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Introduction
Community detection is a fundamental problem in network analysis, as community 
structure which almost exists in all networks, is the most widely studied structural prop-
erties of networks.

Statistical network generative model, due to its solid theoretical base, remarkable 
interpretability and relative tractability, has been wildly used for community detect-
ing tasks [1]. Existing network generative models can be grouped into two classes: the 
latent class model, and the latent feature model. The latent class model assume that each 
individual only affiliate with a single class (as show in Fig. 1a). The latent feature model, 
increases the flexibility of the generative process by permitting each object possesses a 
vector of features and determine the link probabilities based on interactions among the 
features. In many real-world networks, communities are ordinarily overlapping rather 
than disjoint, so assuming that each object having hard membership in only one cluster 
became too restrict to consistent with the facts.

An important challenge in community detection is to specify the number of com-
munities in advance, as we do not have good prior knowledge of how many parameters 
the model requires to explain the data well. The relational infinite latent feature model 
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(rILFM), in which the number of latent variables is unbounded, is a flexible Bayesian 
nonparametric approach that is a proper choice for such situation, as its number of 
parameters can be vary along with the data increasing.

The Indian buffet process (IBP) [2] is often used to develop construction for the over-
lapping community assignment matrix, in which each object is represented by a sparse 
subset of an unbounded number of features, thus can lead to a Bayesian nonparametric 
version of the latent feature model.

As show in Fig. 1b, the set of features possessed by a set of objects can be expressed in the 
form of a binary matrix Z with infinite columns and exchangeable rows, where the ith row is 
an object, and the kth column corresponds to a feature, zik indicates that object i possesses 
feature k. The infinite binary matrix Z can describe that each individual is characterized by 
a set of features, or equivalently to say that each individual belongs to multiple communities 
simultaneously, which is intuitively named as overlapping community structure.

Most of the existing works represent a network as a symmetric binary adjacent matrix 
and a Bernoulli distribution (or a logistic Gaussian distribution) is chosen to formu-
late the generative mechanism, for its simplicity. The symmetric binary adjacent matrix 
representation has two limitations: (1) when we transform these count-value networks 
into a symmetric binary adjacent matrix representation, we lose many valuable network 
information which can help to find overlapping community, e.g., if we use binary net-
work, all nodes play equal roles in one community, as there only have two situations: 
linked or not linked; but, if we consider the interaction times between nodes, they are 
no longer play equal roles, the count vale may imply which nodes are at the core of one 
community, which are at the periphery. (2) The MCMC (Markov chain monte carlo) 
inference of the generative model with Bernoulli likelihood is difficult to derive.

It is well known to us that count-value networks naturally arise and are pervasive in 
our modern life. For example, in communicate networks, such as email networks, phone 
call networks, instant messaging networks, worker recruitment influence networks in 
mobile crowd sensing (MCS) platforms [3] etc., interactions are often directed and have an 
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Fig. 1  Binary matrix indicates node’s community affiliation
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associated count value, i.e., person i can send mails (make phone calls or send messages) to 
person j many times. On online social media service platforms such as Twitter, Facebook, 
BBS, and MCS [4], people follow (comment, like or reply to) those whom they are inter-
ested in, such interactions also have direction and are associated with interaction times.

In this article,we concerned on overlapping community detection for count-value social 
networks. We propose a generative model for count-value networks with overlapping 
community structure: the network is modeled as a Poisson point process, after applying 
Poisson factor analysis on the corresponding count matrix, we obtain M = Z�ZT , which 
is akin to the mixed membership stochastic block model (MMSB) [5] that can express the 
overlapping community structure. The IBP is used as the prior to model the community 
assignment matrix Z; thus, allows the number of communities K to be determined at infer-
ence time instead of to be predefined. Both a collapsed and an uncollapsed Gibbs sampler 
for the generative model have been derived. We reinforce the validity of the theoretical 
results via extensive experiments on simulated network data and real network data.

