour to be changed, and this
would potentially cause the generated ICMetrics fea-
tures to be changed sequentially. As a result of that,
any regenerated keys would differ from the original
ones that were generated before the software’s integrity
was compromised.

© 2015 Ye et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-015-0044-6&domain=pdf
mailto:by30@kent.ac.uk
http://creativecommons.org/licenses/by/4.0/

Ye et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:19

Currently, there are two research directions involved in
the ICMetrics. Firstly, what kind of software behaviours
can be used to identify servers in Cloud environment? In
order to address this question, our previous works were
investigated this problem in [15], [18] and [1], we used
memory usage and PC counter as features to identify
devices. Such hardware features are unique and stable that
could be used for the ICMetrics technology. However,
Cloud computing environments are completely different
from traditional server providers. In Cloud computing
Cluster, a number of computers are managed by software
which dynamically distributes workload to all of the com-
puters. As a result of that, there is a difficulty to obtain the
locations where a program will be executed in the clusters.
Therefore, only software features could be used in such
scenarios. In this paper, we particularly investigate funda-
mental principles of feature selection within Cloud comput-
ing environment and analyse the methodology of adopting
features for stable key generation process.

The goal of this paper is to evaluate the feasibility of
generating encryption key based on features derived
from the properties and behaviour of Cloud servers’. In
order to achieve this, we first investigate appropriate
methodologies of extracting features from Cloud servers
and explore potential features that are suitable for key
generation. Then, we invented and evaluated a new
multi-dimensional encryption key generation algorithm
after evaluated several possible existing encryption key
generation algorithm. Finally, we developed a smooth
entropy calculation algorithm which is used to calculate
actual uncertainty of our encryption key.

Related works

This section shows an overview of the previous work of
software security and Biometrics encryption key gener-
ation. As previously discussed,, Security on Cloud
servers are increasingly of concern to users. There are
two issues that users need to guarantee when they con-
nect to Cloud servers: they should be able to detect the
cloud server is not a fraud or spoof and the server is
not com-promised. To satisfy those two criterions, [8]
proposed a malware detection system of AV software by
matching automatically generated behaviour’s models
against the runtime behaviour of unknown programs.
Also, Rahmatian et al. [12] used a CFG to detect intrusion
for secured embedded system by detecting behavioural
differences between the target system and malware. In
their system, each executing process is associated with a
finite state machine (FSM) that recognizes the sequences
of system calls generated by the correct program. Attacks
will be detected if the system call sequence deviates from
the known sequence. Wang et al. [11] proposed a system
call dependency graph birthmark software theft detection

Page 2 of 12

system. Software birthmarks have been defined as unique
characteristics that a program possesses and can be used
to identify the program without the need for source code,
a dynamic analysis tool is used in [19] to generate system
call trace and SCDGS to detect software component theft.

For the proposed system, the intended solution should
not store a private key in a typical Public-Key Infrastruc-
ture for data authenticating. Instead, it should generate a
private key at run-time using features extracted from
servers dynamically. The keys are generated from these
features (soft behaviours data) using feature maps gener-
ated from them. It is intended for the system to always
generate the same public-private key pair for a service’s
operation, regardless of input parameters. Previous work
in biometric-based or ICMetrics-based system has already
investigated the similar non-template key generation tech-
nologies. For instance, [4] proposed a multi-dimensional
key generation strategy on hand written features. In this
paper, they firstly collect the biometric features of the au-
thentic users as the training data, a user-dependent feature
transform is derived such that the transformed features
are distinguishable from those of imposters. Secondly, a
stable key generation mechanism is utilized to generate a
stable cryptographic key. The key is generated by cascad-
ing every bit pattern of each feature. Also, [13] described a
different key composing strategy where each biometric
feature is conceptually contributed to one bit of the
cryptographic key. Similarly, Jermyn [7] proposed a hand-
drawn sketch to generate passwords according to the pos-
ition and timing of the sketch drawing. However, these
technologies all rely on feature transformations which
transform features from original state to a form which can
be distinguished from other data, subsequently generating
cryptographic keys based on the transformation of the fea-
tures. Since in Cloud computing environment, features
are very easy to overlap and highly changeable. So, in
order to make the ICMetrics system feasible in the
Cloud environment, we need to incorporate as many
features as possible. For this reason, we propose a
multi-dimensional key generation scheme that would
generate a key from multi-dimensional space directly.
All features come from the same destination are man-
aged to an entire multi-dimensional space, mapped to a
key vector and then form a digital signature. Finally, a
Shamir secret sharing scheme [3] and Reed-Solomon
code [10] are used to improve the robustness and the
performance of the system.

Criteria

The criteria that we adopted for the encryption key
generation in Cloud environments corporates in both
security and usability requirements. The usability re-
quirement is that the key generation of servers in a
Cloud environment is successfully performed and

Ye et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:19

generates the server independent derived keys. In our
scenario, the keys are generated from the features gath-
ered in the server and the operating system. For this
reason, any changes of either the server itself or the op-
erating system should affect the derived keys. For in-
stance, if anybody tries to access the system or system
is infected by virus will definitely change system behav-
iour’s data. All those operations would change the ser-
ver behaviour or system behaviour during the key
generation. However, in some cases, the server may up-
grade to a new version, as a result of this, it may lead
system to perform a key updating process as well to re-
train the key generation algorithm. But, any changes of
the server and system environment should not affect
the derived keys. In other words, the derived key should
have a property with low intra-sample variance (i.e. the
values produced for the same device) but high inter-
sample variance (i.e. the values produced for the differ-
ent devices) with an ideal case being no inter-sample
overlap of potential features.