Related works
Following the seminal work of Erdos and Renyi [6], various random graph models have 
been proposed. The celebrated SBM (stochastic block model) [7] and its extensions such 
as the IRM (infinite relational model, Kemp et al. [8]), MMSB (Airoldi et al. [5]), DCSBM 
(degree-corrected SBM, Karrer et  al. [9]), DSBM (dynamic SBM, Pensky [10]), have a 
wide variety of applications in network community detection, and form a huge corpus 
especially in social sciences and machine learning. We do not present an exhaustive 
review here; for an up-to-date account of various aspects, we direct the reader to Fortu-
nato [11], Xie et al. [12] and Matias et al. [13] for reference.

There already have some pioneering works which composing the ideas of the classical 
MMSB model and the nonparametric Bayesian approach to increase the flexibility of net-
work generative process by letting each node possess potentially infinite number of features, 
for example, the celebrated LFRM (latent feature relational model) proposed by Miller et al. 
[14], which was previously described in Meeds et al. [15]. The IMRM (infinite multiple rela-
tional) model proposed by Morup et  al. [16] is a variant of the LFRM model, in which a 
noisy-or likelihood was used instead of the logistic Gaussian likelihood. The ILA [17] (infinite 
latent attribute) model presented in Palla et al. (2015) generalized the LFRM mode by allow-
ing an explicit representation of the partitioning of each general community into subclasses, 
thus providing a more structured representation of the data. All these models assume that K 
is not known a priori and use the IBP to account for the number of latent communities.

Although most of the existing work does not consider count-value networks, some research 
work provides an exception. For example, Karrer and Newman introduced the DCSBM 
model [9], they assumed that the links between nodes i and j follow a Poisson distribution 
and, thus, represented network as a count adjacent matrix. This method is reasonable, as the 
Poisson distribution is the natural probability distribution for modeling counts. Tue Her-
lau et al. [18] formulated a nonparametric Bayesian generative model for the DCSBM (they 
named it IDCSBM), where the number of communities is inferred via the Chinese restaurant 
process [19]. These two models can be used to detect only nonoverlapping communities.

The celebrated IBP model, originally studied by Ghahramni and Griffiths [2], Thibaux 
and Jordan [20], connected the IBP to the theory of completely random measure by 
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showing that it could be constructed from an exchangeable sequence of beta-Bernoulli 
processes. They further showed that the beta-Bernoulli process is the underlying de 
Finetti mixing measure for the IBP.

The Poisson factor model, which is also named the Gamma-Poisson model, is a proba-
bilistic matrix factorization model that has been widely used in many areas such as image 
reconstruction, text information retrieval, and collaborative filtering etc.. The first applica-
tion of Poisson factor analysis to network analysis was presented in Zhou et al. [21].

The proposed model
Let G = (V ,E) denote a count-value graph, Gt = (Vt ,Et) denote a network snapshot which 
was observed at time t. Vt = {v1, v2, . . . , vN } is node set of Gt , nodes often correspond to 
persons or objects in network. N = |Vt | is the number of nodes. Et is the edge set, edges 
often correspond to relationships between objects. Each observed edge inherently associ-
ate with a count value mij . The dynamically evolving network G can be modeled using a 
random process, and this infinite random process can be decomposed into many observed 
network snapshots. Each network snapshot Gt is finite, so it correspond to an adjacent 
matrix M which is a count-value matrix. The application of Poisson factor analysis to the 
random count matrix M, results in M = Z�ZT , where the N × K  matrix Z is called the 
community assignment matrix of the network, and the K × K  square matrix � is called the 
community compatibility matrix. In this case, we have

where zik1 expresses how strongly node i is affiliated with community k1 , and �k1k2 
measures how strongly communities k1 and k2 interact with each other. The product 
zik1�k1k2zjk2 measures how strongly nodes i and j are connected due to their affiliations 
with communities k1 and k2 respectively. One caveat here is that the infinite Gamma-
Poisson model often use the multi-scoop IBP, which is a distribution over a random 
count matrix, as the prior of Z; but here we use the basic IBP which is a distribution over 
a random binary matrix.

The generative process of our model is as follow:

mij ∼ Poisson

( K
∑

k1=1

K
∑

k2=1

zik1�k1k2zjk2

)

,

(1)

P(M) =

N
∏

j=1

N
∏

i=1

P(mij), mij ∼ Poisson(ρij)

mij =

K
∑

k1=1

K
∑

k2=1

mik1k2j mik1k2j ∼ Poisson(�k1k2)

ρij =

K
∑

k1=1

K
∑

k2=1

�k1k2 = ZiZj ∗ �

Z = (Z1, . . . ,ZN )
T Z ∼ IBP(α,N ) α ∼ Gamma(e, f )

P(�) =

K
∏

k1=1

K
∏

k2=1

P(�k1k2), �k1k2 = � � ∼ Gamma(a, b)
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Here, we let all �k1k2 = � , we will explain the reason in "Inference tricks" subsection . The 
probability graph model representation for the generative process is depicted in Fig. 2.

Apparently, the Poisson factor analysis, is guaranteed by the superposition principle of 
the Poisson point processes.

Superposition is an additive set operation such the superposition of a k-point configu-
ration in Xn is a kn− point configuration in X. Examples of Poisson superposition pro-
cesses include the compound Poisson, and the negative binomial processes.

Theorem 1  (Poisson Superposition Principle)  Give k independent Poisson point pro-
cesses �1,�2, . . . ,�k, and the corresponding counting processes are N1,N2, . . . ,Nk , which 
with intensity measure µ1,µ2, . . . ,µk, then � = ∪k

i=1
�i also is a Poisson point process, 

the corresponding counting process is N =
∑k

i=1Ni ,   its intensity is µ =
∑k

i=1 µi [22].

We apply the restriction that links are directly generated by individual features instead 
of through complex interactions between features, so that feature and community are 
the same concepts, i.e., stating that node i possesses feature j is equivalent to stating that 
node i is affiliated with community j.

As show in Fig. 1b, nodes are assigned to a set of communities can be expressed in the 
form of a binary matrix with infinite columns and exchangeable rows, where the ith row 
is the community assignment vector Zi of the node i, and the jth column corresponds to 
a community, zij = 1 indicates that node i affiliated to community j. As Zi may has many 
nonzero element, i.e. there is no assumption of mutual exclusivity and exhaust, thus the 
community affiliation matrix Z can characterize overlapping community structure in a 
network.

Parameter inference
The IBP is a distribution over an exchangeable binary matrix, it can be constructed in 
two ways, restaurant construction and stick-breaking construction. The former eas-
ily lends itself to MCMC inference, and the latter easily lends itself to variational infer-
ence [23]. Although the execution time required for MCMC inference is cubic due to 
the number of observations and thus often scales poorly [24], we can only use MCMC 
to infer the rILFM models if we do not want to predefine K because the stick-breaking 
construction of the IBP leads to a variational method for inference based on truncating 
to a finite model. Thus we must predefine the truncating level, which is as difficult as 
predefining K.

In this paper, we derived both a collapsed and an uncollapsed Gibbs sampler for Z. In 
"Uncollapsed Gibbs sampler" subsection, we illustrate the uncollapsed Gibbs sampler based 

Fig. 2  Probabilistic graph model representation of the rILFM model
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MCMC inference algorithm, and in "Collapsed Gibbs sampler" subsection, we depict details 
about derivation of the collapsed sampler.

Uncollapsed Gibbs sampler

Let M1 denote the set of observed links, (i, j) ∈ M1 means that there is a link between node 
i and j (in other word, mij > 0 ), EV =

∑

(i,j)∈M1
mij denote the total number of links, 

C =
∑n

i=1

∑n
j=1(ZiZj) = Z

⊙

ZT denote the total number of communities shared by 
node pairs (i, j) ∈ M ( 

⊙

 denote the Hadamard product operation on matrix), HN denote 
the harmonic number, Z−ik denote all community assignments except zik , knew denote new 
sampled features for each object. The inference procedure of our model is as follow:

Algorithm 1:Uncollapsed Gibbs sampling procedure

Input: adjacent matrix M , total number of sampling iterations maxIter, number
- of burning samples burnin
Output: samples draw from the posterior distribution over Z
Algorithm step:
1. Initialize model parameters α, λ, Z
2. For each iteration iter = 0, 1, ...,maxIter − 1 :
- 2.1 Uncollapsed Gibbs sampling update Z