As mentioned previously, our security goals are to re-
sist the cryptanalysis carried out by the attacker who
wants to access server system. This case assures that
any attacker accesses the system will tamper the system
key generation algorithm. In order to do that, they need
to alter the original program or run the malicious
codes, which will certainly change the original threads
sequence, and consume memory or alter the CPU
usage. As a result of that, the feature extraction process
during key generation will be affected. In addition, if
any attackers who capture the server and wish to per-
form a brute force attack, we have explored an entropy
extraction strategy that extracts actual uncertainty of
the derived key and make sure it is greater than 2%,

Feature extraction
In order to collect data, we have setup 9 different Cloud
servers and simulated customer usage remotely.

Each Cloud server runs an algorithm from Table 1.
We also categorise the servers in to 4 groups. The first
group are three different sorting algorithms. The reason is
that firstly, the time complex of bubble sort is O (NP,
merge sort is O (N log 7) and cocktail sort is O (N log n).
We analyse the correlation and causality of features
between those servers. In this paper, we are focusing on
the encryption key generation algorithm, so we do not
describe too much about the feature analysis. BMH search
and Rabin-Karp search are two different search algo-
rithms, which is designed to find a key word through the
same text. Gaussian classifier and Neural network classi-
fier are deployed to train with the same dataset and our
algorithms are used to detect the difference between the
features. Sieve Atkin and Sieve Eratosthenes are two
different implementations for finding all prime numbers

Page 3 of 12

Table 1 Examples of Cloud server behaviour algorithms
Bubble sort

merge sort

Cocktail sort

BMH search

Rabin-Karp search

Gaussian classifier

Neural network classifier

Sieve Atkin (an algorithm for finding all prime number)

Sieve Eratosthenes (a different algorithm for finding all prime
number in a specific range)

in a range. They are deployed to execute the same work
but using different methods, which is used to evaluate
whether the features are able to distinguish between each
other. As a result, we can test whether inter sample vari-
ance is strong enough to distinguish between them.

Under normal circumstances of infrastructure as a
service (IAAS), our Cloud servers are deployed on a
virtual machine with a Linux relative system. So, two
approaches have been identified that will allow features
to be extracted at run-time from the Cloud servers. In
this paper, they have been termed “black box” and “white
box”. A Cloud computer cluster is setup by Eucalyptus
[14] and Xen [2]. Then, nine virtual machines are setup
and each of them is installed on an Ubuntu Server 14.04.2
LTS. A traditional LAMP (Linux Apache, MySQL, PHP)
web server is setup in each virtual operating system. The
features are collected by a statistic module every 2 s from
both black box and white box. This means that both black
box and white box are monitoring the events which have
been registered by our system.

In “black box”, the extractor does not have any know-
ledge regarding the internal working of the Cloud
servers. Hence, the performance of the system can only
be ascertained by observing the results by probing the
exposed interfaces which include the globe system per-
formance and the external resources. To achieve that,
we adopt LTTng [5] to trace Linux kernel function.
LTTng is a highly efficient tracing tool for Linux. Its
tracers help tracking down performance issues and de-
bugging problems involving multiple concurrent pro-
cesses and threads. Linux kernel functions are interfaces
between hardware and software, so we can investigate
many indirect potential features. For instance, through a
“kmalloc()” function, we could estimate memory usage
of the Cloud services at a system level overview. Also,
the correlation between features are investigated and
used as new features. In general, we only extract Linux
kernel invocation frequencies from black box now.
Table 2 shows all kernel functions we traced from our
Cloud servers.

Ye et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:19

Figure 1 shows a structure of Black box. Cloud server
users consume Cloud resources via requests. This de-
sign employs a monitor, which envelops the service that
intercepts and registers the requests before passing it to
the service. While the service is executing, the LTTng
profiler is counting globe system calls that have been
registered. Simultaneously, the monitor is counting ex-
ternal resource events concurrently. All data is then
transmitted to an ICMetrics statistic module to gener-
ate a feature vector.

The alternative “white box” approach is designed to
explore the internal behaviour of servers. The white
box is designed to investigate the Cloud servers with
similar process. This approach requires access to the
code of service program, which allows a wider variety
of features to be obtained although naturally requires
the cooperation of the service providers to gain access
to the source code. A common approach is to imple-
ment a logger inside of the code and the logger keeps
track throughout the service operations. Through Fig. 2,
we can see a software profiler is used to log service be-
haviour and send it to ICMetrics statistic module for
output. There are two requirements of feature to be
chosen. They are low intra-sample variance (i.e. the
values produced for the same device) and high inter-
sample variance (i.e. the values produced for the differ-
ent devices). The features we chose for white box are
as follows:

A histogram of how many objects are allocated in each
method.

Table 2 Monitored Linux kernel functions

Page 4 of 12

A histogram of how many input arguments are passed
to each method.

A histogram of how many conditional statements are
encountered in each method.

A histogram of the methods called from within each
method.

A histogram of the invariant loops encountered within
each method.

A histogram of the accesses to external resources

A histogram of comparisons for loop invariants per
method.

A histogram of number of loops, not iterations,
encountered within each method.

A histogram of method call depths.