- (1.) Reshape Z

- If there any column in Z which is an all-zero column vector, delete it.
- (2.) For each object i = 1, ..., N :
- 1.) Update existing features:
- For each feature k = 1, ...,K :
- Sampling zik for existing features from distribution P (zik|.) ∝ P (M |Z, λ)
- P (zik|Z−ik), where P (zik = 1|Z−ik,M, λ) ∝ mik

i−1P (M |Z, λ)
- 2.) Determine number of new features knew
- Sampling knew according to P (knew) ∝ Poisson(knew; α

N )P (M |Znew, λ),
- where Znew denote assignments of new features.
- 2.2 Update λ

- Sampling a new λ according to λ ∼ Gamma(a+ EV, 1.0/(b+ C))
- 2.3 Update α

- Sampling a new α according to α ∼ Gamma(e+K, 1.0/(f +HN)
3. Throw those burning samples and output maxIter−burnin samples draw from
- the posterior distribution of Z.

In each sampling iteration, for each object, when we determine number of new features, 
the likelihood P(M|Znew , �) is obtained by the integral

We need to perform a Monte Carlo integration to draw knew according to 
P(knew) ∝ Poisson(knew;

α
N )P(M|Znew , �) . This procedure is equivalent to an importance 

sampling procedure: first, we draw many pairs (knew ,�new) , where �new denote new part 

∫

�new

P(M|Znew , �)P(�new)d�new .
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of � which correspond to those new features. Then, assign a weight to each pair based 
on the data likelihood P(M|Znew , �,�new) . Last, based on the weights,we sample a pair 
(knew ,�new) and take its knew item as our knew.

Collapsed Gibbs sampler

Different from the uncollapsed Gibbs sampler, the collapsed Gibbs sampler use 
P(M|Z,  a,  b) as likelihood distribution instead of P(M|Z, �) , and thus we need not to 
update � , i.e., step 2.2 in the Algorithm 1 can be omitted. As differences between the two 
samplers are very clear, we have no need to illustrate the collapsed Gibbs sampler based 
MCMC inference algorithm, we just depict details about derivation of the collapsed 
sampler here.

First, we derive the likelihood distribution which was used in the uncollapsed Gibbs 
sampler. Let M0 denote the set of observed unlinks, (i, j) ∈ M0 means that there is no 
link between node i and j (in other word, mij = 0).

1.	 Derive the likelihood in the uncollapsed Gibbs sampler	

	 As the likelihood distribution in the uncollapsed sampler is conjugate to the prior of 
� , we can integrate out � to obtain the likelihood in the collapsed sampler.

2.	 Integrate out � to obtain the likelihood in the collapsed sampler
	

P(M|Z, �) =
�

(i,j)∈M1

ρ
mij

ij

mij!
exp(−ρij)

�

(i,j)∈M0

exp(−ρij)

=
�

(i,j)∈M1

ρ
mij

ij

mij!

�

(i,j)∈M1

exp(−ρij)
�

(i,j)∈M0

exp(−ρij)

=
�

(i,j)∈M1

π
mij

ij

mij!

�

(i,j)∈M

exp(−ρij)

=
�

(i,j)∈M1

(� ∗
�

ZiZj)
mij

mij!

�

(i,j)∈M

exp
�

−
�

(ZiZj) ∗ �
�

=
�

(i,j)∈M1

(
�

ZiZj)
mij ∗ �mij

mij!

�

(i,j)∈M

exp
�

−
�

(ZiZj) ∗ �
�

=
�

�
�

ZiZj

�mij

mij!
∗
�

�
mij

�

(i,j)∈M

exp
�

−
�

(ZiZj) ∗ �
�

=

�

(
�

ZiZj)
xij

�

xij!
∗ �

�

mij exp



−
�

(i,j)∈M

�

(ZiZj) ∗ �





=

�

(
�

ZiZj)
mij

�

mij!
∗ �EV exp(−C ∗ �)
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Inference tricks

In order to derive a feasible MCMC inference procedure, we make the following 
assumptions for our model:

1.	 We assume that � is a diagonal matrix, links only exist between nodes in the same 
community, i.e., there’s no link from a node in community k1 to a node in community 
k2 when k1! = k2;

2.	 We restrict all link probability �k1k2 to take the same value � , this means nodes within 
each community have same opportunity to form a link.