The framework

To generate encryption key, it requires developing suit-
able methods for combining selected features so as to
produce unique basis number - an initial binary number
unique to the Cloud servers from which actual encryp-
tion keys may be derived. The fundamental requirement
for such methods are that they should allow for generat-
ing basis numbers with low intra-sample variance (the
values produced for the same device) simultaneously
with high inter-sample variance (the values produced for
different devices). The ideal case should have no inter-
sample overlap of potential unique basis numbers [16].
Two such techniques have been investigated to combine
features, namely, feature addition and concatenation [15].
The accuracy of addition is less stable than concatenation
but although with the concatenation technique, the key

sys_munmap hrtimer_expire_entry

Sys_recvmsg sys_fentl
sys_wait4 sched_stat_iowait
timer_expire_entry block_unplug
mm_page_pcpu_drain sched_migrate_task
sys_futex sys_mmap

power_start sys_newfstat

Sys_writev sys_splice
irg_handler_exit sys_open
Sys_write exit_syscall

workqueue_execute_start rcu_utilization

mm_page_alloc softirg_raise
sys_recvfrom sched_switch
hrtimer_cancel sys_sync_file_range
hrtimer_expire_exit block_bio_remap

mm_page_free_batched workqueue_queue_work

sys_lseek sys_poll

kmem_cache_alloc_node sched_stat_runtime

sched_wakeup power_end
sys_fadvise64 sys_close
sys_rt_sigprocmask softirg_exit
sys_read sys_select

kmem_cache_free sys_newstat

sys_ioctl sched_stat_sleep
irg_handler_entry hrtimer_init
mm_page_alloc_zone_locked softirg_entry
sys_setitimer sys_eventfd2
timer_expire_exit sched_stat_wait
workqueue_activate_work block_rq_issue
hrtimer_start scsi_dispatch_cmd_start

sys_sendmsg kmem_cache_alloc

Ye et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:19

Page 5 of 12

Data Center

-

ernal resource invocation

ICMetrics Monitor

LTTng

Q / — [owees]

‘ Linux Kernel Function Interfaces ‘

Fig. 1 Design of a system using the “black-box” method

is still not stable enough, since the fluctuation between
the bits is much higher. The concatenation produces
key stability up to 94 % [9]. In order to increase that, we
introduce a multi-dimensional approach to analyse fea-
tures described above. Grey code is applied to increase
stability of binary representation of unique basis number.
ICMetrics technology is defined as a two-step process [6]:

e Calibration phase:

1. For each sample device or system: measure the
desired feature values.

2. Generate feature distributions describing the
frequency of occurrence of discrete value for each
sample system.

3. Normalize the feature distributions and generate
normalization maps for each feature.

e Operation phase:

1. Measure desired systems’ features.

2. Apply the normalization maps to generate values
suitable for key generation.

3. Apply the key generation algorithm.

In the calibration stage, certain features, which are de-
scribed from previous section have been identified as @ 1,
@, . .. of raw are extracted. Then, the data is forwarded
to quantise and normalise process. Finally, a multi-
dimensional normalisation map is generated based on
normalised data. In the operation phrase, a measured data
is mapped to multidimensional normalisation map to form
a unique basis number. Finally, the unique basis number is
forward to generate encryption key.

Feature quantization and normalization

A conventional strategy for generating an encryption key
from a given feature distribution may involve quantising
distribution into fixed subsets, then, each value within

Data Center

0

server
ICMetrics Software

profiler

‘ Linux Kernel Function Interfaces ‘

Fig. 2 Shows a potential design for a system employing the
“white-box” method

its subset are mapped to a certain single number. For in-
stance, Fig. 3 shows the probability distribution of a
feature named number 8 for three different servers. It
may be noted from Fig. 3, that there are a number of
tightly grouped value regions for each server. For con-
tinence, the Letter S is used to represent server number
and F is used to represent feature. For example, S1F8
represents the feature of number 8 of server 1. In Fig. 3,
the data occurred in range 0 to 20 are all mapped into
20. In general, this would cover majority of the values
generated by the same server within the same quantisa-
tion interval. However, after scrutinise Fig. 3, we dis-
covered two problems.

Firstly, some data overlapped at some points. For in-
stance, feature S3F8 and S1F8 overlapped at 20. Sec-
ondly, some data have unusual distributions. It is well
known that processing unusual distribution is very

Method invocation count of three servers
1000
7 S3F8

900 S1F8 S2F8 A J
S 800t E
E
2 700t i
o
]
= BOOf g
2
3
S sl S3F8 |
£
3 400 1
§ S2F8 S3F8
g 300 S1F8 S1F8 q
5 S1FB §3F6
3
o 200 31F8 S3F8 7

— S3F8
100 s3F8 / & g
0 / . .
-5000 0 5000 10000 15000 20000
The number of count
Fig. 3 Feature occurrence count every two seconds of one operation
of three server benchmark

Ye et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:19

difficult in pattern recognition technologies. To solve
that, we propose a multi-level mapping in cooperate
with a probability system technology, which is inspired
by [6]. The multi-level mapping system includes two
steps:

e Stepl: Define a virtual model for all features. The
virtual model is a virtual probability distribution for
a particular feature with no overlap. For instance,
Fig. 4 has three servers in total; the distribution is
then quartered into 3 blocks. Then, the values are
mapped from real distribution to virtual model
within their owner blocks. However, in practise, it is
not fair to split a virtual model into 3 equal-sized
blocks. The blocks should be splinted based on the
number of quantised intervals.
e Step 2: Repeat for each Cloud server N
o Map each feature value of Cloud server to virtual
model within specific range, which is defined in
stepl.
o Each feature value is mapped by descending
order. A pseudo-Gaussian is produced by
alternating below and above the mean.

The meaning of the above mapping system is that con-
struct a new probability distributions which have a
Gaussian shape. Then, the new distribution can be used
directly in our system. In order to explain the scenario
above simply, we assume that we have three Cloud servers
(S1, S2 and S3), each of what contains one feature (F8) with
certain amount of values. After quantization, each value is
represented as S1IF8V1 as you can see from Table 3. After
quantisation, we have feature values represented by Fig. 4
and Table 3. Through Table 3, location represents original
position on the real distribution. Value means the value at
corresponding location and frequency shows how often
it appeared. Figure 4 is a histogram of feature 8 of all

Feature distribution of feature 8
1 —
I 5178
09 [S2F [
S3F8

08r .

07r B

06F B
=
2

205 B
=
2

“ 04 _

03F B

02r B

0.1 B

0.19460.3915
Feature values «10°
Fig. 4 Feature value of three servers

Page 6 of 12
Table 3 Feature value of three servers
Location Value Frequency
STF8V1 1 962 0.009
STF8V2 2 1946 0.985
STF8V3 3 2931 0.002
S1F8V4 4 3915 0.003
STF8V5 5 4899 0.001
S2F8V1 3 2931 0.013
S2F8V2 4 3915 0.986
S2F8V3 6 5884 0.001
S3F8V1 14 13,759 0.009
S3F8V2 15 14,744 0.985
S3F8V3 16 15,728 0.002
S3F8Vv4 17 16,713 0.003
S3F8V5 19 18,682 0.001
S3F8V6 20 19,666 0.001

three servers. Let X1 = {S1F8V1,...,.S1F8V4}, X2 =
{S2F8V1,...,52F8V3} and X3 = {S3F8V1,...,S3F8V6}.

According to the algorithm above, in stepl, a virtual
feature distribution (virtual model) is defined based on
the number of values. In our example, we can see that
server 1 has 5 values, server 2 has 3 values and server 3
has 6 values. So the virtual model is defined as the pro-
portion by 5/14, 3/14, 6/14. This means server 1 has 3
intercepts, server 2 has 3 intercepts and server 3 has 6
intercepts in our virtual model.

Continue following the algorithm above, we now map
real value to virtual model. The values are mapped in
order of descending frequency at the centre of the
interval range. For instance, the virtual model is defined
as {1,..,4} for S1F8, {5,.7} for S2F8 and {8,...,14} for
S3F8. S1F8V2 is mapped to location of 3. Then,
S1F8V1 is mapped to 2. Next, S1IF8V4 is mapped to 4.
After that, SIF8V3 is mapped tol. Finally, repeat until
this process go through every value. Table 4 shows the
result after mapping process. Figure 5 is the distribu-
tion of Feature 8 after mapping process. Then, the new
probability distribution is available for any pattern rec-
ognition system. The overlap values are managed by
probability during execution.

Multi-dimensional normalization map

After quantization and normalisation, our goal now is to
generate a multidimensional normalization map — a multi-
dimensional normalization map is a multi-dimensional
feature value space. A normalization map is used to gener-
ate a unique basis number. In our previous work [17],
normalization maps are linear based, mapping each in-
dividual feature to a vector and concatenating them to-
gether. This method may be fairly easy to implement

Ye et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:19

Table 4 Feature values after multi-level mapping

Location Origin location Feature values

S1F8 1 3 2931
S1F8 2 1 962
S1F8 3 2 1946
S1F8 4 4 3915
S1F8 5 5 4899
S2F8 6 3 2931
S2F8 7 4 3915
S2F8 8 6 5884
S3F8 9 19 18,682
S3F8 10 16 15,728
S3F8 11 14 13,759
S3F8 12 15 14,744
S3F8 13 17 16,713
S3F8 14 20 19,666

but causes key generation unstable. The fundamental
idea of the multi-dimensional normalization map is that
to map a measured series of feature data into a multi-
dimensional space and to determine whether the data is
located in that range. The higher dimension may in-
crease the probability of data appear in that range. This
is because even there are some features which have ex-
ceed the correct range, the majority of other features
are still well qualified to make right decision. The
higher dimensional feature space increases the entropy
of digital identity. In other words, for an attacker, the
difficulty to decrypt the key is increasing exponentially.
In order to determine a specific range in the space, we
also developed a multi-dimensional space definer algo-
rithm, which is used to define a multidimensional
space. Basically, the algorithm adopts normal pattern

Feature distribution of feature 8

Frequency

2 4

Feature values

Fig. 5 Feature values after multi-level mapping

Page 7 of 12

recognition techniques to detect which part it belongs
to. Then, the measured data will be guided to that
specific space. Finally, a unique basis number gener-
ation algorithm is deployed to produce a basis number
based on measured data itself and the specific multi-
dimensional space range. An example of space definer
algorithm is described below:

Assuming we have 9 web servers, each server has a
training data set X containing 60 features, each feature
has 1000 observations. XeR"”, n = 60. Let p and ¥ be
the mean vector and covariance matrix of X. The density
function for this distribution is

1 -1
Py = TS e /2

For a measured feature x, x € R” is an observation of test
data which contains 60 feature values. The probability of x
is the integral of the quantization which defined in the pre-
vious step.

Max{ /baP,}, (0<i<9)

In the function above, @ is a start point of the
quantization which we have defined in the previous step
and ‘b’ is an end point of the quantization. i represents
severs number, which we have 9 servers in our experience.
P; represents the iy, server in our experiment. The func-
tion results a probability of x belongs all 9 servers. The
system should now guide to map x to the range with high-
est probability.