These two assumptions can bring us two benefits, one is that we don’t need to 
change the shape of � along with the changes of K, the other is that we can obtain 
the conjugacy between the likelihood and the Gamma prior for � . Under this circum-
stance, � can be integrated away and a collapsed Gibbs sampler for Z can be derived.

The IBP has a major weakness: the generated Z is determined only by N and α , 
regardless of the characteristics of the observations. For example, if node i is an iso-
lated node, its community assignment vector should be an all-zero vector, but the IBP 
ignores this fact and assigns node i to some communities. Some steps are taken to 
correct this clear mistake and to avoid unnecessarily updating of the all-zero rows in 
Z. And accordingly make the MCMC inference accelerated.

1.	 Assign a flag to isolated node

	 We maintain a flag vector with all-zero initial values. First, we check each node in the 
graph. If its in-degree and out-degree both are zero, we set its flag to one to indicate 
that the node is not affiliated with any community;

2.	 Skip unnecessary update steps
	 After the initial Z has been generated, according to the flag, we change the corre-

sponding row in Z to an all-zero vector. In the process of each MCMC iteration, 
when we update Z, if a node’s flag is one, we don’t update the corresponding row.

P(M|Z, a, b) =

∫

�

P(M|Z, �)P(�|a, b)d�

=

∫

�

∏

(
∑

ZiZj)
mij

∏

mij!
∗ �EV exp(−C ∗ �)

ba

Ŵ(a)
�
a−1exp(−b�)d�

=

∏

(
∑

ZiZj)
mij

∏

mij!

ba

Ŵ(a)

∫

�

�
a+EV−1exp(−(b+ C)�)d�

=

∏

(
∑

ZiZj)
mij

∏

mij!

ba

Ŵ(a)

Ŵ(a+ EV )

(b+ C)a+EV

∫

�

(b+ C)a+EV

Ŵ(a+ EV )
�
a+EV−1exp(−(b+ C)�)d�

=

∏

(
∑

ZiZj)
mij

∏

mij!

ba

Ŵ(a)

Ŵ(a+ EV )

(b+ C)a+EV

=

∏

(
∑

ZiZj)
mij

∏

mij!

ba
∏EV

k=1(k + a)

(b+ C)a+EV
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	 After we perform posterior inference on Z, based on the assumption that a commu-
nity should contain at least three nodes, we will cancel those columns in the inferred 
Z which have less than three non-zero values.

Per‑iteration running times

For both the uncollapsed Gibbs sampler and the collapsed Gibbs sampler, when analysis 
algorithm complexity, we only consider the number of the Hadamard product operates 
on Z (i.e., element-wise matrix multiplication Z

⊙

ZT ) for one sweep through a N ∗ K  
community assignment matrix Z under a compound Poisson likelihood model.

The running time of both two Gibbs samplers are dominated by the computation of 
the likelihood. When we change one element of Z, the likelihood need to be calculated 
twice, thus Z may be updated in O(N 3K ) time.

Experiments
We implemented our model and the inference algorithm using python. After we finished 
Bayesian analysis, the posterior which contains all the information about model param-
eters according to the observed data and the model, was need to be summarized [25].

For single variable parameters such as α and � , it is easy to communicate the result, as 
the most probable posterior value is given by the mode of the posterior distribution (i.e., 
the peak of the distribution). It is also a good choice to report the mean (or median) of 
the distribution and some other measure, such as standard deviation or HPD (highest 
posterior density) interval, to have an idea of the dispersion and hence the uncertainty in 
our estimate [25].

Experiment on synthetic data

We analyzed one synthetic network generated according to our network gen-
erative model. Because the ground truth is known, it is easy to empirically vali-
date our theoretical findings. We generate synthetic data from the IBP prior (with 
N = 30, a = b = 1, e = 14, f = 1/HN  , α ∼ Gamma(e, f ) , α = 1.7658 ) and the com-
pound Poisson model (with � ∼ Gamma(a, b) , � = 0.3872 ). The simulated graph is 
a directed graph, with 30 nodes and 666 edges, its adjacent matrix M and community 
assignment matrix Z were depicted in Fig. 3a, b.