Multi-dimensional key space generation

Having derived a normalization map, our goal now is to
map ‘X’ (a measure of multi-dimensional test data) to a
specific range in the multi-dimensional space, which is de-
fined in the previous step. Then, we apply a unique binary
basis number generation algorithm, which maps test data
into multi-dimensional space and generate coordinate
range identifier (a unique number used to identify inter-
cepts in the multi-dimensional space) of each dimensional
to a binary vector at once. The binary number generation
algorithm processes include: (1). define all feature value
ranges of a server in the multi-dimensional space. The fea-
ture values ranges are the space determine whether the
feature value are correct or not. Any value within the
range will map to a correct binary number but any value
outside the range will map to a wrong binary num-
ber. (2). the defined feature range is then, delivered
to compute it identifier number of a feature value
segment according to a corresponding globe feature
range. The intercepts identifier number is generated
based on globe feature distribution, which we will

Ye et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:19

explain by an example next. (3). the segments of all
features are collected and combined together. The
segments identifier is represented by grey code. An
example is showed below:

(1) Define left and right boundaries for all features in
all servers (define feature range).

R,‘ = {I’I’ll' - k,»(?i, mi + /([61'},
Rgi = {mg; ~kgi0gi, + kgOgi }

Figure shows an example of Unique binary number
generation on one dimension. It is difficult to explain on
multi-dimensional space, so we use a one dimension
model for explaination. Where m; and §; are mean and
standard deviation of a server’s feature. mgy and Jg are
mean and standard deviation of global feature distribu-
tion. The globe feature values including all servers that
we want to be identified. So R; is the intercept of feature
i and Ry; is the intercept of feature i of all servers in the
multi-dimensional space. k; is used to control the intercept
to cover enough space in the distribution. The values of k;
are chosen depending on each feature’s density. For in-
stance, in Fig. 6, kg; is set to 10 to cover global feature dis-
tribution. So, R;=(mi- k0, m;-ks;) is the range of
feature i that we need to verified.

(2) Generate feature value segments identifier number
for every feature. The globe feature distribution is
segmented by the intercept of feature i of server 1.
We calculate how many segments are there in the
left of feature i of server 1:

SL = {(WZ, - k,6,-) - (WZgi - kgiag,') }/R,

And the how many in the right:

SR = {(ngi + 69,’) - (Wli + k,(?,)}/R,

The global range can be segmented by

Feature i
distribution
of server 1

m; — k;6;

1
\ / m + ki, =
mgi = kgidgi ~ k
Feature space

L] | [[[] []

Global
feature
distribution
my; + kgi6gi

[o000 Jooo1' Jooio Jootr Joio Jotor Joito Jori1r [1000 |

Fig. 6 An example of binary key generation for one feature

Page 8 of 12

- (Wli + k,»(Si) - (Wli - k56i) - k,»d,»
(g + keBg)— (mg — keSg) kol

In the above equations SL is the number of intercepts
on the left of our test data and SR is the number of in-
tercepts on the left of our test data. S is the total number
of intercepts in this feature distribution. In practical, we
add one more intercept at left and another intercept at
right, which you can see from Fig. 6. Now, we use binary
bits of grey code to index each segment of the distribu-
tion. The indexes start from 0 and end with binary num-
ber 1000.

Generally, log, (%—i— 2) bits are sufficient to index

each segment with a unique binary number. In Fig. 6,
there are 9 segments covering global feature distribution.
log>(9) bits are employed to identify each intercept.

As the processes above, the unique basis number is
generated by cascading all indices of feature range from
the n dimensional feature space. This Fig. 6, “0010” is
cascaded with other binary indices which from other di-
mensions. The length of the unique basis number is:

n kl'é\l'
-5 (49

Unique basis number correction

In order to improve the stability of unique basis number,
we investigated two error correction schemes. The Reed-
Solomon code [10] and Shamir secret sharing [3]. Accord-
ing to our test data, the unique basis number is an 800 bits
long binary number. To adapt Reed-Solomon code, we
chop down it into 160 pieces. Each piece message contains
5 bits. We choose RS(7,5) and set a Galois field GF(2"),
m = 3. The generator polynomial is P(x)=x>+x + 1.
The above scenario allows correcting 1bit every 5 bits.

Experiment and result

In this section, we first evaluate hamming distance of
our unique basis numbers to the corresponding servers.
Then, we evaluated our error correction algorithm with
false negative rate. Finally, we developed a smooth en-
tropy evaluation system under appropriate circumstance.

Hamming distance VS k;

According to the previous section, k; is used to control
feature distribution range in a specific globe feature
range. The value of k;0; define the width of feature range
that any values within the range will map to a correct
binary number. As the result of that, the k; should be
chosen in which k;§; is greater enough to cover entire
feature distribution. The hamming distance is a differ-
ence measurement of two binary numbers. In this case,
we use it to evaluate the stability of the unique basis

Ye et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:19

number. The experiment is designed by comparing ham-
ming distances during the increasing of k; Through
Fig. 7, we can see that hamming distance is getting very
high when k; is small. During the increase of k;, the ham-
ming distances reduced dramatically from 20 to 100.
Servers 1, 2, 3, 4, 5 and 9 start to converge when k;
around 25 and reach optimal around 100, however,
servers 6, 7 and 8 start converge when k; around 60 and
reach optimal around 800.

False negative rate vs k;

The other method we used to evaluate our system is the
false negative rate compare with k;. The false negative
rate is the percentage of failures among attempts by cli-
ent for key generation. Figure 8 demonstrates expected
trends, in particular that false negative rate generally de-
crease as k; increasing. Moreover, several points of the
figure give evidence that the optimal k; should be chosen
between 120 and 130 for server 1, 2, 3, 4, 5 and 9. But,
for server 6, 7 and 8, the optimal k; should be chosen be-
tween 200 to 220.

False negative rate vs RS codes

In order to deliver a stable unique basis number, we ana-
lyse false negative rate during the increase of the mes-
sage length of RS codes. Figure 9 illustrates false
negative rate trend versus different RS code message
length. Firstly, we set the message length to 3 and code
word length to 5, which means there is only 1 bit can be
corrected over 3 bits. Then, we increase the length of
message and code word both by 1. So, in the second test,
the RS code was set to RS(6,4). After that, we keep in-
crease the message length and code word until they
reach RS(12,10). In this experiment, we set k; to 125 for
server 1, 2, 3, 4, 5 and 9 but set k; to 220 for server 6, 7
and 8. Through the figure we can see that after applied

Page 9 of 12

False negetive rate VS k(i)

0.14
u] server 1
———serer2
o2k server3
— — - sewerd
01k + servers |4
@ o server B
s x sewer?
2008 ?% O serer8 |1
=) Ska) * server9
g \
3 M
©
w

0o 120 140 160 180 200 220 240
k(i)

g. 8 False negative rate performance during the coefficient K increase
J

F

error correcting process, the false negative rate reduced
dramatically. For instance, false negative rate of server 8
is around 0.06, which we can see from Fig. 8. Through
Fig. 9, we find the negative rate reduced to around
0.038. Figure 9 also imply that it increases dramatically
when message length is greater than 5 except server 1, 2
and 3. False negative rate of server 1, 2 and 3 are very
stable during the increase of message length. This is
probably because the feature values of these three
servers are very stable in the multi-dimensional space.
We want to select a RS code that it should have longer
message code but lower false negative rate. The longer
message length will release less information about the
unique basis number which means it more secure. The
optimal RS code we should choose in this scenario
should be RS(7,5).

Haming Distance VS k(i)

350 T

server 1
———server 2

300 o server 3 |
— — - sewerd

260k + serer5 |
B server B
; x serer7

WOB " o O sewers|]
i g + server9

Harning Distance(hits)

500 600

ki)

Fig. 7 Hamming distance verses coefficient k

False negetive rate RS code

0.12
server 1
——— server2
DAk e -server3 1
— — -sewnerd
+ serer5 3
o 008} server B .
i —— sewer7 »
g —HB— server8 g +
5006 | —*+—sewer9 £ J
8
@
w
N] ¥
“ 004t & 4
G +
0 ! ! ! L L !

3 4 5 5 7 g 9 10
RS code message length

F

g. 9 False negative rate vs RS code

Ye et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:19

Entropy

Fundamental to our empirical evaluation is the measure
of software behaviour entropy we chose. As described
above, the software behaviour are used to form a unique
basis number. Intuitively, our measure of entropy should
capture the amount of remaining uncertainty in the
unique basis number. Initially, our unique basis number
is 800 bits long, if an attacker knows nothing about the
system, then, the entropy is simply 25°. In fact, the bits
in unique basis number are not independent. There are
two aspects we should consider in the section, error cor-
rection and uniform random bits of unique basis num-
ber. Firstly, we need to calculate how many uniformly
random bits can be extracted from the feature set. This
is the process of converting an arbitrary random source
into a source with smaller alphabet and almost uniform
distribution. Secondly, error correcting process is ap-
plied to improve the robustness; we have to eliminate
correct bits as well. In order to capture realistic entropy,
assuming in the feature X with probability value of y and
probability distribution Py. We apply entropy smoothing
function fiy — y to X such that Y'=f (X) is uniformly
distributed over its range y. The largest Y such that Y is
still sufficiently uniform is a measure for the amount of
smooth entropy inherent in X or extractable from X,
relative to the allowed deviation from perfect uniformity.
In an alternative view, this process eliminates almost all
partial information available about X and concentrates
as much as possible of the uncertainty of X in Y.

The method we use to quantify the remaining uncer-
tainty in Y, which its divergence from a perfect uniform
distribution, we use relative entropy between X and the
uniform distribution P, over ¥,

D(Py||Py) = log|x| - H(x)

And the L1 distance from the uniform distribution,

1P« - Pull = Y _|Px(x) - Pul
xeX

The algorithm includes two steps. At first step, using
BIN PACKING algorithm group the bits’ probabilities to
provide most equal sized block (each block has similar
probability in summation). The bin packing is an algo-
rithm of deciding whether n positive integers can be par-
titioned into b subsets such that the sum of every subset
is at most c. Bin packing is a NP-complete problem and
the smaller alphabet of output, the more uniform is its
distribution.

Secondly, the algorithm then, repeatedly check whether
the answer is the best by comparing divergence and L1
distance. An example is explained below:

Assuming we have feature probability distribution as
show in Table 5.

Page 10 of 12

Table 5 A random value distribution

X a b d d e F g h i
Pyx(x) 008 005 006 016 019 021 019 002 004

Step 1: We want to produce an almost uniform
distribution Y from a random variable X.

After apply bin packing algorithm we got:

Step 2: Calculate relative entropy and L1 distance of
groups in Table 6.

Through Table 7, we observe that a perfect 1 bit can
be produced from feature X. In general, we expect that
the output can be made more uniform by decreasing it
size.

Secondly, error correction we mentioned in previ-
ous section chop down the unique basis number into
N/5 pieces. N is the length of unique basis number.
So the total number of bits that is going to correct
is N/5 as RS(7,5) only correct 1 bit of 5. Although,
the RS(7,5) scheme doesn’t correct every time but it
does release some threads of the unique basis num-
ber. So, we eliminate one segment of every 5 seg-
ments. In practical, a perfect uniform distribution
does not exist. The measure of the non-uniformity
are always selected a minimum value. So we develop
the following formula:

Let M be a no uniformity measure. A family X of ran-
dom variables with m dimensions with alphabet x has
smooth entropy ¥ (X). A function f:x — 5, ¢ (X) = 2l
with condition when M(Y) is minimum. E is the number
of bits is corrected in previous process. Formally,
Y/(X) — 22221{|y\[f:x—>y:M(Y)m[,,}fE

To calculate the entropy, we set k = 130 and RS code

equal to RS(7,5). The entropy of multi-dimensional
space we can report is 2°°.