We ran six chains, among them: chain1, chain2 and chain3 correspond to the 
uncollapsed sampler (we use U stand for it), chain4, chain5 and chain6 correspond 
to the collapsed sampler (we use C stand for it). Among them, chain1 and chain4 
start with a = b = 1, e = 4, f = 1/HN  , α = 0.1543 ; chain2 and chain5 start with 
a = b = 1, e = 14, f = 1/HN  , α = 1.7658 , i.e., the ground truth of all parameters; 
chain3 and chain6 start with a = b = 1, e = 24, f = 1/HN  , α = 3.7991 . We ran each 
chain maxIter = 10, 000 MCMC iterations, throw burnin = 3000 samples and col-
lected the last 7000 samples. We illustrate occurring times of all the Ks values sam-
pled from the six chains in Table 1.

As depicted in Table 1 and Fig. 4, in all six chains, mode of Ks is 8, which is as same 
as the ground truth we have known. Thus, we conclude that all the six chains con-
verge to true posterior distribution over Z. Apparently, the inference is biased w.r.t. 
different settings. Values of Ks span from 4 to 15, chain1 and chain2 have smaller 
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dispersion on Ks value than chain4, chain5 and chain6. From this perspective, we 
can draw a conclusion that uncollapsed samplers get better inference results than col-
lapsed samplers. We also can see that when alpha takes a small value, samples with 
Ks = 7 are more than samples with Ks = 9 , when alpha takes a bigger value, the num-
ber of samples with Ks = 9 become larger, i.e., the setting has big affect to the statisti-
cal dispersion on K.

For structured parameters such as Zik s, the common practice to summarize it is 
to take the modulus of Ks as the K value and take the last sample as Z. Apparently, 
the chain1 did not has a good discrimination degree, because the number of samples 
with Ks = 7 and Ks = 8 are almost equal. So, we use the 6997th sample which was 
drawn from the chain2 as our posterior inference result. See Fig. 5 for the programm 
running results.

The inferred Z was depicted in Fig.  3c. We compare the posterior inference 
results with the ground truth and the 1000th sample (which was depicted in Fig. 3d) 
via illustrate their communities in Table  2. The second row of Table  2 records the 
true communities, we can see that C1, C2,…, C8 are subset of Vt , and Ci 

⋂

 Cj 
 = ∅, ∀i, j = 1, 2, . . . , 8 , i.e., C1, C2,…, C8 are overlapping communities.

Fig. 3  a Depict the adjacent matrix M of the simulated graph, b depict its community assignment matrix Z, 
these are the ground truth. c depict the inferred Z via the uncollapsed sampler, which were obtained from 
chain2 in the 6997th MCMC iteration. d depict Z sampled from chain2 in the 1000th MCMC iteration

Table 1  Occurring times of all the Ks values sampled from six chains

Italic value indicates significance of Ks value

4 5 6 7 8 9 10 11 12 13 14 15

U chain1 0 5 439 2660 2672 959 187 16 2 0 0 0

chain2 0 0 184 1393 2396 1952 836 199 35 4 1 0

chain3 2 66 406 1311 1951 1784 954 393 104 27 2 0

C chain4 9 181 742 1628 1754 1106 427 127 21 4 1 0

chain5 8 100 581 1418 2004 1707 827 268 77 9 1 0

chain6 3 62 338 1137 1842 1825 1127 490 125 42 8 1
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From Table  2, we can see that the biggest two communities C1 and C2 have the 
same objects in both the ground truth and the inferred results, but those small com-
munities are different from each other. Only 6 objects v11, v18, v19, v22, v27, v29 have 
the same community affiliation, imply that for an unsupervised learning task, such 
as overlapping community detection, even if we known the ground truth, it is hard to 
obtain accuracy results via statistical machine learning method. Let us see Z sampled 
from chain2 in the 1000th MCMC iteration, it is very far from the ground truth, so 
it’s necessary to throw the burning samples away.

Compare the histogram of α (middle in Fig.  6) and the histogram of � (right in 
Fig. 6) correspond to the chain2, we found that the change range of α is larger, while 
that of � is smaller.

This conclusion can also be verified according to metrics depicted in Fig. 7, we can 
see that the HPD of � (Fig. 7a) is more short of the HPD of α (Fig. 7b). The HPD is 
the minimum width Bayesian credible interval, it is the shortest interval containing a 
given portion of the probability density. One of the most commonly used is the 95% 
HPD or 98% HPD, often accompanied by the 50% HPD.

In Fig. 7, the black curve describes the posterior using a kernel density estimation, 
mode, ROPE means lower and upper values of the region of practical equivalence. 
When we say that the 95% HPD for α is 1.33, 4.78, we mean that according to our data 
and model we think α in question is between 1.33 and 4.78 with a 0.95 probability. 

Fig. 4  Histograms of retained Ks correspond to the six chains

Fig. 5  Programm running results
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95%HPD of retained α , � which were drawn from chain1 and chain3 were depicted in 
Fig. 8.

We summarize mode 95%HPD of retained α , � which were drawn from all three chains 
in Table 3 and we can draw a conclusion that setting has setting has small affect to the 
statistical dispersion on alpha and lambda.

Experiment on the LESMIS network

Most of the existing benchmark data sets do not produce good results in our experi-
ments. One reason is that most of the available network data are binary networks. 

Table 2  The true communities and the inferred communities

Communities Size

Ground truth C1 = {2, 3, 4, 5, 7, 8, 9, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29} 23

C2 = {1, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30} 23

C3 = {1, 2, 5, 6, 13, 17, 26, 30} 8

C4 = {1, 8, 15, 16, 28} 5

C5 = {5, 12, 17, 24, 28} 5

C6 = {3, 7, 10, 13, 18, 30} 6

C7 = {4, 12, 20, 25} 4

C8 = {13, 14, 23} 3

Inferred result, the 
6997th sample

C1 = {2, 3, 4, 5, 7, 8, 9, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29} 23

C2 = {1, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30} 23

C3 = {5, 12, 13, 17, 24, 25, 28} 7

C4 = {1, 2, 5, 6, 17, 26, 30} 7

C5 = {1, 2, 8, 15, 16, 28} 6

C6 = {6, 13, 18, 23, 30} 5

C7 = {3, 10, 21} 3

C8 = {10, 13, 21} 3

The 1000th sample C1 = Vt 30

C2 = {3, 4, 7, 10, 11, 14, 16, 20, 21, 22, 23, 25, 29} 13

C3 = {5, 20, 23, 24, 25, 27} 6

C4 = {2, 5, 8, 17, 26} 5

C5 = {1, 2, 6, 30} 4

C6 = {6, 21, 26, 27, 28} 5

C7 = {9, 12, 14, 20, 27} 5

C8 = {9, 10, 30} 3

Fig. 6  Histogram of retained Ks , α , � which were drawn from chain2 
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Fig. 7  HPD of retained α , � which were drawn from chain2 

Fig. 8  95%HPD of retained α , � which were drawn from chain1 and chain3. a, c Correspond to chain1, b, d 
Correspond to chain3 
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Another reason is that a large number of count value networks are overdisperse; thus, 
the Poisson likelihood is not a good choice for modeling. Although the negative bino-
mial likelihood is more suitable for these overdisperse count value data, the inference of 
the rILFM model which has a negative binomial likelihood, is very sensitive to the start 
position and, thus requires great care in selecting appropriate starting point. At present, 
we are still working on this method.

The LESMIS network is patchy at best. This network is included in the collection of 
Miscellaneous Networks, and describes the coappearance of characters in Les Misera-
bles by Victor Hugocontain. The undirected weighted graph contains 77 nodes and 254 
edges, and its density is 0.0868079; maximum degree is 36; average degree is 6; assorta-
tivity is − 0.165225; number of triangles is 1.4K; average number of triangles is 18; max-
imum number of triangles is 82; average clustering coefficient is 0.573137; fraction of 
closed triangles is 0.498932; lower bound of maximum clique is 10.more information is 
provide in [26]. As depicted in Fig. 9, visualization of the LESMIS network was obtained 
via interactive graph visualization platform provided by the networkrepository.com [26].