Table 6 The table shows how the random variable x with nine
values in Table 5 can be converted to more uniform random
variables

S y 1 2 3 4 5
5 Py(y) 021 021 0.20 019 0.19
fs(y) f bd achi e g
4 Py, (y) 0.27 0.25 0.25 023
fy) ea fi g.c bdh
3 Py,(y) 0.35 0.33 0.32
fsly) ed fchi gab
2 Py.(y) 0.5 05
f(y) Feci gdabh

Ye et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:19

Table 7 Relative entropy and L1 distance of every group in Table 6

s 5 4 3 2
D(Py,||Py) 0.001 0.0016 0.0007 0
[|Py,~Pul|; 0.04 0.04 0.03 0
Conclusion

In this paper, we investigated a reliable cryptographic
key generation algorithm which extracts Cloud servers’
behaviours as features to form a digital signature for
Cloud environment. Firstly, in order to extract Cloud
server behaviours, we developed two strategies, which
have been termed a black box and a white box. The black
box is responsible for behaviours outside the Cloud servers,
while the white box is designed for exploring the internal
behaviours of Cloud servers. In total, there are 60 features
have been collected and evaluated for our system. Then, a
multi-level mapping algorithm is used to transfer unusual
distribution into a traditional Gaussian form. Next, a multi-
dimensional normalization map generation algorithm is
programed to generate a multi-dimensional normalisation
map. After that, a multi-dimensional binary key mapping
algorithm is developed to map a measured data from
multi-dimensional space to a key vector. Next, a reed-
Solomon error correction algorithm is adopted to improve
stability of binary key. Finally, an entropy smoothing algo-
rithm is then explored based on Bin Packing algorithm in-
corporate with relative entropy and L1 distance.

Our result indicates that the usability of ICMetrics
technology in Cloud environment is satisfied. The false
negative rate we can report is around 0.003 on average
of 9 servers. Although, server 6, 7 and 8 have higher
false negative rate than others, but they are still feasible
for the system. In comparison with our previous re-
search, the false negative rate have been reduce twice
times. The entropy of the unique basis number we can
report is at least 2°°, which has satisfied the current
standard of cryptographic system.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

BY carried out the feature extraction, participated multi-dimensional algorithm
design and evaluation and drafted the manuscript. GH provided idea of
multidimensional generation algorithm and participated in the system
evaluation. FW participated in the implementation of black box design
of using LTTng. MH participated in the available features analysis. All
authors read and approved the final manuscript.

Authors’ information

Bin Ye received his diploma degree in computer science in 2009 from the
department of computer science of the Beijing Geely University. In 2012, he
obtained his MSc by research in the University of Kent in the area of mobile
Cloud computing. He investigated a framework of dynamically partition a
mobile application between mobile phones Cloud servers. Since 2012, he
has been a researcher at image and signal process research group and is
pursuing a PhD degree. His work focus on Cloud security — which is

Page 11 of 12

Encryption key generation based on the characteristics which extracted from
software behaviours and construction in Cloud environment.

Dr Gareth Howells has been involved in research relating to security,
biometrics and pattern classification techniques for over twenty five years
and he has been awarded, either individually or jointly, several major
research grants relating to the pattern classification and security fields,
publishing over 150 papers in the technical literature. Recent work has been
directed towards the development of secure device authentication systems
which has received significant funding from the a variety of sources.

Prof Frank Wang is a head of school of Computer science department of the
University of Kent. He is the Chairman (UK & Republic of Ireland Chapter) of
the IEEE Computer Society and Fellow of British Computer Society. He has
served the High End Computing Panel for Science Foundation Ireland (SFI)
and the UK Government EPSRC e-Science Panel.

Acknowledgements

The authors gratefully acknowledge the support of the EU Interreg IV A 2
Mers Seas Zeeén Cross-border Cooperation Programme — SYSIASS project:
Autonomous and Intelligent Healthcare System (project’s website http://
WWW.sysiass.eu/).

Author details

"The School of Engineering and Digital Arts, The University of Kent, Jennison
Building - Room 1.46, Canterbury CT2 7NTKent, UK. The School of
Computing, The University of Kent, Canterbury CT2 7NTKent, UK.

Received: 11 April 2015 Accepted: 2 October 2015
Published online: 15 October 2015

References

1. Appiah, K, Zhai, X, Ehsan, S, Cheung, WM, Hu, H, Gu, D, Howells, G (2013)
Program Counter as an Integrated Circuit Metrics for Secured Program
Identification. In Emerging Security Technologies (EST), fourth international
conference on, IEEE, Cambridge, p98-101

2. Barham, P, Dragovic, B, Fraser, K, Hand, S, Harris, T, Ho, A, Warfield, A (2003)
Xen and the art of virtualization. ACM SIGOPS Operating Systems Review.
doi:10.1145/1165389.945462

3. Benaloh, J (1987) Secret sharing homomorphisms: Keeping shares of a
secret secret. In Advances in Cryptology — CRYPTO' 86, pp. 251-260.
doi:10.1016/51361-3723(05)00151-X

4. Chang, YJ, Zhang, W, Chen, T (2004) Biometric-based cryptographic key
generation. In. Multimedia and Expo, ICME '04. 2004 IEEE International
Conference on, vol.3, no,, pp.2203-2206