We obtain a data file in GML format, we convert it into a CSV file. The file con-
tains an upper triangular matrix, with all diagonal elements as 0. Note that we have 
no ground truth about Z and K. For greater reliability, we ran two chains: chain1, 
which starts with a = b = 1, e = 24, f = 1/HN  ; and chain2, which starts with 
a = b = 1, e = 44, f = 1/HN  . We ran each chain for maxIter = 10000 MCMC itera-
tions, with burnin = 4000 and collected the last 6000 samples.

As shown in Fig. 10a, b, both of the two chains show mixing. We illustrate occurring 
times of all the  Ks values sampled from the two chains in Table 4. We can see that for 

Fig. 9  Visualization of the LESMIS network

Table 3  Summarization about mode and 95% HPD of retained α , �

chain1 chain2 chain3 chain1 chain2 chain3

Mode of α 2.46 2.75 2.97 95% HPD of α 1.11, 4.47 1.33, 4.78 1.37, 4.94

Mode of � 1.24 1.25 1.25 95% HPD of � 1.2, 1.27 1.21, 1.28 1.22, 1.29
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both of two chains, the mode of all Ks s is 15. Thus, our potential true K value of Go is 
Ko = 15.

From Fig. 11, we can see that the 5962th sample is the last sample drawn from chain1 
which satisfied Ks = 15 . So, we chose this sample as Z’s posterior inference result, i.e. the 
observed graph Go ’s community assignment matrix is sampled at the 5962th iteration.

Figure  12 a−c depict the histogram of Ks , α and � for the samples retained from 
chain1, d−f correspond to that of chain2. We can find that although the starting posi-
tions of the two chains are different, posterior distribution of the parameters inferred via 
MCMC are very approximate to each other.

Figure  13a, b depict the HPD of α and � for the samples retained from chain1, 
c−d correspond to that of chain2. We can find that for chain1: the 95% HPD for α is 
[1.07, 3.27] and its mode is 1.98; the 95% HPD for � is [0.85− 1.01] and its mode is 0.94. 
For chain2: the 95% HPD for α is [1.19, 3.41] and its mode is 2.14; the 95% HPD for � is 
[0.87− 1.01] and its mode is 0.93. From this perspective, the two chains have approxi-
mate inference quality on single variable parameters. But is we compare dispersion of Ks , 
we will find that inference quality of chain1 is better than chain2.

Fig. 10  Trajectory of sampled Ks , a depicted the trajectory of Ks sampled from chain1, b depicted the 
trajectory of Ks sampled from chain2 

Table 4  Occurring times of all the Ks values sampled from the two chains

Ks = 13 Ks = 14 Ks = 15 Ks = 16 Ks = 17 Ks = 18 Ks = 19

chain1 183 2284 2878 626 25 4 0

chain2 377 1776 2020 1246 507 70 4
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Conclusion
The paper makes the following contributions: (1) we propose a generative model for 
count-value networks with overlapping community structure; (2) we use the IBP to 
model the community assignment matrix Z, so the number of communities K is not 
required to be fixed in advance, it is able to increase as more and more data are encoun-
tered; (3) both uncollapsed Gibbs sampler and collapsed Gibbs sampler for the gener-
ative model have been derived; (4) we analysis the inference quality on single variable 
parameters; (5) we conduct extensive experiments on simulated network data and real 
network data, we find that the proposed model and inference procedure can bring us the 
desired experimental results.

Most count value networks are overdisperse, the negative binomial likelihood is more 
suitable for these overdisperse count value data. But inference of the rILFM model with 
negative binomial likelihood requires great care in selecting appropriate starting point, 
we aim it as one of our future work.

For single variable parameters, the posterior inference result is easy to communicate. 
But for structured parameters such as Ziks , how to summarize the posterior inference 

Fig. 11  Ks value of the last 40 samples drawn from chain1 

Fig. 12  Histogram of retained Ks , α , � , a−c correspond to samples retained from chain1, d−f correspond to 
that of chain2 
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results and estimate the inference quality, is a considerable challenge, we aim it as 
another one of our future work.
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