5. Desnoyers, M, Dagenais, M (2008) LTTng: Tracing across execution layers,
from the Hypervisor to user-space. In: Linux Symposium (Vol. 101)

6. Howells, G, Papoutsis, E, Hopkins, A, McDonald-Maier, K (2007) Normalizing
Discrete Circuit Features with Statistically Independent values for
incorporation within a highly Secure Encryption System. In Adaptive
Hardware and Systems, 2007. AHS 2007. Second NASA/ESA Conference on,
EEE, Edinburgh, pp.97-102)

7. Jermyn, |, Mayer, A, Monrose, F, Reiter, MK, Rubin, AD (1999) The Design and
Analysis of Graphical Passwords. In Proceedings of the 8th conference on
USENIX Security Symposium -(SSYM'99), Vol. 8. USENIX Association, Berkeley,
CA, USA, 1-1. USENIX Association, Washington, D.C

8. Kolbitsch C, Comparetti PM, Kruegel C, Kirda E, Zhou X, Wang X, Antipolis S
(2009) Effective and efficient malware detection at the end host. System
4(1):351-366. doi:10.1093/mp/ssq045

9. Kovalchuk, Y, McDonald-Maier, K, Howells, G (2011) Overview of ICmetrics
Technology-Security Infrastructure for Autonomous and Intelligent
Healthcare System. Int J U-& E-Service, Sci & Tech, 4(3): 49-60

10. Krachkovsky VY (2003) Reed-solomon codes for correcting phased error
bursts. IEEE Transact Info Theory 49:2975-2984. doi:10.1109/TIT.2003.819333

11. Maier, K D (2003) On-chip debug support for embedded Systems-on-Chip.
Proceedings of the 2003 International Symposium on Circuits and Systems,
2003. ISCAS'03,, 5. doi:10.1109/ISCAS.2003.1206375

12. Meguerdichian, S, Potkonjak, M (2011) Device aging-based physically
unclonable functions. 2011 48th ACM/EDAC/IEEE Design Automation
Conference (DAC), 288-289. doi:10.1145/2024724.2024793

13. Monrose, F, Reiter, MK, Wetzel, S, Labs, B, Technologies, L, Hill, M (2001)
Cryptographic Key Generation from Voice. IEEE, Oakland, CA, pp.202-213
doi: 10.1109/SECPRI.2001.924299

http://www.sysiass.eu/
http://www.sysiass.eu/
http://dx.doi.org/10.1145/1165389.945462
http://dx.doi.org/10.1016/S1361-3723(05)00151-X
http://dx.doi.org/10.1093/mp/ssq045
http://dx.doi.org/10.1109/TIT.2003.819333
http://dx.doi.org/10.1109/ISCAS.2003.1206375
http://dx.doi.org/10.1145/2024724.2024793
http://dx.doi.org/10.1109/SECPRI.2001.924299

Ye et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:19

Nurmi, D, Wolski, R, Grzegorczyk, C, Obertelli, G, Soman, S, Youseff, L,
Zagorodnov, D (2009). The eucalyptus open-source cloud-computing
system. In 2009 9th IEEE/ACM International Symposium on Cluster
Computing and the Grid, CCGRID 2009, pp. 124-131. doi:10.1109/
CCGRID.2009.93

Papoutsis, E, Howells, G, Hopkins, A, McDonald-Maier, K (2007) Key
Generation for Secure Inter-satellite Communication. Second NASA/ESA
Conference on Adaptive Hardware and Systems (AHS 2007), 671-681.
doi:10.1109/AHS.2007.67

Papoutsis, E, Howells, G, Hopkins, A, McDonald-Maier, K (2007). Normalizing
Discrete Circuit Features with Statistically Independent values for
incorporation within a highly Secure Encryption System. In Adaptive
Hardware and Systems, 2007. AHS 2007. Second NASA/ESA Conference on,
pp. 97-102

Papoutsis, E, Howells, G, Hopkins, A, McDonald-Maier, K (2009). Integrating
Feature Values for Key Generation in an ICmetric System. 2009 NASA/ESA
Conference on Adaptive Hardware and Systems. doi:10.1109/AHS.2009.30
Tahir, R, McDonald-Maier, K (2012) An ICMetrics based Lightweight Security
Architecture using Lattice Signcryption. In Emerging Security Technologies
(EST), 2012 Third International Conference on, IEEE, Lisbon, pp. 135-140
Wang, X, Jhi, Y-C, Zhu, S, Liu, P (2009) Behavior based software theft
detection. Proceedings of the 16th ACM Conference on Computer and
Communications Security - CCS'09, 280. doi:10.1145/1653662.1653696

Page 12 of 12

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your manuscript to a SpringerOpen®
journal and benefit from:

Submit your next manuscript at » springeropen.com

http://dx.doi.org/10.1109/CCGRID.2009.93
http://dx.doi.org/10.1109/CCGRID.2009.93
http://dx.doi.org/10.1109/AHS.2007.67
http://dx.doi.org/10.1109/AHS.2009.30
http://dx.doi.org/10.1145/1653662.1653696

	Abstract
	Introduction
	Related works
	Criteria
	Feature extraction
	The framework
	Feature quantization and normalization
	Multi-dimensional normalization map
	Multi-dimensional key space generation
	Unique basis number correction

	Experiment and result
	Hamming distance VS ki
	False negative rate vs ki
	False negative rate vs RS codes
	Entropy

	Conclusion
	Competing interests
	Authors’ contributions
	Authors’ information
	Acknowledgements
	Author details
	References

